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A TIMl DEPENDENT PROOF O THE ASYMPTOTIC COMPLETENESS FOK
DIFFERENTTAL OPERATCRS O PRINCIPAL TYPE AND FOR SHORT RANGE

PUTENTIALS

M, Pascu

in this paper we shall give a time dependent prgof of the asymptotic com-
pléteness of wave operators in conditions which are close to those in [5] .

We shall denote with P a real function belonging to Coa(ﬁn), This function
and- its derivatives have .a polynomial growth, We suppose that there exist two

~open cones X, and.&l?, SZ1LJ fZ? & hn-&03and

(1) (3) 8>0, (3)B, > 0, (F)ec >0, (F)¢, > 0 (x| > 2) such that

LES S1P2 Ck"ﬁ@ 3 oE, ¥ > R

\P(d)(‘f)\ < €, ]P'('f)l ‘fl—s(‘“‘ _T)’ 5 € &hy, &}‘7’ B lel > 2,
(ii) ]}( ?)\—9 0o when >\fl—9 c© , te SLZ-

We also assume that if CV = {P(f )3 P'(f') = O} , then

(iii) C; is at most a countable set,

(This'condition ensures the absence of singular continuous spectra ( Géc) of the
operators we shall consider Below.)

The unperturbed (or free) Hamiltonian is given by H = F—1P(')F, where P(-)
is the self-adjoint operator of multiplication with P(f’) in L2(82) and_F is the

Fourier transform
(l«‘f)‘(‘g) - Se"-i(’é’f) f(x) dx , £ e L(r?),

The onerator H, is'a self-adjoint opertor dn L2(R1) without singular continuous

spectrum, -~
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Now let V be a symmetric HO -compact operator (i.e, V(HO + i)""1 is compact)

Then it is well known ( [11] } that H Z,HO + V. is a self-adjoint operator in

2 ; ; At . ' '
L (R™) and his domain of definition equals dom(ho), We suppose in addition that

.
e

V is a short range perturbation of_HO

21, . )
€ L (R+ § dr) for one

ta) “mo a7l V(e /o)|

(and hence for every) function € € C™(&%; R), Hx) = 0 for lx| = 1/2,

e(x) = 1. for. lgl. 5% 1

.

We shall prove the next theorem:

Theorem, If the assumptions (i)-(iv) are satisfied, then:

(a) there exist the wave operators We = s—lim o Bl iy P,
) = { —» %00 a

C(HO), where
Pac(Ho) is'tpe orthogonal projection on the subspace of apsolute continuity of HO;
(b) Ran. VW ='}€aC(H) (Kan A denotes the range of the operator A);
(o) @, (H)i=is

(d) the eigenvalues of H which are not in 5; are of finite multiplicity and

they can accumulate only in the points of 5;

°

We shall give a time-dependent proof of this theorem, In [SJ , L, Hormander
proved the existence and asymptotic completeness of the wave operators in the caéé
of some short range perturbations of a differential operateor with constant coef-

ficients which satisfies:

(1) 1lim (}IW % )! + lP'( ¥ ” ) = oo, when [§]|-—» oo
and , | , | :

(2) \P m(‘{)‘ sco((_\P(?;)‘ 4 \P'(‘g)i + 1) | 7 2,
Harmander called these operators simply characteristic, But his proof was based
on stationary (time—indebendent) methods ,

The first time-dependent proof of the asymptotic compleﬁeness is due to V,
Enss ( [3] ), for the case Ho = ;‘A (i.e, P(? ) = .if|2), Simon, iﬂ [13] , &ene-—
ralized the result of Enssvto the case P( T )>o0 wken \f|~>oo . In [87] ang
[9] Muthuramalingam proved the asymptotic compleﬁoness by a timé—dependent method

for a class of simply characteristic operators with short range local perturbations,
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His construction of the operators which separate the outgoing and incoming parts
of a state is similar to that in [41 .

In this paper we construct these operators as pseudodifferemtial ope&ators,
like in [7] . bur proof was also inspired by the papers of Muthuramalingam [ﬁO]
and Iftimie [6] .

Let us prove first the existence of the wave operators, Since eitH e"itHO
are uniformly continuous with respect to t, it is sufficient ﬁo prove that there
exist the limits

im JLtH ~itHe

t~> % 00

for f in a dense subset of Q&EC(HO), Accordingly to the appendix we can take this set

to be equal to

{ress & ec ({5:v(3) # i},
'Such & function £ is lin dom(f_). If §”e (:;"(R), 0= ¢ <1, (%) =1 for
il = v , then

ICr = granse o] < flor - granyo s o7 o+ 0+ 07 o, + el

converges to zero uniformly with respect to t in R, So the first assertion of the

theorem is true if there exist

1im \k(H)eltH ¢~ £
t-s 00

for f like before and for every 4'@ CS’(R),
Applying the Cook method we deduce that it is sufficient to prove that

w .
J \W(H)Ve“lm" £ “ at < co
4

Now let 9'}maa function like in assumption (iv) . We have
M(H)Ve"it“" f” @ \Nj(u}(lb + i)n Nitg + 1)~ Vo)) el +
+ aov| o= B sttt £

The properties of V and the choice of ¥ ensure that the first term in the sum
49 in L1, In order to prove that the second term is in L1 too, we use the fol-

lowing estimation:
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e—it‘H° £(x)

<o)t (xl+ (s mMe], Ze e
for every m € N; here ¢ is a neighbourhood of the set
{P’( ? € supp f S
; (Lemma 1, pag, 128, [73] ) ‘
. Hence if we take a sufficiently small,

n - B /(at))em it ¢ H CEm

/ and consequently the second term of phe sum is integrable,
“g.e.d,
We pass now to the proof of the other statements of the theorem, We distin-
guish two cases: the case when ¥ E§JL1 and the case when } e Sk

We consider first the case when ¥ e, . Letus denote

c;"_: {é} R—> R; g is C* in R and 5(7) i (V)j‘x
and
sﬁo Q—.{a: R — ¢ a is ¢ in K°° and (%) «, P Y € R = C«,pr
o y

. o 2
such that Pg 9f E‘y a(x, y, ¥)

- | .
e+ ™M™, (nx, 5, 5 ey,
Lemma 1, If P: 0 = K satisfies (i), then

(d) €» 0, g> 0 such that for every g € Lb (R), ¢(™N) = 0 for A in
a neighbourhood of 0 and for every function %;e<;“%3?) which is positive homo-
geneous of order zero (for ‘?i 7 1) and whose support is included in 521 (for

o E 0

[$| 7 1) we have that (golp'|)x € 89

°£,0
(b) for every t+ € C*”(R) we havethat

L %TJ\TT;—T)\ -, g en, Jpp]y oo o, 16> o,

Proof . (a) Since % € s°

1 ,-@nd supp X < £L1 (for [%¥| 2 1), it is sufficient
0

9

2 . 3 .
to estimate the derivatives Qg(gtﬂP" ) on 5L1 for %] » R,. Every expresion

of this kind is a finite sum of terms as follows:

. ) ? p\y < . o €
C‘?’w---’ﬁk'@?‘w?)‘e %E*\P'<§>] S e,

where %1 T Fk = o, 14k < |« , Also it can be shown by induction that

e 4
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p ' €
2E\P'(§ ﬂi is a finite sum of terms like

D) ¥
Cy YP(Y'I (g).,,P( ) }’)\P' }‘\ i

q?e.o? _l

where 1 is en even positive number, 2 =1 5 ?\P \Yi\ = \P\ + 1 and

Y. 4 0, (¥)i, Our assumptions imply that
1

1
gy -8 Z (1¥g-4)

(1§).“ f“P'(‘f)‘g]so‘}f'(}‘)\l\ﬂ
= o3|~ |prg ff

1)'(§)}8;“1 =

for \ﬂzho, i(’:l %,
Now since P'(} ) has polynomial growth there exist 8.7.0 and S > 0 such

that :
}luslfbl' ]P.(‘f)leéconst. [flﬁo,pl Nzt fyo.
* Thus

3"‘53( 1}“(} )|e)[ o l_gl—f(\p1\+..,.-rlﬁkl) _c [y -1 %) > &

This Qccompllthes the proof of the first statement of the lemma |,
The proof of the second statement procecds analogﬁushﬁ

q.e.d,

In the sequel we must split every state of the (physical) system in its out--

£01ing and incoming parts, This partition is performed py means of two pseudodif-
ferential operators, In order to define jhese operators, first we shall choose
some'approbriate functions: |

1) gec‘”({o,oo)), Osgvs'l, g(N) = 1 fbr Azc,’8(A) = 0 for
A < c/?, wrere ¢ > 0 is a fixed constant: .

2y & C‘w(&{n), o< <1, #(x) =1 for \x|.7/ Dy 9‘()() = O for |x|
!

3) X € CO(R

, positive homogeneous of order zero for ¥} 2 1,

supp %X < SL1 |
g, e ™), 05 ¢, =1, $(X) +p (A) =1 for Ae[-1, 1] |
b.(Aa) =1 for e [, 1], ¢_(N) =1 for e [-1, =& s where G, e (0,

is fixed,

1)
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Let € and p be like in Lemma 1, (a), For r » 1 we define

8 65 ) = XCE )R 0N bl sy - ) 9F)s

: .0 n n ;
since p < & , we deduce from Lemma 1 that ar,i € Sf’o(ﬁAxﬂv), uniformly with

respect to -z 1,

We can now define the pseudodifferential operatorsmentioned before:

o - Povad Y] .L(X_yfg) & -
Pr,ii(%) = (29) . 55 e ar,t(y,‘f Jf(y) dy d% . fef .,
The integral is an oscillatory integral and its value coincides with the value
of the iterated integral -we integrate first with respect to y. These operators

are continuous operators defined in éf, the space of rapidly decreasing functions,

~with values in & ; their formal adjoints are

w
%
Fb
5
S
!

- (29)™n SS oidmey %) ar,t(x’} )f(y) dy 4§ =

i

(agEy " Sei(x’f) ar,i(x,ﬁ;mg) a¥ .

. : P i s
It is known that Pr can be extended to continuous operators in L (K ), and their

4

§ .

(4
-norms devend on & finite number of derivatives of ar . ( [1] )
ik

Tet £€¢¥ . The free evolution of its outgoing and incoming parts is

~ithoe
fe(t) = e Prat

where e~ 1tHe 35 the unique continuous extension to Lz(ﬁn) of the operator

oo glx) = (om ™ | MBI - R ey, e

n D — J-itjib
Thus, Lr,i(t) = e

. I
Pr . ére continuous operators in L~ and

g -~

- 1 ey T 41 /\,
3, (6)5(x) (250)™ Sel”"f) itk(¥) o ¥0%) ag =

= (2% )™ J’ei‘x'?) - LERE) Je“i‘y’?) a. (¥, §)2(y) day)af =

il

(27 )P _J( J gilz~g % ) - itp(}‘).ar,t(y,}‘)f(y) dy)d§ , fed .,

Lemma 2, The operators E_ R, P, have the following properties:
= AT -
(i)* sno [p, (D] < oo
52 0r 1
&
ii) P = X (D)g({P'(D &(+/r)s
(ii) Pooat P X (D) gl \ ( ” ) )

w1
(iig) . e - e er™ [ ws,
r&  r,x
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Progf (4) dg s consequence of the considerations which precede the lemma,

(ii) This formula is dbtained"by. a straightforward calculation,

(iii) ]*or £ in &, we have .

Jtlx) = (o) ([ 10Xy 5) e, (V2 %) -8, (x,5))E(y) ay af =

§ -

i
Ca
N
s

- = A .
e v H (Y, § ) (fog_; oy 4lsy + (1-s)x, ¥) ds)f(y) ay 4 =

it

(26 )8 ei(x-y,‘f) (y = x)e ! (2._.a sy + (1=s)x, %) ds)f(y) dy d¥ =
, RN 7 g

1

; 4
4 ) Al( X._y’ ) . o c ) i .
~i(29 ) Ue 3 (go (( 2, 9,5,)(_11“";(537 o .(1—5)x, ) ds)f(y) dy 4F .
: At the last step we have integrated by parts in the oscillatory integral, We must

estimate the derivatives of the new amplitude

1.
ga 9X ?f ar’i(sy + (1«§)x,§) ds -

ax-aY‘,i(X’f) i (Qx,&)( ; ) \‘Pt( \il’}:{}e(' ?f) 1 )g('\P'( f)\g)%( ) +

)
o ¥ ooy %P (F) BN Y g i
+T;<—‘v{‘}'< T ‘-\’i( CIRCHS ] ) PE)] \};\‘ XPL(”f)T)’(\P (}E)\&.)%(f)"_

On supp® [y‘ 7 r. Thus

0,00,%1'% | =
The other derivatives of &, 4 satisfy the same estimate (the constant C may be
: r L+
different). The Calderon-Vaillancourt theorem accomplishes the proof of the lemma,

q.e.d,

Lemma 3, Let ¢ be in Cgo(iﬁn), 0 ¢ <1, ylx) =1 for [x{ = 1/2, @(x) =0

lx[ > 1. 'Then there exists a constant b ( which depends on c¢ from the definition

of g) such that fer every k > 0, there exists C = C(k) > O with

Lo srery e (8] = O e 1BDTE, 2 0,

(the sign + corresponds to t > O,)

Broof . We shall apply the following lemma (belonging to Schur):
Let K be a conbinuous function defined in H% X! and such that

sup S[I{-.(..x,m -V)l dx «(C, sup J.l'K(x, y)[ dy <C, Then the integral operator with
y P ‘ % -8
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!

: 2 e . 3
kernel X is a continuous operator in L (R") with norm = C, We want to estimate

the norm of the integral operator with kernel

K (x, yi v, ) = (27)7" j LA(x=y, ) - itB(§)

X
T( b(r + \tii)dr,t(y'f) ag
i < i e ey U 4 e » X 4 o . R .
§(the fact that we multiply with &e( oy e A ) permits us to consider this in-
ltegral as an oscillatory integral, if b is small enough) ,

We shall consider only the case of -the sign + , t > 0, On the support of the
; integrand we have
We . -
iz = |2reg)) > (e/2) /B i >0, 32 (%) -Gy |BrCE)) .
Thus
‘ 2 2 2.2y,
\y + tptg}-)l 7 (1= T )" + t7¢7);3

¢

hence, if b is small enough,

\y + B ¥ A > \ll—:3£é~ (r + c1t) 2 20{1 + 2+ %), 21, >0,

Since |x| € b(r + t) on the support of the integrand, we have that

\x -y - tp'(g)( 5 b1 + 1+ t)

on this support,

Let L be the following differential operator:

g o ol e BACF Y
SRR PR D LI

Then

Lell(x=y, ¥ ) - itk(y) _ ilx-y,¥) - itP(¥)

So we can define K as an oscillatory integral:

K(x; vir, t) = (272) ™" j el(x-y, 3 ) - 11B(¥) ‘f’('gﬁ_‘:"%‘ﬁry )(JUL)N ar’+(y,’§) 4% .

In order to apply the lemma of Schur, we remark that the following inegqua-

lities are also satisfied on the support of the integrand:
Jy o+ w208)] 3 (2v/e )1+ [yl + s[RI

x -y = t2CE) 3 (be )1+ |y] + B[R (E)]) 2!

7 (b/(Ze )1 + Ix) + |y| eyl 2
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bkt Himl g+t g
'}'i y+"‘§] )i

where b1 is a positive constant, Taking into account these inequalities, the con-

dition imposed on P and the fact that 8., +(y,§ ) € S? O(Rnxﬁﬂ)_we deduce that for
¥ g a

every k there exists N such that

IR PR T eTe Y R SRR e T

, {1 '+ 24 t)mk

ansequently

Kb(x, y; r, t)| < C(1 + \x\)nﬂ—1 (1 + [y\)—n“1 (el f + t)—k E

Now in order to accomplish the proof it is sufficient to apply the lemma of Schur,

q.e/4.
‘Lemma 4. Let g, & and X be as before, Then,
id sup O - WD ) % (e By 8¢ Z 1 og] <0
- co t% O '
for every e C: (R‘C;f) and for every f in 7,
Proof ., Accordingly to Lemma 2, we have that
x(Dlel [P UD ey BB i g p | omiW p g p o gTiBRg
v r r,+ r,-
.So it is sufficient to prove that
X .
1im sup H(1 - WeWg) le)P e S f\\ =0 (1)
; > e r,+
Ir - 00 1 20
and that
. * ; ~1itH
1im  osup (1 - W) $ODP e f“ =0 (2)

T —> 00 tZ0 ’

(Here t> 0 corresponds to W -and t < 0 to W_.)

We shall consider only the case t > O, The relation (1) will hold if

1im HU A w;rwf) d((ki)}f’r_,+|[ - 0. (3)

T —> 0o

First let us prove that

v |y -wpoe, o= 0. e EENCY

Y =5 CGo
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Because dom(H) = dom(HO) = dom{V) and V is & short range potential we have

Sl 7 : e d. ¢ AtH ~AtHey g4 ooy jw’ itH 5 ~ithe 44
b (1 = wW,) = fc gn) S (e e ) as = =1 [ g (R)Ve

. (the integral is strongly convergent), Therefore

; = . —itH,
“Uﬁ(n)(w - W+)Pr,+“’ < So | (n)ve e 1)r’+|| it .
But o-itHo p_ = m (%), Hence it is sufficient to prove that
- |
1im f [{ y (DVE +(t)u at = 0, ‘ (5)
=2 06 0 ’

If ¢ and b are like in Lemma 3,then

\‘k})(]I)Vll)T,+(1;)]| 2 [ICHEREES

The operators Er ;(t) are uniformly bounded with respect to t and

g:’ “(H_O L ce( T ))“ it < g: \\(MVO )7V - g E N
g T

b1 gt — 0

when r — oo ,accordingly to the assumption (iv), The estimation of the second term
follows from Lemme 3%, So we obtain the relation (5)'and consequently the relatiog
(4).

In order to prove (3) we rémark'that since (%(H)W+ = W+t¥(Hé) the following

equalities hold:

0 = 1lim | yae, | - w+ur(no)pr,+“ =

I -» 00

, R e _
lim \\w%er YULR, | = W () ) =

Ir~>co

. ¥ ()T - v) i
Fed \‘W+w+ *(#)Pr,+ N+LP(H0>1T,+“? :

i1

H

T —» 00

y 1m0 = ganr |- L | g, | - W+‘P<“0>Pr,+” =

ST —s 00

il

*

r—> oo

. A -
1im \\ (1 N+W+) L{)(H)Pr’+ l
. » . : ‘ ‘ %‘
At the third step we have used the fact that han +(ho) ; J{ac(no) = Ran W W_.

This ends the proof of the relation (3) .

We turn now to the proof of the relation (2), It is sufficient to show that
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Lo

1im sup “I}_“e"itﬂ f“ = 0,
1> O >0 !

Let us remark first that due to the Lemma 5

Tim sup “E§gftf’<x>—1“5“ =0

r-—»00 t=<0 £

f and therefore

lim sup “P:"_e“ltﬂo £ “ =0 ' . (6)
T —> 0o t <0 !

1+€)

for every T € dom( <x> , hence for f in & dense subset of l?(ﬁp), But

¥ _~ithg . . i , - o b
Pr _e 6 is a family of uniform continuous operators, Thus the relation (6)
"

311 hold for every £ in L°(R%).,

0,
Now let ¢ be in CO(R ). In the proof of relation (4) we have used only that

4

Y e CZO(R:;.'SO it can be shown in a similar way that

lim - sup “ iila - elJBH o—itHo )Pr -'“ & B
T —s G0 t<0 1

Performing the cubstitution t — =t and passing to the conjugate operators we ob-
tain that

' 3 %  —itH o itH
1im suyp “P q(ﬂ) ~ P g o Lf(ﬂ)elt “ =
: r,- ry—
Y —> Oo t>0

: . e a ¥ -itH i
lim sup “P*' e LtH LP(H) =P e kg ge(H)H .
T, - T, - : ;
T-300 £>0 .

o)
i

i

Using the relation (6) we have that

%, i
lim  sup “Pr i af(n)f]\ o0, (V)1 e (Y,
r— 0O £ >0 4 '
A % il e
Since ¢ € Ceo(h ) is arbitrary and “P - P “ < Cr 1 (Lemma 2) the proof
0 : T, - T,- ,

is complete,
. Lemma 5. Let %1, \¥é be in Céb(ﬁﬁ~§;), £ in ?QJ}U. Then

T i
IRECEE ,‘ [ (1 - ) g0 x (D) (e it 2| ot = 0.
T —oo 0 : _

Refore starting the proof we state two results which will be used in this
proof .,
Lemma 6  (RAGH theoren) , Let A be a self-adjoint operator, T in ?%C(A) and

¢ a compact operator, Then
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S ‘
lin g | \\()eﬂ‘t/\“j‘\\ at = 0,

Nl oo
e =T 1

(A proof of this result can be found in [1’2]
- T . 8 \w ~.n ; - s 23, kP’ S ] 3 .
Lemma 7, If cf s A by (R") and Hy is the $abf-adjoint operator correspon-
ding to the convolution operator P(D), where P: 1w { satisfies the assumptions

(i) and (ii), then (,f(w)(no + j_)—1 is a compact operator,

Proof, The proof of this lemma can be derived from [?1 . In that paper it
_was proved that if h: R~ R is a cvasidivergent functién, then (f(")(h(l)) + ;L)"‘l
is a compact operator, A function h is said to be cvasidivergent if for every m,

Tim ]Cv N s \ = 0, where 5 = {X; \h(x)\ = rr?} and C. is the unit cube centred
Vs 00 m ; m pY

. r’rl 1 3 . it ~ - 5 . 2
in ¥ € 2 . We have denoted here with \M\ the Lebesgue measure of the measurable

e

set M. In [?] it was also proved that if h e 02(Rn;’ R) is such that

LA \h(‘f)\ * \h'(f)\ﬁoo when \§|-— oo

and .
\9“}1(?)\ < 004 % \h(i)‘z N \}1|(?)\2>1/?
for every ¥ and for every o with el = 2, then h is cvasidivergent., That proaf

is fit for this case too if we cover RY with eventually smaller cubes T, with the

pl

oo B o ‘
property that Cy, Crﬂa,, o7 G CLQJ?. lience P is a cve mldJ_verg,cn“L function and con-

sequently C{?(‘)(H + i)—1

s is a compact operator,

qg.e.d.

°

Proof of Lemma 5. Let ¢ be equal to inf {\P'( % )\e ; P(¥) € supp l]J;) and let

g be in € *“(fo, oo) , é(A) =1 for A > ¢, &(A) =0 for A < c/2. Since

g( \ D) \th?\l ) = *2(H ) we have that
P (1) = (1 - \P'w\e ) ( %m S0+ el o) B 00
Now; Ll)z(n) - \‘J?(H'.) is u compact- operator since (H + i)_1. - (HO 4. i)—1 is a

compact one,. Accoralng)ly to RAGE theorem,

<L 11 ST \ xp?(n) t}' (1 _))e i 1“ dfi = &
0

Thus




2 ' ‘
¥ Tt
lin g So (=) 00 X1 - (R NEN (00 = e 1)+ 2l as

00 .

On the other hand,we can write

(1 ---'w+v;f) W, (1) X D) \y*(u)ge’) q.lg(li)e—itﬂ f =
= (1 =) )% Ye( 1P () B & )em i Ypline +
o wyw W, (1) X(D) ye(\pr(m) &)1 - B ) %(H)’e“iﬁﬂ o=
i j’l, ey T + f2, 3,
By virtue of Lemma 4, “f1 ) ‘r“ —» O when r —> oo , The second term can be sui-~

tably estimated if we remark that

(50 gyt = (1 = &
ot

(b, (1) =P (1)) +

DICI e (H_ + i) \})2(}10)

i B3ifs

; 0 , .- . - '
LS a a at ) = = g
i compact operator (since qg(H) 4b(ho)) end (1 &« 3 ))(}l0 + i) are
compact ones) and if we apply again the RAGE theoftem, Adding together all these

_ facts we obtain the conclusion of the lemma ,

We cofisider now the case % e.iz? and we shall prove that the conclusion
of Lemma 5 remains true in this case too, First we introduce some notations, Let
G and,Lpi be like in the case T € JL1, S = P"q(Cv) = {:ﬁ; P'(‘g) - O},

¥ e cg"(l{“ <8). Then we put

b, (0% = YT ipy HP'?) L
o, 100 = )™ f[ SO Sl n (v, e)ely) dy dg L Ted

Tk iE
) : -n ilx-y, ) - 1tP(¥) &
b (0200 = ) [ e % b, (v, 5080 oy ay , £ e
Taking into account the fact that ¥ has compact support we cén sce that the con-
clusions of lemmas 2 and 5 remain true if B, +(t) is substituted by I +(t),
[ s

Hence the next result is true (analogous to Lemma 4) .
Lemma 4', Let * be in C;v(RJ\C;), € and ¥ 1like before, Then

1im sup “(1 - w+w:) (1) ¥ (D) oz ye~itH f\\ -0, (V)f e 12(RY).,
T OO t{o -

In order to make sure that Lemma 5 remains valid in the case of a function



e

% with the supnort included in £, , it is sufficient to replace the operator
%(D)gl \P'(D)[E) in the proo,f;of this lemma with the operator Y(D) = X (D) ({J(HO‘),

where ¢ € C‘;’ (.H\(TV), (.p( %) = 1 for XA in a neighbourhood of supp 412. The as-

; : RO TN Y . y .
sumption (ii) assures that ¥ is in (,;’o(dt N 8). Then the proof of Lemwma 5 is .re-

peated word for word,

Now let %1 and. %? be two smooth functions which are positive homogeneous

of order zero for |%| ? 1 and such that supp %i C.Qi for \%l > 1; also
‘X,I(’g )+ %2( t) =1, X € k., Applying Llemma 5 to %, and %, a2nd remarking

that 4)1, d(lz e Cgo(l{\ C,) are arbitrary we obtain that
T
lim

J (1 - wy ) e T ¢<u)fH it = 0 (1)
T->oo -

1
T
0

for every f in Z’-QC(H) and every L}; in Cg°(R\ C-v) .

¥nd of the proof of the theorem, We shall consider again only the case of

the sign +
“then kan W _ = '}Cac(li) and %SC(M) = {_07} The set of those functions f in J6 (i)
- which satisTy L{;(H)f = f for a function L,b in Cgo(f}{\(-;‘_v) is a dense set in U{,C(H) T
It is sufficient to prove that these functions are in Ran W+ . From the relation

(7) results that there exists & sequence tke»o{» guch that

%, —it i 1
“(1 —we it gl < 1

~-itH

Since W W*e = e—ith W W" we obtain that
+ 4 4+ +

e - whe] < g

~for every k, Thus f = W+Wff and consequently f € Ran W_.p ,' |
The last assertion of the theorem results from the fact that (1 - W+Wf) \J)(II.)
is a compact operator for every LP gCS"(R \C;) . Remark that we have proved that
= W+W,: = 1 - w_w’f = the orthogonal I?rojection on the closed linear hull of the
eigenvectors of H,
L‘et X1 and %2 be two homogencous functions which have the properties lis-
ted above and let (, be a function in Co? (kNCy) such that P ()P ix) = gl )

for every A in k., Then

. It is known that Ran ‘vJ+ o %ac(}l) . S0 if we prove that %C(H) < Ran W+,



; ) = g ¥ : .
(1 = w ) ) = (1= w) b () Y(H) =
¥ o ol XY b i ety o
21, - w+w+> %(11)& % ,(D) + 'X/?(D)) Qg(no) + (1# w+w+) dh(h)kq;(}l) L}mio)),
fhe lost term of the sum is a compact operator because \?(H) - ‘P(”o> is so.

[ Turther we have

(1 - W W) ¢, (H) X (D) ) = (1 U RACY 2, (D)1 (D E) P(H ) =

|

s w+wf_’) G, (1) %, (D) &l OB MBC 2 )+ (1 - B0 SN ) =
((1 = W0 e+ (1 - W) URCHE R ~ e

(1 - w ¥ g st S0 - B0 5 )Pl

=+

for a suitably choosen function g. But from the proof of Lemma 4 we have that

=0,

3 | " |
1im “ (1 - wiwi) %(Jt)l)rgii

T~ 060

On the other hand we know that (1 - B ) W(HO) is a compact operator, Thus

. % ‘ . » .

(1 = W+W+)_¢1(H)TX1KD)‘¥(HO) is a compact operator, Analogously it can be shown
. e oo™ (11 X (D) W(H ) i 1

that (1 J+J+) QH( J 2k‘) W(lo) is a compact operator,

e proof of thé theorem is ndw complete,

Remark, If P is a pélynomial function, then using. the geidenberg-Tarski
theorem we can see that the assumption (i) is equivalent with the following con—
ditions.(we suppose that qu :,hn\%ﬁ):

1im ,11)'( % )\ = oo , when |g[—>0 ,

p¥) (%)
|P' (g )]

1im = 0, when |g|—> o0 (%) & with lxlp 2,

A polynomial which is of principal type satisfies the assumption (i) in Rn,



In this appendix we shall briefly describe the spectrum of MO, Since HO is
unitary equivalent to P (the operator of multiplication with BUE J )it is suf=

flCLPn1 to consider the spectrum of this second operator 1t is known that ¢ (P) =

= {P(f 13 % € Mn}, Further we shall also use the following notatlons.

- GbP(P) - the set of eigenvalués of P

PM(P) - the spectral projection associated to a measurable set M < R;

- 4= T(P)NT_.

A real number A is in VbD(P) iff {E; (%) = ﬁ} has nonzero Lebesgue
mecasure, This is natural because y{%} is equal to the operator of multiplication
‘with. the characteristic function of the set P“1( {x@), We prove now that if 5;
“is at most countable then PA(P) = PaC(P) and GéC(P) = @ , Let us first show that
P (P) c?P C(P)_ This stetement is & consequence of the fact that if M is a measu-
" pable set contained in A and has Lebesgue measure zero, then P~ 1(M) has Lebesgue
measure zero, But P~ 1(1M) has Lebesgue measure zero iff every point F_ e P~1(M)
has a neighboﬁrhood U such that U N P”1(m) has Lebesgue measure zero, Supposing

that (@ P/ E?gq)( fo) £ 0 it is sufficient to choose U such that the map

Uag e (P(?), ?21‘1..9 -En)

is a diffeomorfism on its range. Therefore PA(P) c:PaC(P),

How if f GSQ%C(P) then (Par(P)f, f) = 0, because C; is at most countable,

v ;
m ® B0 Bk, _ o > (P i . . - D > o ‘
Thus PaC(P)PCV(P) = 0 and Pac(P) C.lA(l),‘We have also that }Sc(l) C.PCV(P) and
T My, 4 i £ P = Ps - 5 ) -
(P)PC-(P) = 0, This implies that PSC(P) = 0 and consequently Géc(l) = ¢‘

v

A consequence of these remarks is the fact that
. IR 00 . P
{gedfs el ({x+2'(%¢) ,éo})’)

i < set i H )
is a dense set in ;gac( o)
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