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1. INTRODUCTION

In /2/ we introduced the concept of a normed almost linear
space which generalizes the concept of a normed linear space. An
example of a normed almost linear space which is not a normed linear
space 1s the collection of all nonempty, bounded and convex subsets
~of a8 non-trivial normed linear space (see Example 6.1 in Seet. 6).
Roughly speaking, a normed almostilinear space X satisfies some
of the axioms of a linear Space buf, in compensation, the norm
satisfies besides all the axioms of an usual norm on a linear space,
also an additional one which makes the framework productive. At
first sight, it seems that no topology on X exists, since the norm
does not generate even a semi-metric on X if we simply imitate the

4

linear case.

The following two subsets of X play an important role :Vk
— { xe ke X+(—-1X)=Oi and Wy = { € :X:-lx‘} . Among the simplest
classes of normed almost linear spaces are those of the form
X = Vy ( when we recover the.class of normed linear spaces); =Wy
and X.—- WX+VX + Note that the above example of a2 normed almost
linear space dQes not belong to any of these classes.

In /2/ we have also introduced the "dual" space XY of s

normed almost linear space X, where the functionals are no longer

linear but "slmost linear", which is also 2 normed almost linear
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usual dual space of X. Though:thz proof is very simple, it is worth
fo mention here that we always have X¥-= WXx+VXx (see Proposition
3.3 in Secb. 3) and by Proposition 3.15 of /31/ and Corellary 3.4

of /5/ we have - Vg% iff X is a normed linear space.

The main tool for the theory of normed almost linear spaces

oty T AR

was given in /5/ where we showed that any normed almost linear space

X can be "embedded" in a normed linear space E, . Though the

X

embedding mapping 0JféK-——>EX is not in general one-to-onr, it has
enough properties to permit us the use of the technicues of normed
linear spaces. As a consequence we can define a semi-metric ~€X

on X, which is a metric exactly when o is one—to—one. Thus a
topology on X always exists (Which is not Hausdorff in general) and
when X is 2 normed linear space then _fX is the metric generated
by the norm.

In /3/ we have begun the studi of the almost linear spaces ¥
with bases, MMMV Lo Tn contrast to the
linear case, an almost linear space can have no basis; even when
it is a normed almost linear space, On the other hand, when an
almost linear space has a basis,then it is a normed almost linear

space for =z certain norm (/3/).

In this paper we further our study on normed a2lmost linear

spaces, especially when they have bases. For a normed almost linear

space X (not necessarily with a basis) we show (Theorem 3.5) tha

EX* (the normed linear space in which we embed X* ) is E; eauipped

0 N ,.-.‘:)"
in general with another norm than that of By e

When a normed almost linear space X has a basis, it has some
relevant properties. For such a space X we prove that aJX is

one-to-one hence the topology generated by -fY 1.8 now Hausdorff
v2

(Theorem 4.1) and that its range cuX(X) is closed in E, (Theorem 4.6)
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In the framework of normed almost linear spaces X with bases we éan
generalize some well-known results from the theory of linear or
normed linear spéces. For example, the cardinality of two bases of
' X is the same(Corollary 4.4),we generalize the Riesz's Theorem
(Theorem 5.1) and we prove that if dim ¥ = n then dim T -n
(Theorem 5.2). Concerning the last result we mention here Example
6.8, where X has a basis but X* has no basis and adiso the fact thait
the assumption dim x*¥< 2 does not imply that X has a basis.There
are also some other differences between the "linear" and "almost
linear" case ., For example, when dim X < o, the embedding mapping
Q:X~—$>X** can be not onto Xxx} In this paper we also give sufficient
conditions in order that some results from the linear case hold in
our more general framework. .

This paper contains 6 sections (including the introduction).
In Sect. 2, besides notation, we give all definitions and results
from our previous papers, necessary for an easy understanding of
this paper. In Sect. 3 we establish some new results on normed
almost linear spaces (not necessarily with bases) which will be used
in thg subsequent sections. Sections 4 and 5 are devoted to the
normed almost linear spaces with bases, the latter being concerned
with finite-dimensional spaces. In Sect. 6 we collect all examples
)(Eounter—examﬁles) abt which we shall refer in the sext.

Finally, we draw attention that in /2/-/4/ we have worked
with an equivalent definitioh of the norm and in /B/ and /4/ the

last axiom of the norm is superfluous.

2. PRELIMINARIES

Besides notation, in this section we mainly recall some defi-
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nitions and results from our “previous papers. As in those papers,

we assume that all spaces are over the real field R. We denote by

R, the set §MeR:Ay07 end by K the aet S0 0
. |

An almost linear spaceYis a set X together with two mappings

53X XX —>X and mi:R xX —> X satisfying (Ll)—(LS) below. We denote
s(x,y) by x+y and m(A ,x) by Mex (or Ax). Let X,¥,2 €X and A ,féi&.
(Ll) x+(y+z) = (x+y)+z ; (L2) X4y = y+x';‘(L3) There exists an
element O ¢ X such that x+0 = % for each xeX ;3 (14) fax = v ¢

(Lg) Oox =0 ;5 (L) No(x+y) = Xox+ Noy 5 (Lg) X0 ( pox)
(L8) (A +f—)ex = Ao x+ pox for ,X,ﬂfé R, .

(Aplox s

Let VX = %XGX:X-%(—]J’X_)T: O} and WX = gxeX: * = —lax E(fii

These are almost linear subsvpaces of X (i.e., closed-under addition

and multiplication by reals) and VX is a 1inear space.'An almost
linear gpace X dis a linear.space iff X = VX s eh WX = § 0 z.

In an almost linear space X we shall always use the notation
Nox (in particular -lex) for m( A ,x) (for m{=1,x)), the notetion
%x (in particular -x) being uysed only in a linesr sSpace. «

A subset S of the almost linear space X is ecalled a basis
of Xl /3/, Defimition 2.0) if for each x‘eX\ {o} there exist.
unique sets %-bl"""bni‘: T % Ajl"""Ar1% o il \~%O§

(n depending on x) such that x = =

A=l:
b, & Vy .

In contrast to the case of a linear space, there exist almost

Xiébi, where >j_>-0 Tor

linear spaces which have no basis (see examples in Sect. 6),

2.1. REMARK. (/3/). Let X be an almost linear space with a
basis B .
(1) Theset ShabipeB, A A SO dbiT ¢ 1

alco o basis: oft X,
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(ii) The set jBI\VX is a basis of Vy
(iii) X satisfies the law of cancellation, i.e., the relations

Xy¥s2 €X, X+y=x+z imply that y=z .

2.2, THEOREM. (/3/, Theorem 2.8). If the almost linear enace

X has a basis, then there exists a basis B of X with the property

that whenever b ¢ B3\ Vy then -lebe B

2.3: RENMARK. Let 33 be a2 basis of the almost linear space X
having the property from Theorem 2.2.

($0(/3/). The sat § be(-lab):be BNl ¢ a pastic on
Gl e o WX+VX then B - (~8/WWX)L’(J3/\VK)T Indeed, since
for beB we have b = W4V, wzéﬁi, V'éVX, by (i) above and Remark
2.1 (ii) it follows that either b = Woerab o= v ln ol ipeoalid e g

longer true if the basis B has not the property from Theorem 2.2

(see Example 6.5 (i)).

Ly

_ T
A normed almost linear svaceVYis an almost linear space X

together with a norm (il lll: X —>R satisfying (Nl)—(N4) below. Let
X,y €X, welly and A en. (Ny) Wx+y il < nixult+ily i (N,) mxlf] = 0
Ciff x=0 3 (N3) HEASxll= [X\] liLxils '(1‘54) Mx < i x+will. Note
that Il xli[ 3 O for each x ¢X. We denote by BX(O,) )  the set
§xeX:mxu<y §, B, = B (0,1) and Sy = 1 x&X mxi = 1 3.

As we have already noted in the introduction, when X is an
almost linear space with a basis, there existsva aptem ] one X

such that X together with this norm 1s a normed almost linear space.

2.4. LEMNA.(/3/). Let X be a normed almost linear space and

let x,y'éxﬂ Wi e WX ; vié;VX y 1=1,2. We have

renc it

i) i, , PR SR R T
Gy At w 4%T 48 (El e e R \
ot SUEEE S YRR S X \

3%
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(1) If x+y €Vy then x,y EVy o

(1i) . It Wy tVy = Wo+V, then W) =W, ond v, = Vo oo

Let X be an almost linear space., A funetiomal f:¥ —R s

called an almost linear functidééﬁ%ﬁTf'is{additive, positively
homogeneous and the'restriction f1WX Z.0. TLet X# be the set of
all almost linear functionals on X. Define the addition in X#% by
(f1+f2)(x) = fl(x) ¥ fz(x), x €¢X and the multiplieation by reals
AeR by ( Not)lx) = Elhox), zeX. The element Oé—X# is the
functional which is 0 at each xeX. Then Xﬁf is- an almost linear
épace. fhen X is‘a normed almost linear space, for félX#‘ define
Il £]ll = sup glf(x)] : xéBX?( and Dot 2 = {féxﬁ: ML < o2 } i
Then X ¥ is a normed almost linear space (/2/) called the dual
spao‘e of X. The Qual space X" is £50¢ if x £4 07 since the

following generalization of a corollary of Hahn-Banach Theorem holds:

42.5. THEOREM. (/5/, Corollary 3.4). If X is a normed almost

linear space, then for each x X there exists fé S, % such that

filx) = .

Let X,Y be two almost linear spaces. A mapping T:X —>7Y

: . . e . Lo e
Jscall led o }1near operator if T( Aq0 %+ A20X2) -.leT(Xl)ﬁqui(XQ);
xié;X, Aicgﬂ, 1=1,2. When X and Y are normed almost linear spaces,

& linear operator T:X-——>7Y is called a linear isometry if |[{T(x)[|[ =

=l llf for each e X We draw attention that a linear isometry is

not always one-to-one. For A < X we denote by Z(A) the set

{T(a);aeAf ;

2:6. RINARKE. (/5/), TFf T ig o Jirean isometry of X onto Y
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then T(VX) = Vy , T(WX) = wY and the restriction TtVX is one-to-one.

The main tool for the theory of normed almost linear spaces

'~ is the following result:

240l THEOREN. (/5 /, "Theoren 3.2). Por any normed almost

linear space (X,[ll'il] ) there exist a normed linear space (VK,iPl! )
X

and a mapping LUX:X-—ﬁ>EX with the folléwing properties

.
»

(1) By = LUX(K)—LUX(X) and LUXgX) can be organized as an

almost linear space where the addition and the multiplication by

non-negative reals are the same as in B

X L]
(ii) For z €E, we have

(2:3) izl =inf§n1xu1+uzyu1;x,yezx, 7= & (x)- @, (y) §
uX £ o

and (W (K) ??(i ) is a normed almost linear space.
X

(i) Wy is a linear 1sometrv of (X, llj) onto (Cﬁ CFe) it )

e
X

(iv) For the dual space f we have

(2.2) S =4fw

2.8. REMARK. If on Ey there exists another norm feily such
thet ([Q}X(X)”l =1H7Xﬂ[ for esich. »€ X then for each z €L, we have
[l zl] 1< 2lly » Indeed, if z = CJX(X)~cux(y), Xy, Vet then ][zﬂl-é

luJX(y)Hl +{{COK(V)”1 = U=l +lll yi/{ , whence by (201) we oot
Hzl(1 5§HZHEX-

2.9. COROLARRY.(/5/, Corollary 3.3). For any normed almost

linear space (X, ll-if]) the function th:X;tX —>R defined by




B

is a semi-metric on X and we have
(2 5 Clex 0oyl = Folx,y) (x,ye X)

In a normed almost linear space X the semi-metric ~fX generates
a topology on X (which is not Hausdorff in general) and in the sequel
any topological concept will be understood for this topology. Clearly
1 e ] 1 1 a m £ N v e
f)X 1s g metric on X 467 cOX 1s one-to-one. Note that even when JOX
is not a metric on X we can use sequences instead of nets. lMoreover,

for vy,v, ¢ Vy we have £ xlvy,v,) = vy =V -

2.10. LEMMA.(/6/, Lemma 6.1). A normed almost linear space

(X, M-M) is complete iff (E.,! ) is a Banach space and 0JX(X)

1

X

1s norm-closed in EX s

The proof of the following lemma is contained in the nroof

of (/5/, Theorem 3.2 (iv), fact I

2.11. LEMMA. Let (X, ll/ll) be a normed almost linear apace

andi et sz, m. TE aJX(X) :‘CUX(y), then for each ¢ >0 there exist

X »Y, 1U, € X such that H(X£H(+luyéﬂl<‘£ and XHY R0 = yx aw

Let X be the following cone of E; %

S N_;)f:{v(',x) -
eo) k- i iz o f

Exeept for (iv) below, the statements from the next corollary are

particular cases of some results from (B6/). Thev ean be also easily
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saip Theorem 2.7 (iv) and the assertion (iv) gel&ws

proved using

ginece K is w¥-closed in EX .

2.,12. COROLLARY. Let X be a normed almost linear space and

let K be the cone of EX defined by (2.5). Then (E.x, ', ) and
5% = v Bl ot
W g from Theorem 2.7 for (X%, i} are the following .
(1) Eyx = K-K equipped with the norm
(s N ~
gl  =aine ! T Mg+ [ f £, fl,f2élf
X % .
¥ ~n/
(ii) For féX" we have W x(f) = €K, lfll= [0 p¥ and

~ o ‘ e
f = fwy, , vhere f is obtained using (2.2, e clgo laye

¥
GUX%(K )

Ciaiy) ¢ y¥ 1is one-to-one.

(iv) -eu X*(XX) is closed in E.x.

: - , e :
As we shall show in Theorem 3.5, we have E,x = Ey in (i)
We draw attention that the norm on EX* siven in (i) is in general
. % .
not equal with the norm on E fsee Example 6.3 (i)
* ¥

For a normed almost linear space X, let QX:XT->X be

the mavping defined by

i - s (fe )

It is straightforward to show (using also Theorem 2.5) that we have:

2.13. PROPOSTITON. For any normed almost limesr snace ¥, e
b2

. - X ¥ & v 5
mapping Qx;ﬂ~*9 X is g linear dsomebry of X ente the 2lmesh

\ V"x’%‘
& °

linear subspace QK(K) of




...]_O._.

For a normed almost linear space X, in the nextciections

we shall denote H'HE by H-ll when this will not lead to misunder-
X
standing. ‘e shall also denote by (1<l the norm on the dual or

bidual space of Ey :
A

3. WISCELLANECUS RESULTS IN NORNMED ALMOST LIKEAR SPACES

In this section X will stand for an arbitrary normed almost
linear space. In the sequel (EX,H'H) and OUX are given by Theorem
b

2070

3.1, PROPOSTTION. I Wy 1s one-to-one then Wy is a closed

subset of X. Conseauently, ﬁdﬂ (X) is I-ff-closed in CUX(H)O

PREON,  Let W é':‘-L{ y €N and x ¢ X be such that
.

limn’?cﬁ f&(wn,x) =0

By (2.4) we also have

im W ,=lox) =

llnn~?€”~FK( o %) 0

Consequently, \fv(x,—lox) = 0 and since ¢ 1s one-to-one, it
P4 : i L%

follows that X, i el we i

Qv asiet )
A

The assumvtion on > bo be ene—to ore o essential (see

4\

Example 6.0 (1)) .

i

.2 PROPOSIMION. 97 Vo () is closed in EX then the linear
S ~ L\, V4

subspace E, of fy defined by B = (%




=

is closed in EX -

. o0 :
2 7 é I 1 1
PROOF. Let iz, Y € 5 and z ¢E, such that lim

n-seslbZ il
= O, Since for each ne N, LY —W for some Wn,w € N (K) ;
== — r & = 3
\G1éV@JX(X) and z= X=Xy 4 Xy uJX(X), E 1,2, we have
el 1lim - )lel(& +V +x2)f(wn+xl)” =0
By (2.4) it follows that
(32 limn_¢€w H(wn~vn+(—1ox2))—(wn+(~loxl))ﬂ =
By (3.1) and (3.2) we get
3.3) limnw?zn[l2wn+x2+(—10x2)—(2wn+xl+(—1axl))H =0
(\J' : - A
Let wiz(xi+(—1°xi))/2fEWCUX(X) y i=1,2. By (3.3) we get
limn*aiv (wnJWn) = W&4W2 y Whence using (3.1) it follows that
> s oo . . S . ¥ =
11mn~9bc v, = W2_W1+X2-X16‘VCUX(X) s Since V?dX(X) 1s closed in LX .
N A > e 5 s ._./,}j.‘_‘/\;/_'_ S :
| Let v = Wo=Wy+Xp=Xq € V (x) * e get‘z-xl xz—(wl+v) W, € By swhich

X
completes the proof.

When U .. (%) is not closed in E, , the conclusion of the
% :

_ above'proposition is no longer true (see Example 6.4).

P

The next result shows that the dual space ¥ has a particular

form in the class of normed almost linear spaces.

« : '
Bh o PWOPOQITICJ. We have X = WX*+VX¥ y for any normed 2lmost

o

linear spacex-




PROOF. Let feX* and define the following two functionals

soan
ta) = (Blciion)) /0 (x & X)
f2(x) = (f(x)-f(=-1ex))/2 (xex)
Then £,,f,¢ X° . Clearly f €W , £,€ Vox and we have T = f.+f

X i

Let us note here that in view of Lemma 2.4 i), this
decomposition of f as f = f1+f2 s flé WX* - f?éEVXx is unique.
It is immediate that for X=WX we have X = WX* . The converse
is not always true (see Example 6.1 (ii)), but we can prove :

=

3.4. PROPOSITION. If &, is one-to-one and X" = Wy« then

Ly &
= WX 5

_PROOF. Let x € X\Wy . Then @ (x )¢ cl (W, (W) (the

closure of WX) in EX), since otherwise, by Remark 2.6 and

.
S i j ® ‘ : a3 v 4 = w-v D, = w 3
Proposition 3.1, UJX(XO)é UJA(JX)’ whence K(xo) X(wo) . for»
some woe NX .« By the assumptlon on OJX 1t follows onwoegﬁx y
a contradiction. Since cl (DUY(WX)) is a closed convex cone of &

and cux(xo)é;cl (CU‘WX))’ by the separation theorem, there exis

4% o :

fe S« such that f(cUX(xO))‘<'inf Pliel (CUK(WX)) = 0. Since

S X . - -

fla{X(WX)‘; 0, by Theorem 2.7 (iv), f:fUJXéESX* and we have

f(xo) = f(aJX(xQ))<i O. By hypothesis, f¢€W,x , whence f(xo):f(»laxo

Let w:xo+(~1oxo)é§WX . We have f(w) = 2f(xo)‘< @, a contradiction.

Consequently X = WX sy which completes the proof.

Bor the:definifion of K in the next vesult, see (2.5),
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SHEGRIM. 3.5 We have K=K = B , i.c,, #he linear spape

E quals Er
X-)( euaSLX.

~ b5 ~NS n
PROOF. Let f_& Ex\ (K-K), L, = 1. Then KN (f +K) = ¢
and so iK(\ BE* } N (%/ HK) =0, Simce K iEow cloted in EYX and -
‘X 0 e
KﬂBEx is w¥-—compa0t in E; y by the separation theorem there

X
exidsls vz Ey y [l 2l = 1 and « € R such that

. rv‘ o~ o o~ o
(Budl e Bl r e b inf { £ (z)+£(z)% fe K§
: _E,X o
Clearly, we have 0 < & < fo(z). If 2 ch (CUX(WX)) then there
exists we Wy , ll{ wil= 1 such that

o

(3.5) Il 2= welw)l] < £_(2)-

0
By Theorem 2.5 there exists fé:SXf such that f(w) =

Then by Cemollary 2,12 Giiy, ? = wa(f)éK, HJ{?V// — %V(wx(w)) =
= 1. By (3.5) we izet ] %(z)wli‘< ;g(z)—cx and 50 %(z))> 1—§O(z)+o<z
7 & , which contradicts the ieft hand inequality in (3.4) sirice

?é KN Bnx . Consequéntly zé el (CUX(WX)). By the separation theorem

X

~ o r~
there exists f €S.% such that f(z) < inf f(cl-(CUY(WX)7) = 0. Then
A

%
xf]cUX(WX) 20 and (s e K. Sivice £() 0, this contradicts the
right hand inequality in (3.4). Consequently f,€ K-E, vhich complete

the proof.

3.6. PROPOSITION. If dim Ly < e and Wy is one-to-one

then ¥ = x¥ .

: # ' . .
PROOF. Let fe¢X™ and for 2By , 7 = OUX(xl)—CUX(Xg),
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'aY N/

x; €X, i=1,2, define f(z) = f(x;)-f(x,). Then f does not depend on tl
representation of z, since if z = afx(xl)—édx(xg) = QJX(X3)—<”X(X4),
X eX, 1 <3< [, then oJX(xl+x4) = uJX(x2+%3) and by our assumption
on @y we get X Ky = XpHXs. Hence f(x1)+f(xi) = f(x2)+f(x3), ie.ei,
~ ~ -
f(z) = f(xl)—f(xz) = f(XS)—f(x4) and so f is well defined. Using
the properties of UJX given by Theorem 2.7, it is easy to show

o~ 2 v "
that feEEX = Ey . Consequently for each x€X we have | f(x)| =

= ]?(wx(:c))\ = H?n I W () =1 ol lxi)i , which proves that f& %" .

The assumption on CUX to be one-to-one is essential in the

above result (see Example 6.2 (iii)).

3.7. PROPOSITION. The mapving e, is one-to-one iff

£Lh

gro e
QX;X~——>XX 1S one-to-one. =

PROOF. Suppose &UX one-to-one and let x,y €X such that
QX(X) = QX(y). Let z = UJX(X)—CUk(y)é Ey . We claim that
z écl (éUY(X)). Indeed, if zeicl (CUX(X)), by the separation theorem
v ~ n/
thereiexists £ ¢ Spx such that £(z) < inf Blci (CUY(X)) = 0.

particular, f)cuX(WX)) = 0 whence e K. By Corollany 2,12 (ii),

i

Py (x)-wyly)) = Flw (x))-

"%kLuX(y>) = 2C=Bley) 0. 5.0, QX(X) #£ QX(y), a contradiction.

~nJ ¥ n/
f = fcuXeX and so we have f(z)

Consequently z € cl (CUX(X))Vand so there exists a sequence §?Xni<: e
such that lim wa(xn)-z i = 0. Let £ € Syx fn(xn) = il e
neN, be given by Theorem 2.5 and let £, = QJX*(fn) €K. Then '
£, = %;LUX (bysCowodiary 2,18 (ii)). By QX(X) = QX(y), for each
n v
née N we get that fn(x) = fn(y), hence fn(u/X(x)) = fn(O)X(y)),

whence fn(z) = 0. We have

l\oux(xn)l/=!Hxnﬂléfn(xn)=fn(§Jx(x )):fn(cux(xn)uz)s “CUX(XQ)“Z”““> ¢
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Thus, {| zl| = 1imnfnJ’aJX(Xn)H = 0 and so a)X(x) = Q)X(y). Since
a’X is one-to-one, we Zel w=y,
Conversely, suppose QX one-to~one and let X9y € X such that
~ no
&JX(X) = cux(y). Tielh Pe it g 100 F = aJX;(f)ééK. Then f = faJX
_ - . .
and we have f(x) = f(cUX(x)) = f(CUX(y)) = iy Conseguently
QX(X) = Qx(y) and since QK is one~to-one, we get x=u. which completes

the proof.

3.8, THECORIM, Tet ¥ - Wy be cueh thet OUY(X) is closed in E

X

and dim EX<< e, Mhen QX is ontoAX¥*

PROOF. Using twice Theorem 8.5 we get that the livear space
X ~
Boci cauml e 0 L Tebiie L 000 an 100 WoelBie 127 < Log
~ : ~ ' :
Then ¥ = FCUX; and F = QE (z) for- some z<§EX\\§J}} sl oe oy (()
then z = UJX(X) for some x ¢ X. For each £& X* we have F(f) = ﬂ@wxx(f)):
= w x(f)(éur(x)) = flx), 1.0 B - QX(X). We show now that the case

z#:aJ (X) is not possible, which will complete the vroof. Suppose

zé'ujy(X) = ol (o (X)) Then there exists f iy \.§O} such that
f (2) < ing f (Wye(X)) = 0. Since f laJ (X) > 0. it vellows ibhis
£ £ oYy e, Suppose z = LUX(X)~(UV(y) for some x,y € X. Then

(3:6)  £.(z) = £ (e (x))ot (@ ()] - £ (x)=f_(y) < 0

On.the other hand since X = JK sy we have kx = WXx and so foe WX% .
o

Consequently, O S'F(fo) = Blw x(f - C“yx(f ) -

- u{X4(fo)(cuX(X))-<wa(fo)(cuK(y)) (x) i (y), which contradicts

(5.0,

If aly the assumptions in Theoren 3.8 hold, except for X = .

then the conclusion is not always true (see EXomple 6.5 (i3))
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4. NORMED ALVMOST LINEAR SPACES WITH BASES

The normed almost linear spaces X with bases have some
relevant properties and this section is devoted to them. In the
proofs of Theorem 4.1 and Lemma 4.5 we shall use the following
notation. If X has a basis 3B » Tor xe¢ X and be 8 e denote by
x(b) the element of X defined as follows. Suppose X’:erzgl)\f:bi y
biéfi)é#gii:> 0 for bié-VX be the unigue decomposition of % by
the elements of B. We set-

L
n .
= Lo b=b,

= o
1%&0

x(b)

it

Consequently, if b é~8f\VX then x = ,Xab+x(b), Ae B

4.1, THEORBM. If the normed almost Iinear space X has a

basis B then Wy 1s one-to-one.

PROOF. Let X19%, €X, xq £ X, such that CUX(Xl% = CUX(XQ)’
k ol :
= e oy : ok wh -k we
Then x, Eile 15205 + Zigrk+l 150y o where fon . - { - K
have bj éABf\VX . O(ij'a 0y i=1,2 and for kil = J < n we have

: S e R o s X Gl [ =00 [~ and
bj<5~8(\VX : ij€R, 1 1,?' Since Xq £ Xpy U X(;:l) K((z) nd

’ CUX\VX is one-to-one (by hemark 2,6) ., it follows that thére exlists
an index j_, 1 = 1, =k such fhat 0(13 # 0(23 « Without loss of
0 g -
generallty we cen suppose J =1 and q/ll:> 0521 . Since CJX(xl):
=‘a)X(X?), by Lemma 2.11 and Remark 2.1 (iii), for each neN

there exist yn,uné;X such that ¢
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) Xty = X4y,
(4.2) L Yplll + gl < &
By (4.1) we get

- e ~
°(11°b1**1(b1)+'Xn°b1+un(b3) = (bl ob iy (b )
where le’leéfh~’ and so

(4.3) B oo (nem)
Using (4.2) we get

/»nﬂlb1+(—lobl)ulé m/bnO(bl+(-1obl))+yn(b1)+(~1oyn(bl))ﬂ(:

= Wyt (-ley )il < 2 (n € N)

which contradicts (4.3) since blérVX A Consequently X 7Xs which

&

completes the proof.
An immediate consequence of this result is the following:

4.2, RBNIRE. OT X heo = bacin B then Wr(8) =gw (b): ey
is a basis of the almost linear space CUX(X). In Example 6.? (i
X has no basis but QJX(X) has a basisgeClearly, when aJX is
one~to-one then X has gz basis 4iff LUX(X) has a basis.

4.3. LEMMA. Let X be a normed almost linesr Epoce, TFf @l (g

A\

has a basis iﬁjthen B is a2 basis of By o

PROOF. We show that B is a linearly independent system in

Med 11867



8-

E whence the result follows since F{ CU,(X)-CU X). Liet

i (

;o €R such that Zn 2 p =0 L Tet
/:

X §

b & B ang o

1 iy
Il—.:{i.tlf is' ny o(i>“0}emd]‘_ {1, <n,c>(.< O}'
- and we must show that both I1 and 12 are empty. Without loss of

. 5 a s X ; S
generality, we can suppose I, Z 0. If I, = o, them > je . Sa2h. =

1 Mol
=2

. o¢ . b. = 0 and sirce W (X)) is & normed 2lmost linecar
e I 1ed ‘ X : -

it
space, by Lemma 2.4 (i) we get that for ie I, we have bﬁéavcuy(x)

whence {'bi: ié'Ii% is a linearly dependent system in the linear

space V which contradicts Remark 2.1 (ii). Consequently *
E oy (X) b 4 Y

I, £ ¢ and so we have :Z.ié Ilo(ibi = :gi.&IQ‘c&i‘bi whence

-, .
Eiéll © b ieIz\"(i\"blé @) Bives @ - g b
relation shows that N is not 2 basis of CUY(X). Consecuently
Il =1, = ¥, which completes the proof.

4.4. COROLLARY. If B and B' are two bases of X, then

/
card‘34;:card-3

PROOF. By Remark 4.2 and Lemma 4.3, both CUY(QK) and ¢UXCB!)
are bases of the linear space E, . Hence CAL L) eand GJT(Jg) =
‘ ‘ '
= ecard G{X(g Joe By Theorem 4.1 the conclusion follows.,

We shall proVe now a technical lemma which will be uéed in

the proof of Theorem 4.6 and Proposition 4.8.

4.5, LEMNMA. Let Y be an almost linear subspace of‘CUV(X)

such Shet ¥ has a basis 5. Let {1&1}, {Xng ,{;%15 be senuences

of Y and et -, ve . If thdfollowing relations holé |
!




—1 9=

(4.4) Wy Y = x dx (nen)

(4.5) il +1Ly i —>0

then the element x-y of Ey belongs to Y.

PROOF. Clearly, if yeV, (< VwX(X)) then x-y €Y., If yd Vs

- them v = zj?:l Xiobi+v where ke > 1 bl""’bk é«B‘\VY ,-) i;> O,

L= < it oand szVY < ok each i, 1. = § <« &k wohove

W, = Ppioebiru (b, ), Fact nnel
X, = O(nic?bi-rxn(bi), of 4oE R el
In = ﬁniobi+3’n<bi)’ f° ni €R+ sl N
X = ﬂiobi+x(bi) Y, e R,

Ueine (4.5) e oet

C<niﬂbi+(—10bi)flf'HCXniﬁ(bi+(~10bi))+Xn(bi)+(—1ax

=l +(-lex )l —> ©

whence, since b, 4 Vy,, 1 £ i< k, it follows Tim, @ ec s -0
Similarly e /?,n'i — 0. By 00 we get .

}bni+[%ni+'Ai % e | (n éNj
and so

i e J).i_ ')#i >0 (L =1 -1y

: k , :
Conseguently x = Z?':l ﬁ.ebiﬂc1 , where &ﬁiz %i =0 o i

3k il

: -
- - (qai5e= S = £ L R ~ 2 3 ) 5
and X € Y. Then x-y Zfizl( Pi >i> bi+x1 v £Y5 since >, AL



4.6, THEOREM,  If w. (X) has a basis tin particular, if X hae
S A

a basis) then CUY(X) is norm-closed in E

X °

>0 oy %
Boon, Dot w6 C Ghin)ieng zeR, , say, z = x-y,

¥y € ul(k} , such that limn“>&;\un~z{(= i - ey

By Theorem 2.7, for each neN there exist xn,ynezaJY(X) such that

el A (nen)

Il =nii IJ/E;l-lenuw- /) (mel)

By Lemma 4.5 it follows that gz = X-y € CUX(X), which completes the

proef. -

4.7. COROLLARY. Let X be a normed slmost linear space wil

=
)

2y

8 basis. Then X is compleve i ff B 4o o Banach svace.

K
PROOF. Use Lemma 2.10 and Theorem 4.6

In view of Theorems 4.1 and 4.6, one can ask whether the

conditions Wy one-to-one and CUY(X) norm-closed in E. are sufficient
L ) &

for X to have a basis. The answer is in the negative (see Example

6.6 (1)),

As follows by Proposition Jely i bhie st is always

1y ¥ L i, LY D
oG -
LA
norm-closed in GUY(X). Example 6.3 (ii) shows that Ncu (%) is not
L\ ; X \ 4\

alwaysc! closed in B o Ve have !
. S

4.8. PROPOSITION. If W w.(x) bas a basis, then W, (x)
i‘ X IL.




onik

is norm-closed in E

X .

. 00 ve :: 1 5 X
PROOF. Let §w ¥ n=1< W _(x) 8nd z = x-ye By v %76 wy(X)

%
bei such fthat limnv>oailwn+y~xﬂ = 0. By Theorem 2.7, for each ne N

there exist X1V, € cuX(X) such that

(4.6) WtTHY, = XX : {n 11)

G n Wepll + Nl < v tg-x 1] + % (nen)
By (4.6) we get

(4.8) wn+(—lay)+(—loyn) = —1ox+(—1oxn) (nc 1)

If we add the relations (4.6) and (4.8) we get

(4.9) 2wn+y+(~lay)+yn+<—loyn> = X+(“1°X)+Xn+<“loxn) m
Let us put

W (X+(~13X))/2ﬁ}ﬁ¢uX(X)

e ey,

W (xn+(—loxn))/2é-wcdx(x) (n;:N)-

~ A

Wp = (yn+(—1éyn))/2é chy(X) e )

Then by (4.9) we have

v ~ - :
(4.10) e ERlE = . (nen)



=D

and by (4.7) we get

K ~ :
(a1 Ihw i il e ] +IlynH:§I!W +y-x|| + %

o (n &m)

By (4.10) sna (4,11) usihg Lemma 4.5 we get w'—w" ¢ W e Uoin

again (4 10 cendel i 11 o st

3 : i = Ww'ew"e
7 = 1im W = wl-wé VCUX(X)

which completes the proof.

49« PROPOSTIITON,. Frf W

L1 ‘C“X(X) has a basis then the set

W =closed in the cet &

X

+\+V, Lot
W 5 (X) w o (X) E 1

= (Wcux(X)+VCux(X))“(WCUX(X)+VCJX(X)>O

PROOF. 'We shall denote as usual i i byl Lol

™
1
A.JY

h

> o W Do oy ' o an LT
évﬁd% G C.L..X(X) ,_gvn} e e (%) and zgndl y Say, zZ=w+v-w,
T - ; 3 '
where W’wc;“cdx(X) and ve V.,X(X) . ogch that

Gacr2) lim

Nn-eo Il "v'n+Vn+‘r«"J--—w-—V// = 0

f]wn+vn—z1[: 11mn~%oo

By Corollary 2.9 we also have
1) 11mn~>aot[wn~vn+y—w+vﬂ =0

By (4ol2) and (1.13) we get llmn»agm Nw +w-wil = 0, whence by
Proposition 4.8 it follows that'wmﬁééwcu o Consequently

7 = W”W+VGEWLUX(X)+VQ)X(X) , wWhich complétes the proof,
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Clearly, in view of Remark 2.3 (1) and Remark 4.2, the
conclusions of Propositions 4.8 and 4.9 are always true in a
normed almost linear space X with a basis.

An immediate consequence of Propositions 3.2 and 4.9 is

the following ,

T w I N =] i
4.,10. COROLLARY. ££ “60X(X) has a basis and V“JX(X) is
closed in Ey s then WCUK(X)+VU)X(X) is closed in Be o

In particular, the conclusion of the above corollary holds
when ¥ has a basis and VX is complete.

It is well known(/1/):that when X is a linear space, Y a
linear subspace of ¥ and Jgo a basis of Y, then f#herc exists a
basis B of X such that :Bo < B. This result is no longer true
if we replace "linear! by "almost linear" ‘even whem X 15 @ normed
almost linear space with a basis (see Example 6.5 (iii)). A gene-

ralization of the above result is given in the next remark.

4.11. REMARK. Suppose X has a basis B8, If ¥ is a linear
subspace of VY andi\BO is«a basis of ¥ , then there exishs o

..basis: R' of X such that :Bo‘: Bl e proof is obvious since

= E3N VX) \)31 - wherg B‘_l_ is a basis of Vg such that ‘BQC”BI.‘

4.12. RENMARK. Suppose X has a basis g,

b4y

(i) If ¥ 1= an 2lmost linear subspace o ¥ then Y has not
necessarily a basis. This may happen even when Y is closed shal
(see Example 6.6 (i)).

e ;Bj is a Subset‘of A then 331 drsoi necessar L

. v . : 0]
a basis of the almost linear subspace of X generated by &b (see

A
Example 6.5 (iv)).
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5. FINITE-DIME \bIONﬂL NOMWFD ALVOST LINEAR SPACES

As in the case of a linear space, When X is a normed almost
linear sﬁace with a basis B +then card 8 isg called the dimension
of X and denoted by dim X. In view of Corollary 4.4 this is
well defined. When dim X = oo then ¥ has some relevant properties
as we shall see below. Firstly we show that the following

generalization of Riesz's Theorem holds.

5.1. THEOREM, Suppose X has a basis. We have dim X < oo

i By is compact. » -

PROOF. Suppose dim X = By Bemevl oo 0 Tenime Qs

it follows that dim E. — eo - Hence B, is commact. By Theorem 4.6
X I : “
"X
it follows that 3&) ( %) is compact, whence by Dleorem 4.1 ?y 18
A0
compact.

Conversely, suppose BX compact. If we show that B0
.LJ-X:

compact then dim EX-< = and sinee Y hao o basisy by Remark 4,2

and bemma 4.3 16 2610 cwe that dim ¥ = @im b = o2 Let iz e 1)

X 3 1. i

DielNyand let: & > 0. Then by (2.1), for ecach me W there ook
at e o St e
X1n1¥o, €X such that Z, = W (xl )~Cbx(xgn) and ”[llnﬁ/+“/‘2nﬁyé
1+€ . Binece BX(O,1+£ Fiie compact, there exist subseguences
oD
%'Xink% e %ﬂ ln} e ol é.yv(u 1+ £ ) such that

tim. o 8 e G, 1% ) e e wK(Xl)-LU.Y,(X?)éb)..:{ :

Ve have

[ an ol k)~ wx“{?n} = Woln )+ ()il <
c . : 1y Xieo



o5

£ o (g )= W (x M+ 1090 (e )= e () =

k k o
”fv 1n’x M‘fx - 2)~9() as k—co,
ny’

and so \[zn‘—z[/w7'0 and Jlzll € 1, which completes the proof.
e :

7

The assumption on X to-have a basis ig essential for the
implication BX compact = dim X< oo (see Example 6.6 (ii) 3 wete

that in this example CUY is one-to-one and @W_(X) is closed in EK)'
b .l £

THEOREW 5.2,  If dim X = n then dim Y N,

PROOF. Let B be a basis of %, card B = n. By Theorem 2.2
we can suppose that for b & ig\VX we have -leb € B. For each be B
we shall define a functional fb<§K¥ and we shall show that
%,fb b 633} is o basis of X" . By Theorem 4.1, Remark 4.2 and
Lemma 4.3 we know that 0JY is one-to-one and dim E, = n, whernce

.JX
by Broposition 3.6 i1t ds enough %o define fh on & in such a way

i

that fb(E+( 1&b)) 0 for each b é i?\v (81noe then by Remark 2.3

f
(1), & \WY;Z 0). For b ¢ 8 we define fbezx in the following way.

If b & BN (WU and b-e B , define

%)

) {1 if b=b
£ 9 -
b 0 irve B\{v}y

If ﬁ%\‘{WXL)VX% = %_bl,mlobl,...,bk,—lobkg s k,;_lj bhern for

1=z = k define

_ 1 if.gzbi or b=-lob,
. bk = :
i 6 arwec BuAh L
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and
| j; 1. if b =Dy
f*l“bl(b) = =1 At b= mlobi
0 itbel \’%ﬁ bi’”lobi%

Clearly, for each b &€ 8 we have fb(g+(~10b)) 2.0 Hon %c%i3\*vx :
Note “that for b é.%bl,.,.,bk}\J (éﬁf\WX) we have f, e Wy and for
b é-{«lﬂbl,...,«lvbkg U (i%/wvx) we have f, € Vyx . We show now
Bhee 08 tbe Bl dou basiaof X" | We suppose b k> i,
 B{3WK # ¢ and :Brst # ¢, the other cases being simpler. Let

feX® aond lel us put

L (f(bi)+f(—-lvbi))/2 e e
ﬁb = T(b) Y& »2'3’07‘/7{
Y= (f(bi)-—f(—labi))/Z e
§b = £(b) b e Bavy

3

) Loy e : el S eh
Since o we have ‘Xi S s dnd‘/3b33 Q. for b e JLOHK

It is easy to show that

K- N ol ;z‘ - - o =
= : ¢ 0 Z 3 > iy it 8 WO X Seies ,‘ af
L Zgz:ﬂ. 0 *bi+ 9] e.Br\wxfgba b+231:1§;°f»labi+;20é\8nvv‘bOFb

and that this representation is unique. This completes the proof

since card {i%):b é~5§ S

The following more general question whether the condition
= : ; : X - ; : 2 S
X has a basis implies that X has a basis has in general a negative
answer (see Example 6.8). Another question is whether the converse

in Theorem 5.2 is true. Even when X = WX the answer is in the
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negative as shown by Examples 6.2 (ii) and 6.3 (iii). In these

]

examples we have either 0)X is not one-to-one or &JX(X) s hot

closed in EX s which by Theorems 4.1 and 4.6 are ne cessary condition

for X to have a basis. 50, the next question is whether the condi-

Gioms diim Kt = n a)y one-to-one and LU?(X) closed in B dmply
LSS

that dim X = n. The answer is also in the negative (see Example 6.7)

1

It is in the affirmative when X = WX.as we shall see below. For the

proof of this result we need the following remark.

5.3, REMARK. If dim X" = n then dim E, = n. Indeed, by
kRemark 4.2 and Lemma 4.3 it follows dim EX* = n, whence by Theorem
7&.

3.5 we get dim EX = n, whence the conclusion follows.

5.4. PROPOSITION. If X = W, is such that W/. is one-to-one,
. C

@ (X) is closed in E+ and dim X~ = n then dim X = n.

S . s K ¥
PROOP. Sincies = w( we have ¥ =

L

dyxx, By the assumpticn

dim X = n and Theorem 5.2 we have dim X" = n. Let 2}1,...,rplg
g Il

bie @ basis 0Ff X0 By RPemarele 5.3 it Follows thet din E, = n, whence
by Theorem 3.8 we get that Q, is onto X**. Let b b

aacn VR o e SOy W o sl Xy kg
= Wy be such that P, = QX(bi)’ i=l,...,n. We show that é:bl""bn,g

s a basis of X. Tet x&X. Then Q. (x) = 7 _ X OB A

I=0 3
so by Proposition 2.%3 we havo Qv(x) OX(ngzl,\iobi). By
Pronosition 3.7, QX is one~to-one 2nd so x = ?él‘xiabi ”ii > o,
l-=ti-n., Suppose new that = = gzl‘xiobi = 2{?;1 ﬁi”bi ”xi’/%i‘§R+’
s e fieP; o whemee X =,
Lasiany oo %tﬁj""bnf 1s 2 bagis of %,

We conclude this section with the following generalization

of the well known result from the theory of normed linear spaces



208

that any finite dimensional normed linear space is complete.

5.5. PROPOSITION. If dim X = n then X is complete.

PROOF. By Remark 4.2 and Lemma 4.3 we get dim Ey = n,

S

whence the conclusion follows by Corollary 4.7.

6., EXANPLES
6.l EXAMPLE. Let M be a normed linear spacé and let X be

the collection of all nonempty, bounded and convex subsets A of .
For A;,A,e X and A éR define A +4, = { ajtay i age by ayehy,
and Xoﬁl =4 Xalg e Al§ . Tet 0 ¢ ¥ be the seb 807, Then 7 1=
an almosﬁ lihear space and we have WX = %_AéEX PA = —ch% f.ea,
A is symmetric with respeoﬁ to the origin of M) and szgéx%: x € Mf.
For AféX:dgfine ﬁ)AHL: SUD, o A})a“ . Then X together with this norm
is'afnorméd\almgst linear space. '
S (i) ‘iet‘M:R énd % defined as above. Let ;

T hoid B LA R0 KT Aooiviel.

;ihgn i ig an almost 1iﬁear éubspéce of X. We have EY = R egquipned
\Withrthé-usual norm and for % >0 1et'A% be any of the intervals

[”%’)\/)1("‘}\9%]'1 (_"')‘7};.)3 ["),}J « Then CUY(A>\) = >\ and

(uY( {Og-) = 0. Clearly, Wy is not one-to-one. Let for ne W,

i oy - . -
w, = ("1+E’1"V5)6'4Y and x = (-1,1] & Y‘\NY . Ve have
: . : » . : 5 -
11mn_§2n f(wn,x) =i \\ch(wn)~cyY(x)H = llmn_acp | 1- = —1[:\

’A \
(ii) Let Y be the normed almost linear space described in (14

We have WY = %(-—-/\ ,>\ = }\ ; )\ j ‘) OE & —20} y. hence ¥ £ -;jy.

X ; =
' - Y = ve ha = Wox . ler - is ne~to—or:«
Since CUY(f) H:”Y(Y) we have Y JY* Here U)Y igs not one~to-o
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6.2, EXAWPLE. Let X = § (x,p)e®’; p>03 U {(0,0); .

Define the addition as in R° and for x = (o ,p )e X and A€ R

i

define Aex = ( |\|« » [A\[# ). Then X is an almost linear space

such that X = W. . For (x’,p Ve X detine Hl (o« (3 )Y/ :/5. Then

X
X i1s a normed almost linear space. We have EX = R equipped with

the usual norm, dJX((d ,ﬁ?)) = @ - ) )& X and 0JX(X) =R_.
Here .y is not one-to-one but CUX(X) is closed in E; .

(1) The normed almost linear space CUX(X) has a basis but
X has no basis.

(ii) We have X¥=‘i>\0fo N en. where fo((o( y 6 ))

1l

o

* =

and so dim ¥*

-

(¢, p)eX. Clearly {-fo§ is a basis of X
but X has no basis.

(iti) Tet ¥ = % (x e ek . o Oj?. Then ¥ 4 on almoct
linear subspace of the normed almest }inear space X. Let fry — 7

aGte b (o o )e X o e hoave féY#'\ e

i

be defined by £((«,p))

6.3. BEMWPLE. Let L= § (4 ,p)eR" o >0, B>0fuilg )
We organize X as an almost linear space as in Example 6.2 and so
we have X=WX s CHopse (o<,@ e X we: define [|lxf= maxﬁfu{,[&} 5

Then X is a normed almost linear space.

(i) “We home B =R tho unit ball o B
X X

is the convex hull of the set {'(1,0),(1,1),(0,1),(-1,0),(~1,~1),

is the hexagon which

(0,-1)¢ and W el ;8 )) = (0,5 ), (< ,6 ) ek W bave
T W e R Yo leR & oapd ror i = Lx f ) ot

we have [fll = X+4 . Here By¥ = Y and ¢ X,ﬁﬁ)”?

v Uy
Conseguently the unit ball. of EX* is a square while the unit bhall
of EX ig a hexscson, i.e., Nz[(E . gtﬂfﬂﬁf
v : X X
13 T1 Seit e e il X is . not closed mn - F. . Here
(a2d) he se a/X(»K ( X( 7 tocle in By

aPX is one-to-one.
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i) Gleariy X:WX has no basis. On the other hand 2 basis
of X i ke set o (10),00,0) 0 e, dim XD = . hn we have
 observed at CiEa ) QJX is one-to-one but CUX(X) is not closed in Ey.
e - 1 1
6.4. BXANPLE. TLet X = 7 (o )ep™s o(q > o}(j{(«i)gg o,
> 7, i, =0} . Define the addition as in £ and for x = (= ) eX
and X\ €R define Aoy = (’A[o(lﬁ Aaé,.., Aa%}...). Then X is an
almost linear space and we have WX = § (A,0,0,0,....)i Aé?ﬁ_f
: il = of 5 5
and VX =-§ (o(i)é{j : 9(1:(), > = :Ldi:O}.vFor S (o(.l)éJ{,

define JI{ xlll = Zf:llo('il . Then X is a normed almost linear space.

© (learly, we have B :El 2 CUX(X) = X, x& X and we show that (-l

.LJX
civien by (2.0 die r1.11g1 . Indecd, Jet .o = ((Yi)éEy By
Remark 2.8 we have | Z”Zl < Jlezjf - o Bor whie wlther simequall iy we

: oy
fipst observe that 11 Xq > O then ped andico flimll =l oy = l(uné},
IF B/l‘< G lch = 220 and define x — (C¥i), o (Iﬁi) by 5(1 = ;
o o :_g/i o ﬁ_l:f“(ﬁ ; /91 — 0,2 s s
QO 14

have x,y¢X and z = x-y. Then llz{[, < Wxil+ gl = 2?£=1(‘*51+

»—_M ' A ; - ‘
* i Pyl =25-81v 25 kil =280 2000 = 2 il

Dinee  ¢> 0 was arbitrary, it fOllbWu shat lizils = ”zugl .

i
I\
Consecuently || z)[.. = | leﬁl .
nv A
A z
For nelN, let v = (o<m.)evY be defiimed byied . = 1/0

=5

o e ol = O for i Lo, mio ond ek

i, n+2

7 = _(0,1/2,0,0,0,....‘) gEX'\ Vy . We have Vim, | il vg-zl = 0, deed,
= bl e i Bt i ) 9 3 ropositior o
VX ( wa{(liﬂ ic-met elosed in ¥ Since zef[ 1 (see Proposition 3

for the definmition of _51:1) and v

N
=

- i ‘1 we have that i']] ig not closed

st EL{ . Let us note that since zg]{LX, by Theorem 4.6, X has no basis.
oL g =

~
J

BB WM. Sl - 0 ber pe R : A B Define A



Lo

addition as in R® and for x =i« ,p )€ X, AeR define Mox =

= ( )d,lk(ﬂ). Then X is an almost linear space and we have

$(A,0) 1 Ae H} and Wy =°§ (o8 L R,§, hence Y=yt Vo

.'Por x=({ ,p ) ¢X define W xJif = I/ 4 F « Then X is a normed almost
linear space. A basis of X is B = {(1,0),(0,1)5 . We hawve By = B
wX(X) = x; %€ X and for z=(Y,d )e E, we have Il z) = IX/+[J?.

(1) A basis of X which does not satisfy the condition from
Theorem 2.2 is the set ¥ = § (1,0),(1,1)f . We have FnW, ={07
and B(WV' { G } :

o] Let :{ (£,8)ex 2 3 Zldl}. Mhen ¥ ic an slao-f§
linear subspace of X where Wiy = W, and Vy :-5(0{0)} . We have
Ey = R° and LUY\J) =i e Y, MThe Unii el of Ey is the hexagon
which Gise the copves hnll of the sét { (Ao a0 e s (o /z,W/q),
(~1/2,-1/2),(0,-1),(1/2,-1/2){ . We have Y* = { (o ,p )R . 6
b o b sl - L (L0 Nen g ) s =
= [l

!Y* . Straightforward (or Usine Theorem -3.5), it follew:

.
Sy
3 T "'% ] i [ ( t ” m
that I % = E, and we also have e By = Hel .y o The space
Y .IJY

= (L, p)eR® £ pr 0F # qulv).
(iii) Let X and Y be as above. A basis of the almost lineaf
subspace Y of X is ‘Bo = { (1,1),(~1,1)§ but no basis J of ¥
_satisfies 3305_‘ &
(iv) Let Y be the normed almost linear space defined ih (ide)
and let Igl =:'§(1,1)} . Thg almost linear subspace of Y generated

by<8]_ s ¥ and: glﬂis not a basuiof &S

6.6. EXAMPLE. Let X = ¢ (= ,p,5)eR> o, p,pe R 4. We

define the addition as in R> and'for x = («,p,y)€X and AeR
we define nox = (|A[d,l}jﬁ LMY ). Then ¥ is an almost linear

space such that X = W, . For x = (CX,p f ) eX define [l xlll =



=205

of % 15 the ecb B - { (1,0,00,06,1,0),(00,1}¢, 1.8, dink - &
(i) Let & =35 (a’,ﬁ Y e 33 ¢ (o -1)2+(P -1)2+(§~~1)%5 1/9}
léA(MQ@,X )i(d,@,x )GA,,XGR4? is an

almost linear subspace of X. We have EY = R3 and a/Y(y) =¥, Vel

it

Mhen Aa Xeandis o

it

The unit ball of B, is the convex hull in B> of b sch

€'+y ve X, [yl = 1% Here ¢y is one-to-one and CdY(Y) is cloged

.~

in UY . Clearly Y has no basis, though it is a closed almost linear
subspace of X which has a basis.

(ii)  Let Y be the normed almost linear space given in G
The unit ball BY is compact and Y has no basis. As we observed

at i), Wy is one-to—one and &/Y(Y) is closed Ll

e

e

6.7. EXAWPLE. Let x.¢ B> , 1< i < 4, where x,=(-1,1,2),
ng(wl,l’l), x3z(1,1,2), 14:(1,1,1) and let

: y : o e o
3= éiz;i - kixi; xj_égﬂ.’ L =4 = 43 . Define the addition 11 3t

D)
as in R° and for x = (<, , ¥ ) €X and L eR define Jox =
: po

A%

= (,&x,lk/ﬁ , 15§ ). Simple computations show that if x = Z?%' 154 o

1=1
>\i >0, then

k (A 4} 2X2+,X3x3+} iR i F

A
[ X/ A ?X2+ A 1 X +,X? 4) L )

A 'N

1e€ey keix € X, Then X is an @lmost linear space. Hote tha%
X(:{(k1)X21)3)éR3iXZ’A3GR+§. memﬂy,VX=:§O§ and

we show that we have

(6,00 Wy G e p el O boov2op

15 4 3
Let weWy . Then w = zgi:ﬂ.xixi for some k . O, L <4« 4,
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,Lef us put

1

)L >\1-{ )\24 >\34 >\4
A= et >‘J..+ >\3

Then =0 <= f_ffy 5‘2fz and simple computations show that

w =(“X1‘A2+k3+)wnﬁ'>’L Since -~lew = £k1+A2—A3*>4,f,V)
and w ==low, it follows that -~ Al“ A2+>\3+rx4 =0, f.e.,

W:(O,)L, S, 0 =L 5‘»}5’2/#, whieh proves the inelusion. -~ 1in
(6.1). To show the other inclusion in (6.1), let (O,rf,m’)éJQB

such that os/L = = o 1 (o,/x s e hhew -10(0,#,3;) =
= (O,/L,u)), Tl (O,f-,y )é?WX . S0 it remains to show that
(O,/L,)/)éXifOf/LSJ)f2)*. o

Case 1.(3j4/2)- ¥ < 0. Let /\_1 = o =2,

b
)
i
=

q 7 fexns A R .
- /2 and ‘XA =0, We have (O,/L,g)) ::ij;ﬂ_> X . e X sivce

b9 1 o
Cage 2.(3//2)-¥% 0. Tet Ay =0, A, = p/o, A=y p
arﬂ.‘>4 = (3f»/2)—J/. e have (O,/L,))) = Z?izl Aixie&X since

)

1;0,1_41 <4,

Consequently, we have the equality in (6.1).
For x = (« ol J X define flix|if= le #hnje. Then X 5
a normed almost linear space. Ve have by = B3 equipped with the

norm given by (2.1) where cuX(x) = X, x &X. Consequently CUX is

one-to-one and uJX(K)(zX) is elosed in By
Since V., = % 0 } end for il =44 no x; i1s s -positive lineas
AN <
combination of the elements %ixj e 5‘45) 1t follows thedd

X has no basis.

Pokr il <a = 3. et f; be the functionals defined by

2let, B, 10)) = ~pay -
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((drﬂyy))ZZP"K ((°<7/57X)(7X>
q,(ﬁ,K)):O( ’ ((9(’/.')1{)6}{)

?

llnen fi are additive andAﬁbsitively homogeneous and for WcEWK
= (O,f‘,ﬁ’), 0 = 5’}Jf;2/« we have fl(w) =0 0y
fz(w) =2 =5 = 0 aud f}(w) = 0. Consequently fiéii#, 1l =4 =3
and clearly fié X* . We have fl’f WKX and*fBe VXx-. We claim :
thatg fl,f?,fB?j I- 8 bogie of X Dot et oml vt i put

klz f(xl+x3)/2
}.2: f(x2+x4)/2

Using (6.1) we get that X1+X3é ﬁX and X2+Xﬁ_ékiK y hence >\1’ X2523+
We first show that

=
(6.2) £ )
For this it is enough to show that

G 0 -

In
i
~

i

e 1

i ne ] T4 q & - £ e ,,('3_ (e

Ay = (E0e)1(x)))/2 = (£(x,)~2(x,))/2

Simple computetions show that we have £y (v ) = =f, (x )~J)(X J=f lx, =

2 o
:fB(X3)=f3(X4)=l, £ (XO)ZfT(X->:f2<X1):f2(X_) =0 and 13 Xy )= f3 xz)rmW
whence (6.3) follows taking for j=1,3, IX} : <f(x3) (vl>ﬁ/ i

(6

Bom 0 0 XS = (E(x 4 - (x ))/2 . Consecuently we have



A..:«ij-,,
Vi

.3 ' :
= 1rviof. ; wboro )\1 }“1(?

]

Sunpose now that £ = 2-1:)’:1} 1_“

Jd <
20
whence it follows that ’\i = /-"Li - iv:1,2,3. This completes the proof
that r{fl,fg,f3§ s o Beois of -

itk

for i=] 0. Mhes (Z_ig:l/\iofﬁ)(:{j)

- W :
In conclusion we Baviewdim ¥ = - 3 w}, 18 one-to-one and
4% G 5

wX(X) is closed in By but X has no basis.

6.8. EXAMPLE, TLet % = § = g L= E i o

. 7 . s . T
card = det e U « Define the addition as in g~ ang
For g o Gdliemend New e L (1Mo;) €X. Then % is

an almost linear space such that XK= W o Pop % - (o('j)é—X .

X
define Wil = Z_ °< - Then X is a normed almost linear space.
We have By «t(o( \ég card - % £ 0L = o E o

fa%o)
X € X and we show that for z = (<><‘. e 7 we have 2 — Z l\~'><

.A..J':{ - . o= -, sl jA =1 7'17 j ’

3 - . 9 = { .
where {l z(| is given by (2.1). By Remark 2.8 we have 2> - 1i‘>< =
=illa il Bor the oihor inequality, define ({3 .)€ T and ((g/i)é b
the following way : for ie N where = > 0 take ﬁ = < ong é(i = 0
and for ié& N where == O ke (5 =10 -nd a(i = O(i « Then

o) = 0B ) () e by (2 ) < HEC R0 +0 (=
-—E —ple<i[ » which proves that | Z 0= fiozl(qi{ . For ne N, let

il

& 1 - o 2 -5 awnA /Sﬂ - g P
e, = (gnj)jzl y where Snj = L lorn o ang o - 0 for e

Then e € X ang e neNE G o i or oy (dim Hoo oy,

=

. ! = oo : .
By Theorew 2.5 (Gv) we bove 7° o {(cxi)é e <. = O} and

Since X = WX we get X7 = VVX* « e claim that ¥ has no basis,

Indeed, suppose that X hes a basis 3, Clearly, for each ne N
*‘ -

= ; S : o
e, €% , and we show that there exists >\n > 0 sueh that )\no e & By
L 5 Ak

We prove this only Ffor n-1. the Droot for n.= ] being similar.
Since e, € s y there exist unigue b 6\73 1= 4 < & ong >\ = O
1l £1 = % such that ey Z 1 . Suppose b, = (C><1J);C ;

where <. >

i = U =00 and 1 £i <¥%. Then we have



S

' k
Z =1
K o
21:1%10{1 = 0 J=2,‘3,....

Since Xj~>-o, il kand .20, L=i <=k, je¥, it follow

that-ozij sl A s = g 0 e by =4 e
By Remark 2.1 (i) we can suppose enénB soneal:
Dbt L0 o e e e unique b, s
L e O 0 o o = b ncy
¥
n, & N such thate é{b""’kj and let i :((31)6‘{

i

e + an
1’10 yO d .

since Vo = Zim=11L10b’ y ble 8 , ﬁj_> 0 and e C‘B\\g bl,..,bkg

deflnea by B’i = 1, l%ho and F o o=le Then ¥
; 0

it follows that y has no unique representation, a contradiction

K .
which proves that X% hias ne bacis,
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