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1. INTRODUCTION

The aim of this paper is to give o.short'easy proof of
Pontryagin's Minimum Principle for a fixed-time optimal control
problem without end-point constraints using a Dynamic Programm-~
ing approach. :

The proof in this paper is considerably simpler and shorter
than the proofs in [1] and [2] replacing the result which states
that the value function is a (continuous) viscosity subsoluticn
of the Hamilton-Jacobi-Bellman equation by two other results:
the first one is well known and states that the value fun;tion
is nondecreasing along admissible trajectories ([4],[6]) and the
other, an easy corollary of the first one, is one of the diffe-
rential inequalities in [14] (see also [7]) expressed in terms
of the ektreme contingential derivatives of the value function.

As shown in [12] and [7], these differential inequalities
imply the fact that the value function is a special type of
viscosity solution whenever it is CQntinuous and imply also
some other differential properties taken recently as generali-
zations of classical solutions of the Hamilton-Jacobi-Bellman
equation. ﬂoreovef, the differential inequalities in [11] and
[7] may provide sufficient optimelity conditions ([1€]) exten-

ding the so called "verification theorem" ([6]) tc problems
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for which the value fuﬁ&ion is not differentiable.

For the sake of completeness we prove all the statements
we need with the exception of the classical theorem on differen-
_ tiability of solutions of‘Carathéodory-differential equations
with respect to initial data (which may be found in [8]) and
the result concerning the monotonicity of the value function
along admissible trajectories (which may be found in [4] and[6]).

To simplify the proof we consider only Mayer optimal control
problems; for a Bolza problem it is more convenient to write it
as a Mayer problenm ([3],[4],[6], etc.) and to derive the Mini—-
mum Principle from that of the later problem.

Since the results concerning the monotonicity of the value
function slong admissible trajectories and the differential
inequalities verified by the vzlue function remain valid in
infinit-dimensional spaces, the proof in this paper may be carr-
jed out for eny control system on a Banach space for which a
theofem on differentiability of solutions of ihe correponding
differential equations with respect to initialldata may be esta-
blished; this is certainly the case for the optimal control
problem in [1].

As a byproduct of oufﬁproof we obtain an improved variant
)‘6f the results in [14] and [5] replacing Clarke’s generalized
gradient by the Fré%het superdifferential of the value function
in the case the data of the problem are differentiable.

A #ery interesting open problem i8 to obtain a similar
proof of Pontryagin's Minimum Princinle for optimal control
problems with end-point constraints; such a result will cover
most of the theory of necessary optimality conditions in control

5

theory.
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2. NOTATIONS, DEFINITIONS AND PRELIMINARY RESULTS

We consider the problem of minimizing the funetional

C(.) defined by:
Clu(.))=g(x(T;u(.))) , ul)e Ut ,x) . 0

over a set ZL(to’xo) of admissible controls which is a speci-
fied class of measurable mappings u(.):[to,TJ———%UCanx for
which the absolutely continuous solution, x(.j;u(.)), of the

initial value problem:

g%‘zf(t,x,u(t)), X(to):xo (2.2)

is defined on the interval [to,T].

As usual in the proof of Pontryagin's Minimum Principle
([3],04]1,(6], etc.) we assume that the data of the problem
satisfy the following:

HYPOTHESIS 2.1. The function g:B:—>R is of class CI, D
is ;.an open subset of Gxﬁp, £:0xU —>RE is continuous, for
any uebl , t@prlD‘-'{te lR, (3) xe R (t,:t)eD} the mapping
f(t,.,u) is differentiable and (t;x,u)t——a»sz(t,x,u) is
continuous; we assume also that Tq;prlD and (to,xa)e D are
teken such that to'<T.

The class Zl(to,xo) of admissible controls may be either
one of the sets Z(p(to'xo)f P e[l,oo], of measurable mappings
u(.):[to,T]+—4>U’_for which the solution x(.ju(.)) of (2.2)
exists on [to,T] and the derivative t +— x'{t;u(.))=Ff(t, ‘
x(t;u(.)),u(t)) belongs tb' tP([iD,T];ﬁn), 2ither the set
Z(r(to,xo) of regulated adrissible controls (i.e. wu(.) has
one-sided limits at each point.hence a countable number of
discontinuities, all of the first kind) or the set Z(cp(to’xo)

of piecewise continuous admissible controls.
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Aé pointed out in [4],31: and elsewhere, the infimum of the .
functional C(.) in (2.1) may depend essentiaily on the class
of admissible controls but the results to follow remain valid
. for any such class. v

To insure the existence of local Carathéodory solutions of
the problems in (2.2) one may require that for any adm1551ble
eontrol, u(.)€ U(t_,x ) the vector fiela £ v =£(t,x,u(t))
is locally integrably bounded but our proof require this condi-
tion th& along the optimal trajectory.

As it is well known, the Dynamie Programming method consists

in using the value function of the optimal control problem,

defined by: o

e(x). if =7, (T.x)eD

(2.3)
V(t,x)=
: inf-{C(u(.)); u(.)e ZL(t,x)} if (t,x)é-Dg

ng{(t,x)c—,D‘; t<Tz . DT={(t,x)eD; t <1

to obtain either necessary or sufficient optimality conditions
(for every (t,x)e;bg the set .ﬁ(it,x) of admissible controis
is defined in the same way as Z{(to,xo)). ‘ |
The first preliminary result we need is the following:
PROPOSITION 2.2 ([4], Pronosition 4.5.i;[6], Theorem IV.%.1)
by (s,y)éDg and u(.)c ZL(s,y) then the function

t—— V(t,x(t;u(.)) is nondecreasing on the interval [s, T]

The other prellmlnarv result we need is a corollary of the
classical theorem on dlfferentlabllity of solutions of Carathéo-
dory differential equationé'with respect to initial data.

A mapping %k.,.):ﬁ —> R" defined on the open subset D&
CRxR" is said to be a\Carathéodory-Cl vector field if it has
the following properties:

A (o)
(i) There exists a null subset J,<PryD such that f£(t,.) is
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differentiable and D2§Yt,.) is continuous fbr any te,priﬁ‘\JO;
(ii) the mappings ?(.,x), DZF(.,X) are measurable fSr'any xc;préﬁ}
- (did) %(.,.) and D2§(.,.) are locally integrably bounded in the
. esense that for any (s,y) e?)' there exist r >0 and the integra-

ble functions m(.), M(.) such that:
(2.4)

J£(t,x)| S m(t), |ID£(t, ) SM(t) (¥) (t,x)¢ B (s,y)c D
where |.| is a norm (usually the FEuclidian one) on R®, ”;[ ié
the corresnonding operatorial norm on the space;of linear mapoings
L(E%,®?) 2and Br(s,y) is the ball of radius r centered at (s,y).
For any (s,y)c D we denote by xx(.;s,y):I(s,y)f—>an the
non-continuable Carathéodory (ebsolutely coatinucus) solution

of the initial value problem:

X = F(t,x), x(s)=y | (2.5)

Q-ID;
ct

where I(s,y)C R is the open interval on which x*(.;8,y) is

defined; the mapping xg(.;.,.) is said to be the maximal flow

of the vector field ?(.,.).

THEORZM 2.3 ([8], Ch. 13, Remark 18.4.16) If X (.;«,.) is

the maximal flow of the Carathéodory—cl vector field %1.,.)

then for any (s,y)éfﬁ, te¢I(s,y), the mapping xﬂ(t;s?,) is

differentiable at y, D x(.:.,.) 1is continuous and tt—»DQxx(t~s
y: Vo 329 = 38,3

is the unigque absolutely continuous matrix-valued solution of

the variaticnal equation:

I

2 S we .

satisfying the initial condition:

D3xx(s;s,y)=ln= the identity matrix o(2.7)

We actually need the following corollary of this theorem

(see also Lemma 2 in [2]):
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COROLLARY 2.4. If the hypotheses of Theorem 2.% »are satis--

o S . =
fied, (to,xo)eD, TEI(t ,x,), t,<T and x(.)=x (.,to,xo)

then the mapping t +—» D3x*(T;t,§'(t)) is the unique absclutely

continuous matrix-valued soluticn of the problemn:

az

& - 2.0 F(4,7(1)), Z(DM=I, (2(t)=D,x*(T;t ,x) ) (2.8)

and if J,c [t ,7] is the null subset such that:

T(1)=F(1,%(1)) (M telt,TINg - (2.9)

then xx(T;.,'i'(t)), is_differentiable at te[to,T]\Jl and :

Dpx™(T5t,%(t))=-Dyx* (T51,%(1)) . F(t,%()) (Mtelt,, 0\, (2.10)

Moreover, for any te¢ [to,'l‘] \Jl , the mépping x’,;(.,.)=

=x*(T;.,.) is differentiable at (t,%¥(t)) (its derivative being

given by: nx’;(t,i(t))=<sz*(r;t,’i(t)),D3x"(T;t,'sz(t))) N
Proof. From the uniqueness of the solutions x*(.;s,y) we
infer that: x"(s;t,x (t;s,y))=y (¥) (s,y)e D, teI(s,y) hence

taking (s,y)=(T,X(T)) we obtain:
x’*(T;t,?(t))zﬁ(T), ‘sz"(T;t,’i(t))=(D3x’(t;T,’§(T)))‘1 (2.11)

and therefore, since at any point te [t ,T] at which

D xx(.;'I',Ef(T)) is differentiable one has;: g—(D xx(t;T,SE(T)))-l:'
..-(D3x @z a——D 2T, T, T (D x® (T, 200)) ) T =Y from

(2.11) and Theorem 2.3 it follows that t#—> Dx"(T;t,%(t)) is
: the unique absolutely continuous solution of (2.8).

To prove that x*(T;.,%(t)) is differentisble at te [to’T]\Jl
we note that from (2.11) it follows: x*(T;t+r,§(t+r))=x§(T;t,§(t))=
=x(T) (¥) t,t+r €I(t ,x), from (2.9) it follows that:
(X(t+r)=-%(t)) /v —ég(tﬁ(t)) as r—>»0 and therefore, since
D3x*(.;.;.) is continuous, we have: (x*(T; t+r x(t))-x s x(t)))/rA

--(xx(T st4r x(t+r))—xx(T t+r, x(t)))/r"



e
jn *(T; t+r,X(t)+S’X(t+r)-X(t)))-((X(t+r)-x(t))/r)ds S

DX e, %(1) (1, x(t)) as r—» 0 and (2 10) is proved.
The 1ast statement is a well known result aocordlng to
which xg(.,.) is differentiable at (t,?(t)) if the partial
derivatives Dlxg(t,i(t)), D2x¥(t,§(t)) exist and szg(s,y)
exists in a neighbourhood of (t,%X(t)) and is continuous at
(t,x(t)).

The differential inequality we shall prove in the next

section involves the uoper-right contingential derivative of a
function F(.):X CR*—>R=[-00,+00] at a point x in the effec-

tive domain, dom F(.):fx eX; F(x)eR} , in a direction XeRr:;

DiF(x;¥)= lim sup _(F(x+ey)-F(x))/s - (2.12)
(s,y) —=>(0+,%)
x+sy € X

which is of interest only at directions X in the right-cont-
ingent cone at x of X defined by: K;X= i{sﬁn;(a) (sk,yk)-—»(0+,i
x+8, v, € X (¥) keﬁN% since using the convention sup ¢ =-00,
from (2.12) it follows: DyF(x;¥)=-00 (¥) X € R \KiL.

The differential ihequalities in [14] and [7] involve also

the other extreme contingential derivatives of F(.) at =x:

223(X;§)= lim inf _ (F(x+sy)-F(x))/s
(s,y)—(0+,x) :
Xhaye & . 2as)

which extend to functions of vector variables the well known
Dini derivetives and are natural generalizations of the class-
ical (Fréchet) derivative since F(.) is differentiable at a
potht" xent dom F(.)  iff F;{(x;?:);'ﬁ;{F(x;%‘):z_)_}F(x;i)eR
exists for any §<&Rn and Fz(x;.) is linear; for other 7

properties of these generalized derivatives we refer to [13],

I &) i =)
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3. THE PROOF OF PONTRYAGIN'S MINIMUM PRINCIPLE

We take the following corollary of Proposition 2.2 as part
of our proof of Pontryagin's Minimum Frinciple:

LEmia 3.1 ([24] ,[7]D. £ Vv(.,.):Dy—>R is the value

function in (2.%) of the nroblem (2.1)-(2.2) then its upner

right contingential derivatives satisfy the inequality:
-ﬁEV((t,'x);(l,f(t,x,tﬂ))?o (¥) uel, (t,X)eDgﬂdom V(eyo) (3.1)

Proof. Let (to,xo)eDgndom V(.,.) hence such that t <T,
(to,xo)eD and V(to,xo)eR, let ‘uer and let xo(.):[tc,tl]—-wR‘;1
t,<7T, be the unique Cl-solution of the initial value problem:
x'=f(t,x,u), x(t )=x_; since (xo(t°+s)-x°)/s-——a»xé(to)=

f(t ' FEL ) as 88— 0+, from:. (2.12) it follows:

5Ey((to,xo);(l,f(to,xo,uo))) > lim sup(V(to+s,xo(t0fs))-V(to,xJ»@
8 —> 0+
(3.2)

Obviously only one of the following two possibilities may
ocecur: 1) Z[(t X (t)) =g (V)'te(tb,tl] 2) there exists dtZE
é(to,tl] such that (Z{(tz,x (t,))#¢. In the first case from
(2.3) it follows that V(t,x_(t))=+oo (¥) t e(to,t] and therefore,
from (3.2) it follows that Dgv((t ,x,);(1,f(t,, uo)))=+oo
eand (3.1) is verified.

In the second case there exists an admissible control,

u2(.)€,2L(t2,xo(t2)) which we use .to define an admiesible control

with respect to (to,xo) as follows:

u if t e[; 5
U(t)z{ (o] (0] ‘2.
Gty 9o wefi vl

The admissibvle trajectory x(.;u(.)) corresponding to u(.)
is obviously given by: x(t;u(.))=x_(t) if tcé[to,tz] and
x(t;u(.))=x(t;u2(.)) it e[iz,T]; on the other hand, from

Proposition 2.2 it follows that the func€ion t+——>V(t,x(t;u(.)))



=0
is nondecreasing hence V_(t,xo(t)) >V(to,xo) : (’f) te [to’tz]

and therefore from (3.2) it follows (3.1) and Lemma 3.1 is proved

THEOREM 3.2. Let the data g(.), f(.,.,.) of the problem

© (2.1)-(2.2) satisfy Hypothesis 2.1, let (t or X )é&DT, let

a(.) e?L(to,xo) be en optimal control such that the vector

field f(...) defined by:
b}

F(t,x)=£(t,x,0(t)), (t,x)eD={(t,meD; tgrf (3.73)

has the proverties in (2.4) at each point (s,y)e Dy and let

Ao ~ o o il
x(e)=x(.;u(.)) be the corresponding ontimal trajectory.

Then there exists an absolutsly contirucus mapoing

,p(.):[to,T]-—;mp satisfying the following conditiors:

p'(t)=-D2H(t,§(t),ﬁ(t),p(;)) a.e. on [to,T] (3.4)

‘where the Hamiltonian H is defined bv:

H(t,x,u,p)=<p,f(t,x,u)> , (t,x)eD, uel, pc-_Rn (3.5)
p(T)=Dg(X(T)) , (3.6)

CH(t,E(1),T(1),p(+))SH (L, % (), p(t))= mia 3(t,X(t),u,p(t)) a.e.
uel
3.7)

Proof. We note first that choosing an arbltrarv u, el
,ané*ﬁﬁxf1c1entlv small r>0 we may extend the vector field
f(.,.) in (3.3) to an oven subset D={(t,x)€:D; t e(to-r,T+r)}

of GxB® as Follows:

= : f(tx;ﬁ'(t),) if ('t x)eD
f(t,x)zij e ’ . (3.8)

£(t,x,u,) if . (t,x)eD, te(t -r,t )U(T,T+r)

- vector fisld satisfying the

80 that ?(.,.) is a Carathéodory-C
hypotheses of Thecren 2.3.
Following the idea of the proof in [2] we comsider the

meximel flow, x (.;.,.), Of the vector field fk.,.) in: (5.8)
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and define the function V(.,.):ll\)'.ra[{{ as follows:
v 3£ ~ ' w2 i
V(s,y)=g(x (T;s,y)), (S,y)eDT={(S,y)eD;[S,T]CI(S,y)f (3.9)
where I(s,y) 1is the open interval on which x*(.;s,y) is defined.
From the theorems on continuity of solutions with respect
to initial data (see [8), Ch.12 and Remark 18.4.15) it follows
that (t,%(t)) € Int D,

T
=x(.) the relations in (2.11) hold; moreover, since for any

(¥) t e[to,T] and since xx(.;to,x°)=

(s,y)eﬁﬁffﬁbg (for which s e[to,T) ) the restriction map
ﬁ(.ﬂ[ﬁ,T] is an admissible controcl ﬁith respect to the initial
point (s,y) (the corresponding admissible trajectory being

= (.35,7)[s,T]) from (2.3) it follows:

T(t,(0))=g(F(M)=v(t,5(t) (V) telt,,1]

~ 2 ~F o) (3.10)
V(s,y) 2V(s,y) (¥) (s,y)€ DDy

where V(.,.) 1is the value function in (2.3).
Since g(.) is assumed to be continuously differentiable
and since according to Corollary 2.4 the mapping tr—oDBXK(T,t,i(tﬂ

is absolutely continuous, the mapring p(.) defined by:
P(£)=D,V(t,%(£))=Dg(X(T)) . Dyx” (T;¢,%(1)), telt, 7]  (3.11)

is absdlutély continuous and moreover, from (2.8) it follows
that at any poiat t¢a[t°,T] at which szﬁ(T;.,§(.)) is
differentiable we have: p'(t)=Dg(§(T)).(—D3x§(T;t,§(t)).ng(t,§(t)))
=-D2H(t,§(t),6(t),p(t)) “uc (3.4) 1is proved; from (2.8)
eand (3.11) it follows that p(T)=Dg(X(T)) and (3.6) is also
proved. |

To prove (3%.7) we note first that from the definition in
(2<l12) of the_upperfriéht'contingential derivative and from the

relgtions in 2.1C) it follows:

'ﬁgﬁ’( () )t x)) > DEV( (t,%(t)); (%,%)) (%‘)té[to,T], ('E,EE) € RxR"
(3.12)
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hence from Lexma 3.1 it follbws:

Ty TO(E,2(0)5(1,2(4,H0,WN30 (W uey, telt, 1) (3.13)

On the other hand, from Corollary 2.4 and from (3.9) it

follows thet if J,C[t ,T] is the null subset at which (2.9)
is verified then fcr any te [to,T]\Jl the funetion ?Q,%’(t))
is differentiable and from (2.10), (3.11) and '(3.5) it follows:
DIV(t,SE(t))wg_(;?(T)).sz*(T;t,’f(t)):-ag(;(T)).D3x"(T;t,§(t)).;",%-.,-.; i
.E(t,’i’(t))=-ﬁ(t,§(t),ﬁ(t)‘,p(t)) (¥) te[to,'r] \Jl. z.-:zoreéver,"'
since g(.) 1is assumed tc be of class Cl, the partial derivative
Dziﬂ.,.) is continuous hence $1.,.) is differentiable at ’

(t,X¥(t)) for eny t 6[£O,ﬁ]\\J1 and its derivative is given by:
DV(t,¥(t))=(-H(t,%(£),5(),0(£)),0(1)) (M telt,0I\g (3.14)

Since from the definition in (2.12) of the upper-right
contingential derivative it follows that at any such point

Dy T4, %(£))5(F,2))=DV(t, (1)) - (], 1) =-H(%, %1}, T(2), p(1)) T+
+<p(t),x> (¥) telt ,T]\4,, (1,3) eRxR?, from (3.13) we

obtein: =-H(t,x(t),u(t),p(t))+ <p(t),£(t,x(t),u)> >0 (¥) uel,
t 6[t0,$>\\J1 and the theorem is completeli proved.

RE%ARK 3.3+ We recall that the viscosity solutions of
Hemilton-Jacobi equations ([1],[2],[7],{1{],.1‘: ete) are

defined in terms of the Fréchet semidifferentials of real-valued '

. functions F(.):Xc:mp—-—am ‘defined as follows:

_Q-F(x):%pe ®R®; 1im s'up(F(:t«!-h}-F(x)- <p,h>)/(hl S_O}
Lo (3.15)

OF(x)=fpe®®; lim inf(F(x+h)-F(x)- <p,h> )/}l >0¢
= h—>s 0

A8 1t 1s proved in fi{], Theorem 5.2, the Fréchet semidiife-
rentials may equivalently be defined using the extreme contin-

gential derivatives in '(2.12) and (2.1%) as follows:
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. 3F(x)={pemn; BEF(x;i)s <p,X> SQ;(F(X;S?) (¥) ‘ieﬁin% -
_?.F(x):{p‘e rR"; 5%2():;'}?)& <PyX > ép’%?(x;i) (¥) 'iemn}
 On the other hand, a large number of interesting results

have been obtained lately using Clarke's generalized gradient

in problems involving locally Lipschitz functions:
QCF(x)r-{pem“; <p, x> ngF(x;iv (¥) TR} (B

» ° o ° ° b 8 - °
where Clarke's generalized dirccticnal derivative, D FP(x;X) is
g Y Yo ’

vdefined as follows;

DeF(x;%)= lim sup  (F(z+8%)-F(2))/s (3.18)
(z,8)—(x,0+)}

It is easy to see that if T(.) is locslly Lipschitz at

X € Int{X} then one has ([12]):
P C DF(x),  IF(X)C GF(x) | (3.19)

The main result in [19] stetes, essentially)that i gl.)
ané f(.,.,.) defining the problem (2.1)-(2.2) are locelly
Lipschitz, HeR” is compact and G(.)G:Zl(to,xo) is optimal
then there exists an absolutely contiauous mapoing p(.) satis-
fying (3.7) and certain inclusions replacing the equalities'in

(3.4) and (3.6) and satisfying also the relation:
(H(t,F(0),p(4)),0(1) € O U(1,5(1) (%) telr,,? (3.20)

In the case g(.)  end f(.,.,.) satisfy Hypothesis 2.1,
from the relations (%.12) and (3.14) in the proof of Theorem
2.3 and from (3%,16) it follows that the mapping p(.) in Theorem

2.3 satisfies the conditioci:
(H(t,E(),p(1)),n(2)) € I V(t,5(1))  =.e. on [t ,T] (3.21)

lioreover, proceeding like in the proof of Corollary 2.4 it
is easy to see that if UCR® is compact then the extreme contin-

gential derivatives of the functions ﬁ(,,,) and V(.,.) satisfy
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the relations: 'f);;V((t,?c'(t) ) (7:‘,—5;')) @D;E‘?((t,x(t)) (5, 3)g
'-?i(t,?c(t),p(t)).'£+'<_p(t),§> s_)@_;?((t,:?(t))‘;(i,i)) SDZT(4, (1)) 5 (R, %)

(%) (,)cmR", te [t ,T] hence from (3.16) it follows:
(-H(t,F(),p(t)),p(1)) € DV(£,5(1)) (M telt,,T] 65.29)

which implies the relation (3.20) obtained in [14] since in this
case the value functiop, V(.,.), is locally Lipschitz.
Similarly, relations (%.10) and (Z.11) imply the fact that

the ebsolutely continuous mapning p(.) in Theorem 2.3 verifies:
p(tIe O(t,.) (R(t) (¥) telty,T] | (3.23)

. which is stronger than the relation:

p(t) € Dgi(t, ) €RI)) ace. on [t,,7] . ey

obtained in [5] ; in the case V(t,.) is locally Livschitz.
We note however that (3.22) and (3.23) have been obtzined

- while the

in the case g(.) and f(t,.,u) are of class C
corresponding relations, (3.20) and (3.24), in [14] ana [5],
respectively have been obtained in the case g(.) and f£(.,.,.)
are only locally Lipschiiz.

An interesting open problem is to obtain results analogous

to those in [1% and [5] exoressed in terms of the Fréchet

genidifferntials in (3.15).
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