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ITptreduction

The smash product, associated to a rings graded by a finil
groupe, is a very porwerful tonl for sﬁudying.
These rings, This was shown for the first time by M.Cohen and
S.lontgomery in YE]. Lately, D.Jduinn [}5] proved'that the construc-
tion of the smash product may be performed even for rings graded
by an infinite group. In this generalized form, the smash product
was used in [?1 and {}5}.
The aim of this paper is to provsd new properties of graded rings,
using the smash product. . |
The first part of %the paper is denoted %o the study of the categon
R # G —mod where‘R 3 G is the smash product (in the sense of D.
Quinn) associated to the graded ring R = @ Rg (tne group G is

: 6 G
generally infinite).
In the second part, a series.of finiteness prOp@rties of graded
rings are given;(Theorems 2.1 and 2.2).The regult“ ceneralize fthe
ones obtained in the second part of [§7 . In the last pdrt of the
paper, usinf Pheorems 2.1 =nd 2.2 we show that if H =@ Ri
' ige %

graded ring of type % and M =@ WH. is a graded R-module, then

st

~C(*(i':‘i) (dé o is an arbiirary ordinal) is a graded submodule £ Ny
i.e.the radical associated to the torsion theories defining the
Gabriel dimension is a graded submodule (thlc is a partial 2o ol
to the sgeneral problem of deciding whethen an element of the latt

of submodules of a graded module, described by some Wagraded

Properties is a graded submodule).



0., Notation and Preliminaries

All rings considered in this paper will be unitary.
If R is a ring, by an R-module we will mean a left R-module,
and we will denote the category of R-modules by R-mod.
Let G be 8 multiplicative group with identity element "1". AA
G-graded ring R is a ring with identity 1, together with a
direct sum decomposition (as additive subgroups) R = (f)G R

ve

such that -

() B B & B forall o, G

It is wellkmoun (8] that R, is a subring of R, and that

1 €R,.By a (left) G-graded module we understand a left

ik

R-module li, ﬁlus an intefnél direct sum decomposition
M =‘5:2 M¢ , where MG"\ are subgroups of the additive group
of ﬁ?:;uch that R, M ¢ M forall ©,C ¢ G, We denote by
R~gr:the category of G-graded modules. In this category,

SO

N = S

@ .
and N = i N. are two objects then
HomR_gr(M,N) denotes the set of morphisms in the category R-gr

from M to N, i.e.

Homﬁ_gr(m,ﬂ) = gif: M N 1 £ 4is R-linear and

sy N, fescmy .

It is wellknown [@] that R-gr is a Grothendieck category.

In particular, R-gr has enough injective objects.

If M R-gr, we denote by E&(M) the injective envelope

of M in R-gr, and by E(M) the injective envelope of I in R-mod.
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_ 1t = & M, isa graded R-module, and se G,
then M(€ ) is the graded module obtained form M by putting
M(crxk = M, # the graded module (T ) is called the & -suss
pension of M, | ‘ v
Let R be a G-graded ring. Now we present the construction
of the Smash Product associated to the ring R. We follow the
construction given by D.Quinn in the paper [}d] .

We denote by MG(R) the set of row and column finite matrices

over R, with the rons and columns indexed by the elements of G.

M;(R) is the ideal of MG(R) consistiéng of those matrices with
only finitely many nonzero entries. Note that if G is finite,
then M (R) = li;(R).

e e MG(R), then we write <X {(x,y) for the entry in the
(x,¥) positionof oL . For oL F € 1,(R), the matrix product

is given by.

oA 1)=ZO< ? 9')
(LB ) (x,y) - (x,2) P (z,%

- If x,vyeG, Then we let e 5 denote the matrix with 1 in the
9

(x,y) position, and zero elsewhere.

Let p. = e o Define WZ . R'-»MG(R) oy 72(r) =7,

where T = > r 38, D= — v, ten, r,cR,
X,y €G xy Y gelG > ’

for any g G,

It is easy to see that ’Q' is a ring monomorphism.
o oy - ; |
Let R = Im(/?), and R # & the subring of N;(R) generated by R

and the set of orthogonal idempotents ipx )x:eGi . R # 6o

U G



S

called the smash product of R by G..

The group G embeds in MG(R) as permutation matrices?

each g¢G issentto§=Ze .Thusw(f:)['g\ge(}i
xe G ToEY
is a subgroup of the group of units of Mg(R), isomorphic to G.
)
Ve denote}R{Gj =(R=G ) G = (R =G ) o
g G

- The following properties of the ring R # G*, given by D.Quinn

in [}d} s Will be frecquently used in the sequels?
(a)Let R be a C-graded ring, with G infinite. Then
o/ ¥ o o~
Bee =@ (& Hp)

Xea
is a free R-module with basis %I% U )pr, xeGi , where I

is the identity matrix of MG(R).

If the group G is finite, then we have
N ~
R &6 - @ R p
X EG
§ Y : x
and in this case R # G is exactly the smash product

defined by Me Cohen and S.Montgomery in [31 o

(b) If »r,s cR, then

Eod o) - .
b'd y xy“l N

In particular, if  r. € R_, then we have

~ ~
B. romoop

(¢c) If g G and e # -5 . tien -

: ;

(5~ 1y 2)(x,y) = oA (xg7Y, y&~1)

In particular,'éfl pxg = %y

(d) I£ G is an infinite group, then

R/IGIS = (R #d)E
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is the skew group ring of the group ¢ over R # G y and

rial - (© Foo wm f
If the group G is flnlte, then ?n{ i = M. (R).

1. The Categorytﬁl# ér— mod
Let R be a G-graded ring. If il¢ ﬁ'# G*amod, then

M =® p_ M is an R # ¢ - submodule of M.
< xece@g =
Indeed, it is sufficent to prove that T M, <M, where

TeR. , Bubd W 2 B p s o n T

3 o<
X EG XeG oix xe & G X

= Mo, since {px\xé'Gi is a fdnmily of orthogonal idempotents.

: * o .
Let us now denote by %f the subclass of R # G -mod defined
by the property:

* ~ *
" :{MGR # G -mod

3 & o .
Proposition el ‘6’ is a localizing subcategory of

=
M = e vil
Ry o R, i1

R # «4-moa 6. e.Y? is clased under subogects, cuotient
ObJeCtS, extensions and arbitrary direct sum).

Proof: It is obvious that %? is closed under quotient
objects and arbitrary dlrect SUml e

Let M G‘G* » and N<H an R # ¢ ~suitmodule.

If ne N, thon necll = @@ Py i1, and therefore n = ';i~—pxmx.
: xeG xXe€G

Thus Do =D mx, and thus n = :E::n s SONeE @D P

X x Vs
xe G xXE G

: ' w
hence N = (® p, N, i.e N¢ e
XEG

B =
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: e -X
Consider now the exact sequence of R # G -modules

o w N}
0 —DHY —> N — N" —7 0
= _
where M',M"é&Tf

Let m N; then V(m)é& M = D ", Thus v(m) = :E:lp v(n™)=
xel xe& G

P

i

v(p [0 *y, and therefore m = ‘ZZ. D m* ¢ Ker(v) = Im(u).
xe G

G2

X e

& : <
Thus there exists m®E&lM' such that m - =2 pxmX = u(m')
4 % x€G

- :
Since M’é:\G , then m* = :2:: pxm'x , and thus
xcG

iii: D, n* = u( :E: D m'x) = EZ,, P u(m'*). Hence

xeG xeG x¢G

# -+
m = :Ej px(mx + aln ), i.e. M€ G . Therefore \f) is
X ¢

a 1ocallzln« subcategorye.
Let now M € R-gr. Then I has a natural btrucuure of R # Gamodule

if we put for all ?<;R and X3 T = rm, and PM = Wy where

m el ahd m = EEL m_ (mxé:Mx are the homogeneous components
xcG

of m).

If r,s¢ R and x,y €¢G, then we habe

(rpx)((s py)m) = (r px)(s my) = r(s my)x' where (s my)x is

the homogeneous componant of‘degree x of the element smy.

Since s m = ( ZE: s )m = ,Zi, s M then (sim.) =
xeh& : xe¢b ¥ yx

=8 loe On the other hand,
Xy ¥

(Fp)Ep)m=(rs o )m=(rs _jIm =x(s _jm).
X y m;ly xfi ¥y xyl

Hence ((§'px)(§'py))m = (T px((g’py)m).
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~/
Hence M has a natural structure of an R # ¢ -module.
We will denote the module M, considered with this structure,
by U .

4 *
Now if M,N ¢ R-gr, and f& Homp (¥,N),then fI M — N is

-gr
Gl
also an R # G -morphism.

- Therefore we obtain the exact functor

~ %
Pe Regr —— R { G -mod
* 5
F(i) =4 for all K& R-gr, and Plf) = £ for all

fQHomR (M N) , M,N € R-gr.

We remark that if il € R-gr, then M 6'5’ and therefore F
can te Von81der=d as a functor F ¢ R-gr p—éwﬁ?

.
We can define another functor Ft R-gr — R # G -mod if we

put for M = @ M _, HER-gr, F'(}) = 1w, where 7'(%) bas
xebG xe G

P

7~ k3 ~
the following structure of an R # G -modules if r ¢ &, Tec R,

- . T/
{ 8, = ’98 sl } € =
x€G, and m (PX)Xéu xéGM , then r m = n, where

ceen D 2 T oo A0 pm = @', where m' = (m',)

D =) ¥’ yeG

m' =0 fory # xmand m! =m_. It is easy to see that i “M
g X X . wen &
-~ SN : i
is an R # ¢ -module. It is obvious that F' is an exact functor.
We remark that F is a subfunctor of F'. Indeed if M GR-gr, we
define the map
.. ® i .——-—“) nik | : ()( -— J
C*M s P(M) Fr(m), plm) = G wherg

2—— m m é I\ﬁ. l e e m ' X & G are the hCmOb(ene ous
9 9 X )

composants of m. It is obviously that <<M'is injective and
~ Az s
it is also R # G =linear. In case & is a finite group, then

P =R,
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Let now MER id & -mod. We have seen that M = ‘ZZ: p. M is
e a0

an ﬁjﬁ Gx~submodule of M, Mo has a natural structure of a
graded R-module of typé Gy, if we put(mo)x =5 i and we consider
M, as an R-module via the morphism 7’: g B aC . Tt o
easy to see that the map.M ~49Mo defines an exact functor

H: & 8 ned ow -gr

Proposition 1.2. With the above notation we haves

a) The functor P is a left adjoint of the functor Hj

t) The functor F' is a right adjoint of the functor H.

Proof:

a) We define the functisial morphismss

i
Homs § & ¢ —moa(F (=), (=) ;:i? HomR r(--. H(=))

as follows:
e
if il € R-gr, N € R # G -mod, then

ol (11,H) ¢ Hom s mod(F(Iu),,’\) —> Homp_ (i, H(K))

is defined by a((M,N)(u)(x) = u(x), where u: F(M) —>N and

* o
X€ M. Since F(M) =3 = @ p, 1, then u(il) = u( ® P, 1) =
Xec ~ xe&

PR

= =2 pulM) S HN).
XeG X

We define F(ru,w). Homp o (HFH(N)) —> Homg = . (P(1),N)

as followse if véHomR_"r(M,H(N))w then ‘F(M,N)(v) =jov,
2

where i: H(N) <> N is the inclusion.

It is obvious that cXU;% =1and P°X =13 , Consequently, F is

a left adjoint of H.

b) See [1'] :
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If M = ® M, is an object of R-gr, we define the support

6¢ G
of M by
Supp(l) = %GGG) N £ 03
We remark that is ISupp-ﬁﬁ)\ £ _ then F(M) = B*(M).

Corollary 1.1. The following assertions hold?

+
1) If M ER-gr is projective, then M = F(M) is a projective
o/
R 3 g -module.,
2) If M ¢B-gr, with \Supp(m)} <o is gr-injective (i.e.it is
%
an injective object of R-gr) then B = F(M) is an injective

(O
R # G -module.

Proof? 1) Since F is a left adjoint of B, and H is

an exact functor, it is wellknown from the theory of adjoint
e -* ~

functors L}lj that M = F(If) is projective in R # G —moG .

2) Since F' is a right adjoint of Hy and 4 is an exact
functor, we deduce again (see I}i}) that F'(i) is injective

~ Y i ' : * 7

in R # G -mod. Since XSupp(M)¥<mﬁ s then M = F(M) = F'(l), and

the assertion follows.

* n ¥ :
Now since Wf is a localizing subcategory of R # G -mod, then,

following Gabriel [§-3 (see also L}l]) we can form the quotient

category(E’ﬁ & —nod /w?* -

Corollary 1.2. W&th the above notation, the following

assertions holds
...*L
1) The categories R-gr and Wf are isomorphic via the functors
F and H.
2) <t ithe group G is infinite, then the quotient category

N" ¥ & A 3 5 o
R #G ~mod/yf* is isomorphic to the category R-mod,
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Proof: 1) From the construction of the functors F and H,

K
we see that HoF = 1 . Now if M¢ ) , then (F cH)(H) =i, and

Regr
therefore F o H' =/ﬁt& s Where He denotes the restriction of the

£
functor H to ﬁ? .

X
2) Since %2 is a localizing subcategory, for any

o~ ¥ A
HER # G -mod we let t, (M) denote the largest R # G-susmodule

-

of M such that ©,(1)€C" , We remark that t, (M) = Z_ p_M. If
‘ xeG

-+
t*_(m) = 0, we say that M is %f torsion free.

*
Thus, if M is f? ~torsion free, we have that D.s i = o for any

=

x €G. Thus, IK = o, where I is the two-sided ideal —>_ Rp_.
xeG

- _
~ X
Therefore, if M is { -torsion free, L is a (R # G /I)-module.

~ % oy
Since R # & /I -R, then M is an R-module.

Let now
* paw T 5 -
R#0G —mod = - R 4 G —mod /%?x

be the canonical functors (see Iﬁj ch III). It is wellknown [;3
that U is an exact functor, and V is a rieht adjeint of U.

/-\/ ) ~
If C# U 4R # ¢ —mod /gx and \%’I {

ST 2
o ©
K#Esy -—mod g -

are the natural transformations of functors, thnen <?> is an
. o ~ 5% <

isomorphism. Furthermore, if Me R # G -mod, then we have the

exact seguence

(M)
0 — Ker Y (M) > M E—>(v °U) (M) -

> Coker WV (M) — 0

e 5 g e o o ~ % - .
where Ker \y (lI) and Coker V/(Ii) belong to Y? « Inm particular. f
5 : )
" <
M is \ﬁ -torsionfree, we have the exact sequence

() : .
05 N — (VoU)(l) — Coker V(i) —> 0

: : -
Since (VeU) is also ¢ —torsion free, we have that I(V.o U)(M))

» *
= 0 and therefore I Coker Y} (i) = 0. Since Coker \J ()€ ,then



oL

tehn I Coker vy (M) = Coker \ (1), so Coker W (1)

¥ :
Thus 4f M is \2 -torsion free, *r(m) is an isomorphiqm.
It follows that the category R # g amod./Rgf' ie isomorphic to ?
the category R-mod. Since R-mod is isomorphic to R-mod, our

result follows.

Remarks. 1)From Coxdlary 1.2, it follows that 1f the

group G is infindite, then f + G -mod is an "extension of the
category R-gr by R-mod", i.e. we have the exact sequence of
categories. ‘

0 —> R-gr —> BAG i0d - = haon 0

1= Rp, 1is a two-sicded idempotent ideal of

xeG

~

£ 2 = e o~ 4
the ring R # G . Moreover, R # G /I SR = R (the group G is
infinite) .

Sirice I is an idempotent ideal, the class

* X | :
o~ *
\tf =4{M €R # G -mod } i =0 J

; (o ¥ 3 S
is a localizing subcategory of R # G -mod. We remark that in

* o~
fact,\éﬁ' is equivalent to the categroy R-mod.

(ot N i

Since R and R are isomorphic rings, then Yf is eguivalent
b5 ?

to the category R-mod.

On the other hand, it is shown in |1 ) that the quotient

o~ * :
categroy R # G ~mod/%?¥*’ is equivalent to the category R-zr,via

the functors F' and H.
Thue, we have an exact sequence of categppris ‘

0 —2 R-mod ——> R # G4~mod —> Begr — 5 0
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¥ = z
3) If the group-ie finite then C = R # 6 ~mod and
therefore the assertion 1) of corollary l.2.give that the
categories R-gr and R 3 G =moa are isomorphic, which is a

wellknown result }:31

3. Finiteness Conditions for Modules

Let R = ® B be a G-graded ring and il € R-gr. Let N
ce G ;
be a (not necessarily graded) R-submodule. We denote by (N)g

(resp.(N)®) the greatest graded submodule of ¥ contained in N
(resp. the smallest graded submodule of K contalnlnv N). Thus

(N) ji:_P where P runs through all gr aded submodules of M
g L
'P

such that P& N, and (N)g = /gij where Q runs through all
graded submodules of M, such the N £ Q.

As we have seen in section 1, each It €CR~sr can te considered
as'anfﬁjﬁ Gx—module. ve have denoted this module iy M. In fnic

case, N will be a subset of li weach that N is an H-submodule

r~ = .
of M by restriction of scalars (R is a sutring of R # G). i

Lemma 2.1, With the above notation, we have

//h\\(u i )

1) (N)q =
: = xe G
2) WiE- @y )n= @, N
xeG A.
Proof: 1) is obvious
: & o g e it i
2) Since T, b.=Dp. . T, e leve bh |
@ g\/ r“* 2 (s KD
e Py N dis anm & # .« -—submodule of H,
If n€N, then n€ ¥ , and therefore n = > 1 » Where n_¢ i
: X Xow o
' xelk
' n
for any x €G. Thus P, = n ., and therefore n = - o

xeqg X ! SO
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Nc &> p N. Hence, (h)gC.Cj> p. e
xcE & xeh  F

Conversely, if P< M is a graded submodule such that N <P,
then P is an B 4 6" -suomodule of M , and thus (@ p, H4E.

Therefore, (t) p. N QT(N)g, or (N8 = @ p_ .

xeb : xeG
If ¥ €R-mod, we dencte oy Col (M) the set of column matrices
over M with elements indexed by G, and with finitely many non-
zero entriese. Since the elements of MG(R) are both row and column
finite, ColG(M) ig 8 left MG(R)—module end hence a left
R %Gﬁ—module. Since!ﬁ #H ¢* is a sﬁbring o h {GE s then

X

~~
ColG(m) is a left R # G -module.

If ¥ R-gr, then by Lemma 1.3 of [?/) we have the canonical

isomorphism of RSLGX -modules
} %
Gol GME R kGX M
4 o

' - ‘ e = ok
(so ColG(M) is the R &G% -module induced by Ii )
Assume now thet M is a graded R-module, and ¥ £ M is an arbitrar)
R-submodule of .
Ve define the mapse

3 ‘ = *
K 2 Coly(d) — K
N o - .

by(f;(;) ;2 D, n*, wheren é}COlG(N), and n° is the

ké & : :

e : o :

element of the column n in the position x, and

o
F Dl —> Coly (/)

/\ 4 3 a1 S
by F () = = (px m) - %, .0 }B(m) is the column having on
the position x the class of the element P, © modulo the submodu

M.
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ey
Lemma 2.2, 1) oL is an R # ¢ -morphism, and Im 4 = (N)& |

o/ £
2) )5 is an R § G -morphism, and Ker }3 = (N)g.
Proof: 1) Ke must prove that « (n) = ;} L (n) for

any r c¢Re , 6e¢G,and & (p, n) =p, o (n). Indeed, if

< d
f = Mo = Y 4 we have p n=10 - X, and
L X y‘X
" 0
o
therefore o((px'i) = v, n* = px( = pv‘H ) = pX0<(ﬁ).
Jeo
Let now r =r ¢ R ; thenr = 1. = :Z:; r. e =
S S » ¢ yéG s SY»y

=I‘¢ZB o

o~ G , ; :
If we denote r. =n =n', then n! ig the column matrix with

i
component ®m'" on the x position, where

(S}
o
n'* = :E::. r (x,u) " =r_ n
u€G S - -

-4 _‘
We havec((r(f n) = E D (r n ) = :E:ip G o)

xeG XEG

]
]

eh S
X€Euw > X¢ e

slix o 5
;EZ_(D & m 2 ¥ 5 n i'i.zz:,p o
§

o~ ~
(5,8
I tn).

i

~~ ¥ '
Therefore N is an R # G -morphism. It is obvious that
Im o= ()8,
2) We must show that /S(pxm) = Py /B(M) and

F>(§; m) = ;;}S(m) fog'any x €G and T < R

Indeed, 7%(px m) = |p.m - X =p, /5 (m)




o /\
Now %(rﬁ_ @l = =
P T X r. p . O L
| \
: | ‘
‘_ =
; J
= Y o= =
b oD r F ’

X
Therefore IB is antﬁ/ﬁ G -worphisme. Now_ﬁ>(m) = 90 if an only

aF b cllfor 811 e G, and‘therefore,mé—//N\\(N o Py ] =
xe G

= (N)g’ hence Ker}% = (N)g'

If M is an R-module, we denote Dby K.dimR(E) the Krull dimension

of M over the ring R, ana by G.dimR(M) the Gabriel dimension

of M over the ring R (gee Gerdon and Robson [5] s {51 Jie

If M &€ R-gr and M is a nostherien (resp.artinian, semisimple,etc
object in the category R-gr, then we say that i is gr-noetherian
(resp.gr-artinien, gr-cemicimple etc). Anzlogously we say thaﬁ

M has gr-Krull dimension {resp.gr.Gabriel dimension) if i as

Krull (resp.Gabriel) dimension in the category R-gr.

@ R¢ be a graded ring, G a finite
e G '

Theorem 2,1, Let R

0

zroupe Let M € R-gr, and N £ Il an R-submodule of i1, Then the

. following assertions hold.

1) If N is nostherian (resp.artinian) then ()% is noetherian

(respe.artinian).

g : : : o > S :

2) If N has a Krull dimension, tnen ()" has a Krull dimemsion.
o
Moreover, K.dimR(N) = K.dimR(N)O).
; : ; d o i’ : L
3) If N has a Gabriel dimension, then (N)® has a Gabriel dimense
Ct : , | ~ 3 | - o~ . YG‘

sion , Moreover, u.dlmR(N) = u.dlmR((hD).

4) If N is simple, then (N)g is gr-semisimple of finite lengthe
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: . 3
Proof: Since MG(R) = {GS . thegnhe R { Gi ~submodules

of Gol, (h) are of the form Col&(N Yo wher N' is an R-submodule
Of N.

We prove the assertions 1), 2) and e IE N is noetherian simple
(resp.artinian, has Krull dimenéion, has Gabriel dimension), then
C@lG(ﬁ) is an R.{G} -module which is noetherian (resp.artinian,
has Xrull dimension, has Gabriel dimension simple). Now since
R {G% is the group ring ofv§lﬁ dgby the finite group é5£3G1
then by Theorems I 8.1o0, 1.8.12 and I.8.14 of [57 s We obtain
that ColG(N) is noetherian (resp.artinian, has Krull dimension,

o~/ e

has Gabriel dimensior) as an R # ¢ -module.

—~

Now oy Lemma 2.2 asserﬁion 1), and Corellary 1.2 ascertion 1)
we obtain that (N)® ig gr-noctherian (resp.gr-a:tinian, hasg
gr-Krull dimension, has gr—Gabriél dimension).

’Moreovor, we have in the case that N has Krull (resp.Gabriel)

dimension , that r«K dim (N)B) = K dim g'# dﬂ((}) Sl dlmR L o

(ColG(N)) = K‘dimR-{Gj (ColG(N)) = K.ding (1) (analogously, for
Gabriel dimension, we have that gr—G.dim((N)g)é.G.dimR(N)).

On the other hand, by Corollaries TI.33 and II. 521 of [6]

we have that (N)® 1is noetharlqn (resn.artinian, has Krull

dimension, has Gabrisl ﬂlnea51on) Horsover, gr.K.dim((N)g)

= K.dim((N)g) (resp.gr.G.din((M)8) = G.aim((N)8). Hence

Ke dlmk(N)G) K.dim, (N).

Since N C (N )’ then we also have KodimR(N) < thimh((Ng) and

therefore K.dimR(N) = K.dimﬁ((N)g); Analogously, for the case

of Gabriel dimension, we obtain that 6.3, ((8)%) = G.aim,N.
'4) If N is a simple R-module, then Col,(N) is a simple

R iGg -module; and ty Proposition I.7.9 of Lﬁt}we obtain
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o~ :
that Col.(N) is a semisimple R # ¢ -module of finite length
= A
By Lemma 2.2, (N)® is a semisimple R # G -module of finite lensth

Now by Corollary 1.2, (N)g is gr-semisimple.

Corollary 2.1.[9) . Assume that the group G is finite.
Then the follcwing assertions hold.
1) If M R-mod is noetherian (resp.artinian) then M is isomorphic

$o a suomodule of a noetherian (resp.artinian) graded.ﬁ}uwwxalz

2) If M R-mod has Krull dimension (resp.Gutriel dimension)then
M is isomorphic to a submodule of g Zraded R-module'having the
same Krull (resp.Gabrlel) dimension.

3) If ¥ is a simple R-module, then 1 is 1somornhlc to a submodule

of a gr-simple module.

Procf: If M BR-mod, we congider the coinduced R-module
m' = Homg ( . Bpos ¥), vhich has the grading
S sk

_ : h _
ML = Af € Homﬁl(s,y) £(R) =0NT £ 5 S- (see Lj] )

-

On the other hand, M is isomorphic to an R-submodule of M' via

the canonical R-monomorphism

i 0( Iﬂ ® I&‘I

> Hom (r, M)
l

OLM(m)(a) = am. We can appiy now Theorem 2.1,

Using Corollary 1.2 and Lemma 2.2, assertion 2), we obbtain the
followinge
Theorsm 2,2. Let R = (. R_be a G-graded ring, where G

; ceG
is a finite group. If M is a graded R-module and N £ M is a

submoedule, then the following assertions hold.

Lo 2 L( ié "{



g -

1) 1f M/N' ig noetherian (resp.artinian), then so is M/(N) -
bod

=2

2y If M/N has Krull dimension, then so does M/(N) , and
g
K.dimg (/) = K.dimR(M/(N)c)

3) If ¥/ has Georiel dimension, then so does H/(N), , and

G.dimR(M/N) = G.dimR(M/(N)g)
4) If M/N is a simple R-module, then m/(m) is gr-semisimple
% 4 g 2

of finite length.
‘We give now some applications of thecrems 2.1 and 2.2.
Let R = @ R, he a2 graded ring of type G. If HaG is8 a normal

e &
subgroup of &, then R has, in natural may a graduation of type

Gl s 12 G =0l = HS is an element of G/, , then we put

S

R'—"«@R =@H

sl o

Obviously, R = @ , Ry, and Rq Roy € Rugo for any C,C'e G/
~ ; ¥ - U B
; Ce G/y

(eee[é’X). Analogously, if N = @ M_ER-gr, we can consider
celr :

on M a graduation of type G/H constructed as above.
Now if I E-modmk has Krull (resp.Gabriel) dimension then for
any ordinel ¢t 7 O therelexist a largest submodule 'Z;(m) of M,
having Xrall (resp.Gabriel) dimenasion less then or equal to X
(see [5] énd [?1 Vi

Corollary 2.2. Ler R = @ R, be a G-graded ring, G a

Seix
finite group. Let H € R-gr, and assume that 'l has a Keull

(resp.Gabriel) dimension. Then for any ordinal o7 Oe -Z;(M) is

a graded submodule of W.
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Proof. ByVTheoreﬁ 51, T, (n) = (7 (W) ., and

therefore () is a graded submodule of il.

Corollary 2.3. Let R = &© Ry bea Z-graded ring.

ied

Let M ¢ R-gr and assume that M has Krull (resp.Gabriel) dimension .

Then for any ordinal «3 0. 7 (i) is a graded susmodule of M.

Proof: If n is a natural number, ny1, let % =2 / n%
and conzicder R with a graduation of tyre Z}.

We denote by('Z&(M))g’n

the emzllest graded submodule of i
which contain.'zi(m) when R and M ceing considered with the

graduation of type Zn.

By Corollary 2.2, we have () = (Z;(m))g'n for any n = 1

Let now x ¢ €, (M), we can write

XE e Xn(q_l) + X teestX, , where x~s"'°’xb""’xt

are the homogeneous components of x in the initial graduation

4
'

of iy, Ul = @ M,. ¥e remark that for any n- stt, X_g9ece9Xgrees

ie %
ceay xt,Aremqin also the homogeneous components of X if M is

considered as a 3 -graded module. Since in this case Z (%) =

= ('ZK(M))g'n y Bhen X __geeey Xi € (Z;(M))g’n and therefore

- ?
X _reeesXy € ¢ (M), Thue Z;(M) is a graded submodule of il.

For to give another application we recall the definition of the

nGarriel filtration" on the category R-mod (to see [5] ’ Pig.3 ).

Consider the localizing subcategories of R-mod and the
ol

canonicall functors Qx ¢ R-mod — R-mod éAL defined recursive:

as féllowsi;ﬁé = 2101 - Tb = identity functor on R-mode. If o

is not ‘a 1limit ordinal, VAL\iS the smallest localizing subcategor

28

containingn all R-modules i, such that T _,(l) has finite lengtl
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If ( is a limit ordinal /4 is the smallest localizing subcate-

gory containing \\’LAP'
Pl

Ifia modulel&€/4xfor'some o sy We recall that we say that i
has Gabriel dimension and on this case Gavriel dimension of I,
G-dim M, is the least such A .

e denote by F. the Gabriel topology associated to the

localizing subcategorx#; i.e.
KL
é%«xf

Corollary 2.4. Assume that R =@ R, is a G-graded
ce G

R/I

EL = {I left ideal of R

ring where G is a finite group.
1f ICF, then (T)cn e, F _ has a cofinal system of
(o]

left graded ideals.

Proof. Since I ¢F,~ then G.dim R/Iéxf. By Theorem 2.2

we have G.dim R/(I) = G.dip R/I and therefore (I) ¢ F
fog o
&

Remark. 1) If the group G is infinite the corollary 2.4
is not true. Indeed we comsider the gradeZ ring of type %.
Let R = K [?, X"1] be a Lzurent polynomials ring where K is a

field (deg X = 1) with the grading

Rn =‘{aXn')a.éX' for any ne Zf

It is obviously that R has two graded ideals {O% and R.
On the other hand R is noetherian with the Xrull dimension
K.dim R = 1 (hence R has also Gabrisl dimension and G.dim R = 2),

We observe that in thic case we heove
)
Fl = {I ideal of R \ Godim R/I & 17 =
= {I ideal of R.\ K.din R/I = O% ='{I ideal of R R/I

has the finite length:ﬂ



ooy

If I&F; then (I)g = {0% and it is ovviously that { OZ§[F1.

2) Asoume that R = & R, is a 4-graded ring and M = & M,

a7 2 i€z
is a graded R-module of finite support i.e. Supp(l) = éiééﬁ\

o,

W £ OXis a finite set.

Then the assertions from Theorems 2.1 and 2.2 remain holds for
a submodule N of I,

Indeed there exist a natural nombre n>1 sueh that o nonzero
homogeneous composants of M remain homogeneous composants

of M when conuider M and R are considered as graded rings

gy o T
of Jype 25 Z/n 5 °
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