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Group cohomology and cyclic cohomology
of the cross-product

by Victor Nistor

Introduction

In [6] A.Connes introduced the "cyclic cohomology groups“
of an algebra A over €. Connes original motivation was the existence
of a pairing with K-theory [5],[6] . It is clear now that cyclic
homology has important applications also to other branches of
mathematics such as ring theory and topology.

The purpose of this paper is to study the cyeclic cohomology
of the (algebraic) cross-product A x4 G of a unital associative
algebra A (over a field of characteristic zero) y}ﬁh a discrete
grdup G. Oursinterest in this problem is due to the fact that it
may give hints for the computation of the K-theory groups of
cross-product C -algebras.

.Good results are dbtained when the group G is torsion free
and the class Eh of the extension O—a%&1~»(ﬁf—>Nh-—>O in
H2(Nh;Z)Q§ k is nilpotent. (Here we have denoted by Gh,for h & G
the centralizer of h = the largest subgroup of G containing h in’
its center). The cyclic homology groups of A X G,denoted by
HCL(A)« G) ,decompose naturaly as a direct sum of two subgroups,
called "the homogeneous" and "the inhomogeneowys" parts of HC (A X G).

The homogeneous part can be obtained from a spectral seguence

2
EPrq p+q

part vanishes after inverting S. These results were obtained in the

= HP(G,HCq(A)) convergent to HC (A >] G). The inhomogeneous

topological situation,for G =% ,by Nest {15] :



Fbr general G but A = k and trivial action,thus for group rings,
the computation of the cyclic homology groups of A G =]<[(3]
is due to Burghelea [3] .

The free groups satisfy our consitions. (See [é] for othér
classes of groups satisfying this condition,) In this case our
results are compatible with the results of Pimsner and Voiculescu
[16],[17] and suggests that for a large class of groups the)\—part
of KEEP(K—§FE) is obtained from a convergent spectral sequence
. = Hp(G,KtOp(A)). Here KEEP denote the topological K-theory

P.q a
functors,see[;] and A X4 G is the completion of A X G with respect

with E

to a suitable C*—norm. Kasparov succeeded to prove this for groups
having a "special manifold" as classifying space? We expect that
our spectral sequence will give more insight iﬁTKasparov's spectral
sequence. We also mention that results of Pimsner [18] also suggest
connections between the homology of G and the K-theory of the
cross—produet. T C aét on a tree X [20] with a tree as fundamentai
domaiﬁ,then the periodic cyclic cohomology.of A X G satlsfies a

six term exact sequence analogaus toO Pimsner's exact Ssequence,

see ‘theoxrem 2.7.



In this section we shall recall some definitions and results

to be used in the sequel. We also fix our notations.

1,1 Recall that in [7] Connes has defined the notion of

cyelic object in a category M. A'cyclic object is . a simplicial

object (X) in J{ with an extra structure given by an action
n‘n> 0 =

a distinguished

of Zn+1 on the n-th component. If we denote by tht

éenera.tor of Z then the following identities must hold for t,

Thstill

the face and the degeneracy Qperators di:Xn-—ev Xn-l’ si:Xrl-——)Xn+1

0= i< n; the simplicial ldentities [14] :

(S1) dyd=dy @y o f <9

(82) Sisj = Sj+lsi bk
sj-—ldi )

(S3) disj = 1 1= = g
sidi-l 1iz= gt

and the cyclic identities [7] :
‘ € a I <<€ n
(C1) 3 ‘(n 1-1

i =
des et S
l dn i=20
(c2) o e S
AL o Pl t2 deiin
n+2 °n
n _
(C3) £

One can immediately see that a cyclic object is a contravariant
functor A—»_{{. The explicit definition of A is given in [7j
[
This agrees with Connes’ definition since /‘\ is isomorphic to

/\opp due to [7] lemma 1,



h

 to a unital associative algebra A over a commutative ring k [7].

1.2, The main example is the cyclic object A" associated

It is defined by A = S el @) and

d (a - ) - (ao,.-.,a al+l' c.n,an) 0 Sig n"l
i 0,’...’ a2 )
b (a ndgragrecord, ;) i=n
si(ao,...,an) = (ao,...,a il al+l,...,an) 0 £i<n
n+l(ao,...,a ) = (an’aO""’an—l)

(we have denoted a, Ggehga...QQan by (aO’al"‘f'an))'

The identities B81-C3 are easely verified.

1.3 TE - (Xn)n > 0 is a cyclic object in an abelian
category its Hochschild and cyeclie homology are defined as follows.
5 . o -4
Let B,O:Xn~——>xn_1 be given by8='%: (- l) d anda ;‘( 1) d
Then HH*(X),the Hochschild homologyrgf X,is the homology of the
complex (X D) Lkt = l—(—l)ntn+l, NE = Z%Z(‘l)niti+1'

4 =0
Define then as in [j7] and (13] the double comp lex

B:Cyy() = x5, 1,330 ,33
I e
(X)éﬁc (X)zﬁ—c (X)<
2p,] 2p+1,3J 2p+2, ]
d | -2’ |2
bo. | ;

€ N -
o, -1 EEG sy EIE0 o ) <

| ° [ } o

The cyclic homology of X,denoted HC*jX),is the homology of

e

e

the total complex Tot'g'- [7],[13]

Suppose that k is a commutative ring andef{is the abelian
GRS

category of k—module: If M is an object in¢ffwe shall denote by
z L]

M*¥ = Hom_(M,k).
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The Hochschild cohomology and cyclic cohomology of a cyclic

object X in {fare defined by HH'K'(X) = the Hochschild cohomology
Lo

of X the cohomology of (Xn,a Yo Hc""(x) = the cyclic cohomology
\/

Il

Hoor
of X = the cohomology of Tot g [__6],L7] . [13] . We shall denote
e

HHn(AL‘) = HHn(A)p...,HCn(Ah) S HCT ) DfRds s

1.4. Convention., From now on k.will denote a commutative

field of characteristic 0 and all cyclic objects will be k-vector

spaces.,

1.5. For a small category p. we shall denote by k[E] the
free k-module generated by Hom(})) with the obvious k-algebra
structure (without unit in general) (&f) (bg) =(ab)fog if fog makes
sense, 0 otherwise, for any a,b € k, f,g ¢ Hom(}). We denote,as
usualv,byA the simplicial category [/MJ and recall that A CA £7]

Recall also that there exist natural isomorphisms

k [A]

HHn(X) s Tor];(:ﬁCl (X,klﬁ) ,HCn(X) ¥ Torn

(2,577
gE™ (X) Extk[A] Gtk HER (x) ~ EXty paq (XK L7] ;
The morphism k [A]— k[/\] gives, using the above isomorphisms,

natural transformations denoted by I:HHn(X) _>ch(x) ;

el (X) -—>HHn(X). They coincide with the transformations obtained

-identifying the first coloumn of § with (x_,d).

HC*kk) = EXtﬁbﬂ (kb,kh) is a ring isomorphie to kls] ,
the polinomial ring in a generator of degree 2 [7] .

We.shall denote by S:HC, (X)—>HC__,(X) (HC®(x)—>HC? 2 (x))
the product by ¢ using the well known palring Tor*@ Ext* ek To'r?‘é

and Extk@) Ext - Ext El4_]. (The second pairing is the Yoneda product.)



1.6, S may be obtained from the periodicity of the bicomplex

’

g and it fits into a Gysin type exact sequence due to Connes {—61:
G

L S - up
—>HH_ (X) ~=> HC_ (X)—> HC_ _, (X) —» HH__, (X)—>

B

=2 (X) <« HH

n-l(

- HER () HEA e X)

(see also [3],[7], [13]) :

1.7. We shall need also the following lemma of homological

N ue :
algebra,&ﬁ'%s the analog of the Cartan-Leray spectral sequence

‘_Ehjcge.k A

_relating the homology of X/G to the homology of X for a'free G space.

ILf % Y are flltered modules X =L} x v = U Yt
nzo D hzo.
7 v

Xk C Xk+1' Y, < Yk+1 and f:X-—>Y is a morphism of filtered modules
(f(Xn) e Yn,),then we shall denote by ['f = S}?’fn,fnzxnﬂ/xn-_;pYan/Yn
We shall call [ £ the E;raded morphism associated to f.

Lemma Let M = (M_,d) be a complex and € a group operating
| —— et im0 :

on the right on M such that each M is a flat G-module, If M/G

denotes the complex (M_ ®G Z.,d 1) then there exists a homology
2

=
Bl P g

If N = (Nn'd)n > 0 is an other such complex and

spectral sequence with E (G,H_(M)) convergent to Hp+q(M/G) .

f:M—> N is a morphism of complexes,commuting with the action of G,

then f defines a morphism of spectral sequences such that Epmq(f)
4

is the graded operator associated to H +q(f):Hp+q(M/G) -—-) H +q(N/G) 2

P p

A similar result holds for cohomology.

" A proof is giwven in [2] .

1.8, For later use denote by fﬁn(G) the freeZ -module

generated by'symbols I:go, o ,gn] with g, ¢ G.
s A —— - :
Let di[gO"”'gn] = [go,.o-’gi’.c-’gn’ﬁ’si(‘go’.a,gn}r—'[go,.ol,gi_?ioo]

,...,gn'l .Pﬁ(G) is a free left G-module if we let



9[90"“’gn] = [ggo,,,.,ggn] o nT(G) ,0) is the standard resolution
of the trivial G-module Z [14} . We have adopted the convention that
/g\i means that 95 is omitted. )lB;nT(G) has an obvious action of

Z‘I‘H‘l ’ tn+l[g0100'lgn] = [gn,go,-..,gn_l} making /3*(G) a right
k[A] module.,



2,

In this section we compute the homogeneous part of the cyclic
homology of the cross-product and give a simple proof for the
nilpotency of S on the inhomogeneous parts,under the hypothesis

that the normaliser has finite homological dimension over k.

2.1. Let A be a unital associative algebra over a field k
of characteristic 0, Suppose that we are given a discrete group G
acting on A by unit preserving automorphisms {:G —s> Aut (A).
We shall denote by B = A X G = the algebraic crosé~product of A by G.

Vs ViR

Tt consits of finite sums ZZag ug and (aug)(buh) = agqu(b)iugh

for any a,b & A,g,h €aG.

2.2, 1f € G, denote by Gh = %g G G,gh = hg} = the centraliser
of h in G and G /Zh = N, = the normalisep of h. Let {G) denote the

set of conjugacy clésses of G.

2.3. If x € G , define L(A,G,x) by L(A,G,x)n = the
k-submodule of B, generated by those (aO’al"'?’an’gO’gl"‘°’gn)
.such that 9991+°+9, € % Here (ao,al,...,an,go,gl,...,gn).&ﬁin&@ ?%Q

a a e s (3A_U .
Ou‘9’0® lu9’1® = 9n

”:‘_»EB TR C ),

: - b
Lemma L(A,G,x) is a k[ﬂ] submodule of B and B
xe{G)>

Proof. Obvious.

We obtain the following theorem:



2.4. Theorem Hq%(B)iB QE HE (L(A,G,x)),
T > 2 2%
x €G)

ucXmy ~ T1 HC%(L(A,G,X)).

xe(G)

Proof. Obvious.

) The part corresponding to x = {e:}will be called ,"the homogeneous
b
part", the other part will be called "the inhomogeneous part".

2.5, Fix x€{G)> and h¢ x . We define now a"simply connected
covering" of L(A,G,x),correspondingAto the covering EG -—> BG.
For A = k and x = {e% it is due to Karoubi [10].'For A = k and
general x it is an "algebraic" alternative to the topological
reasoning used by Burghelea [3}.

Leb B.(2, 6.0} be dorined by L(a.E,h) - @0

The covering p:f(A,Gﬁ1)f—9IJA,G,x) is defined on generators by
D, s o) ux;i(aO),a;;(al),...,ogrll_lmn),g;l R s

~v
Define on L(A,G,h) the operators dO,sO,Tn+l‘by
dO(aO""'gn) = (aouh(al)’aZ""’an’gl""’gn)

So(aol'---rgn) = (aO'l’al""’an’gO'gO’gl""’gn)

i

=1 =1
Tn+l(aol"'lgn) (anrc’(h(ao)ralr-'-lan_lrh gnlgol-"fgn_l)

Define also a right action of Gh by

=i =1 =i =
g(ao’uuorgn) =F(O<g(a0)’--o,0<g(an)lg gOl'-clg gn)

L(A,G,h) becomes a free G, module.

Aiag s ms e et

let dy =4 85 L ., + 5 Nt 20 snel 7

N



=0 -

The explicit formulae -are -

A =
di(aO"culgn) = (aO"'.'aiai-}-l"'"gn'gO"”"gi"”'gn)‘ l&lén*l

’

(i.e. 94 is omitted,see also 1.8.)
dn(aoln-u’gn) = (arlaol...’an_l’go’...'gn—l)
si(ao,...,gn) = (ao,...,ai,l,ai+l,...,an,g0,...,gi,gi,.,.,gn)

One easily verifies

Lemma a) The operators di,si,T satisfy (S1) teo (C2),

n
- =
b) Tn = h,
c) gd; = dy9,9s; = $;9,9T, = T 9,

d) Pdi = diPrPSi = SiP‘ran = tnp,

N
e) p factors to give an isomorphism L(A,G,h)/GK¢L(A,G,x)l

2,6. The previous discussion shows that f%A,G,e) isra right
k[A] module. (e is the unit of G). Moreover L(A,Gee) = AnQ§F3n((G)
and the face,degeneracy and cyclic actions are those comming fiom

factors. This gives the following

Theorem There exist homology (cohomology) spectral seguences

: 2 ;
with E (Ez)—terms given by EH;’q = HP(G,HHq(A)),

25 Psd _ D q Pyd - P q
Ecp,q = H‘P(G,HCq(A)),EH2 = H* (G,HH*(4)), EC2' = H* (G,HC?*(a)),

which converge to HHPQL(A'G'iej))s

HCFZ(L(A,G,{‘eg)),HH”'?L(A,G,geg ) BT AT (8,6 50 ,ﬁmo‘w(ﬁ'uﬂza



and E- (S):ECc s EC

=0 -

The morphismsI and S define morphisms EY I):EH Ecr
: : P Dol S Eed

& r'—'o,l,...,oo

p q P.q P,g-2
such that Ep (I) and Epag(S) are the graded operators defined by I

and S of the Connes' exact Seducnce of L(A,G {e} A similar

Statement holds for the cohomology.

Proof., Everything will follow from lemma 1.7. applied to

(L(A,G,e),d) or to B(L(R,C,c)) provided that we prove that

¢:Ah~9jf(A,G,e) defined by AH‘B (80""’an)"%P‘aO""’an’e""’e)(%

E}A,G,e)n gives G-isomorphisms HH*(A)~%>HH*(fXA,G,e)),...,HC%KA)ﬂQ

3w s
A' , L]
HC™ (L(2, Gre)) homotopy

Con51der the follow1ng commutative diagram:

h ¢

A > L(A,G,e)n

. |

@ A ep,©

i+j=n

Here f is the Alexander-Whitney morphisn1[i41 and

4/<a0,...,an) = (ag,..va )@ e e A:®;30<G)

The awgmentation ¢ :ﬁ%O(G)~a2ﬁ +€£[9] = 1 gives an isomorphism
HO(FZJG))CBZZ the other homology groups vanish. It is easy to see
that %’induces in homology the product with the generator of
HO(E%(GY) and,since k is a field, gives an isomorphism in
homology [141 « Since foalyes o quasiiéomorphism {}4] (i.e. an
isomorphism in homology ), it follows that<P is also a
qua81lsomorph1cm This qua51lsomorph1gm commutes with the action
of G since the class of (ao,...,an,go,...,gn) in HHﬂjL(A,G,e))

depends pnly on (ao,.;.,an).
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This is enough to conclude that HC%(?) is an isomorphism
since due to the spectral sequence of Loday énd Quillen relating
HH to HC, [13] , any morphism'of eyviclie modules‘which gives
isomorphism for HH, gives isomorphism also for HC,.

Unfortunatfely this gives no precise result about

a ;25 Wv i Ld ‘
HC*(?)g - gHC*(?) ;, 1t gives only — "its graded eoperator
However this argument suffices to show that

gan
of °g G G. Obgerve that we have to prove that

) kq S ~€>(g,g,...,g)(jF3n(G) glve isomorphisms 1ndependent

?@ A 2 (ao,...,an)-—%(ao,...,an,gg...,g)(5 Ln(A,G,e) satisfies
HC (? ) = HC_(@). We shall use here a theorem of C.Kassel Ll%}

* 19 *F )
Theorem 2.4,Denote by 0 the cotensor product over the coalgebra
HC%(k) = k[u] with commultiplication u—->u ®1 + 1 & u. Kassel's
theorem shows that if X,Y,Z are cyelic modules and - Qézn
with induced diagonal k[f& structure then there exists a natural

isomorphism

0 ~-9C0tor};[:€Ll (HC, (Y) PHC,, z2))—> HC (X) —HC_(Y) O HC,(2) >0

S

(Coter: is the fixst derived_functor ofd) see also [4] 5

§ oo h
: An = An(g;kn and

1

We use this exact sequence,for A ,Ah,k
~u Heo A~ et ' -
L(A,Ge),A , BUG): L(A,Ge), = A ® fﬁn(e). In fact we vnmw(g AL,

since
?

Hc¥ﬂjg) does not depend on g and the Cotogrgroup vanishes,that also

| H
its naturality for (id,jg):(A;,kh)_»y(A ,FiﬂG)). We obtain

\ HC*($5) = dd i HC, (jg) does not depend on g.

Adgtho;
For cohomology we = universal coeficient theorem.

2.7. Let us turn now to the case h # e.

Denote by M, the complex (Mh)n = 1Dl with differential

o n ’ o 3
d o do-dl+--o+(-l) dn' do(ao,.-.,an) T (ao%(al),azy.--l%)o



and

= et

Oné can prove as in theorem 2.6. that HH*(E(A,G,h))#H%th).

If h acts trivisl one caﬁproceed further as in theorem 2.6,

ol
It seems,in general, that there is no connection between HC*AL(A,G,h)]

HT%UUhHowever one has’ the following lemma.

Lemma. The inclusion L(A,Gh,{hg)vﬂ>L(A,G,x) induces

isomorphisms for both Hochschild and cyclic homology.

2

Proof. We observe first that there exists an inclusion

'E(A,Gh,h)weQE(A,G,h) which induces isomorphism on Hochschild
homology since HH*('I‘:(A,Gh,h)) 2 H_(4,) = HHy(L(A,G,h)). Then ,

using lemma 1.7. we obtain that HH (L(A,G,,§h3)) = HH  (L(A,G,x)).
The‘other isomorphisms follow from the spectral sequence connecting
Hochschild to cyclic homology [13] and from the universal coeficient

theorem.

Suppose that G acts on a tree X without inversion Suech that
it has a tree as fundamental domain [20]. Let Y = é}%. Denote by
GP and Gy the stabilisers of the vertex P G X0 and of the edge
% G;Xl. Identify Y with a subtree of X [20]. Then there exists a

six-term exact Sequengg connectiq? the periodic cyclic cohomology
4 )

Cem(HC*(A), S

y e,

of ‘B , denoted PHC%XB)'with the periodic cyclic cohomclogy of

A X Gp and A X Gy with P G:Yo,y G;Yl. Our notations are taken from{édz
Theorem a) There exists an exact sequence

5
P puccVen (a xq c s PructVe? (a Gp)<:——PHceven(A A G)
i

y ey l pey’ ?

PHC%%(a X 6) > @ Puc®(a x ?p’“&GQ PrC®%% (a o

pey® yey!



S -

b) There exists a subgroup Qh < ch (A >4 G) such that
Qn + ker S = HCn (A A G),SQngz Qn_2 and an exact sequence

A dual statement holds for HCM (A A G), (Here Yl+ is the set
of positive oriented arrows of Y).
"H?’(Q §

The morphisms are induced chlusion/A bl GP——>A'><1 G,

A A G,—> A G, if P = t(y) and by the opposite if P = 0(y) as in[zo']

Proof. Let h & G.Suppose that Gh contains no conjugate of an

element in GP'P G—YO.Then Gh acts ‘free on X and lhenee s a free
group [éO].Since h is-eentral # e in G, it follows that GhefZi
It follows that L(A,G)(h>)§; ker S (lemma 2.8.) .<h) stands for the
conjugacy class of h in 6.

If ggpg_lé: Gy:.and gg G;GP it follows that g, commutes with
g_lhg and hence g~1hg = (IZO} 4.5, theorem 9) This shows that
we may suppose h e-GP.Let Yh be the subtree consisting of those
P 0 and y &€ vl such that h G—GP and h G,Gy.Then NP,h = (GP?h/éfa

and N

Nh = (GY)@AZﬁ,define a graph of groups and N, = Gh/ﬁiﬂ,is
easely seen to be isomorphic to the fundamental group 6f this
graph [éO].

Define Qn ==}<$?&)é L(A,G,x)
p
Cladim Tf M = (Mn,d)'is as in lemma 1.7. then there exists
an exact sequence
> H . (G -wfry(é}YH H (1/6) ———}-P%HYO H (M/Gp) —H_(M/G)—>

Proof of the claim: The tree X has an obvious simplicial

structure:it is a CW complex of dimension 1.Its homology is computed

Ias'the homology of the complex O«w9C%X).“gyCOX)->0“Cl(X) is the

1+

free abelianvgroup on X and-co(x) is the free abelian



a5

group on XO. The tree is acyclic and hence we obtain an exact

sequence

0

0-scltn el 7 50

Since each Mn is projective as G-module we obtain an exact
sequence of complexes:
Sl 0 .
0-> M®C (x)-—>M®G € (%) =M . Z 0
The lemma is nothing but the long homology exact seqguence

of this short exact sequence of complexes.

*End of the proof of the theorem: Let h & Gp. The inclusion

L(A,GP,h) C L(A,G,h) gives isomorphism for Hochschild homology as
follows from the discussion in the beginning of this section.
It follows that the inclusion of cyclic objects
L(2,Gp,h)/ ¢ h~—-—;°L(A,G,h)/Gh also gives isomorphism for Hochschild
homology and hence also for cyclic homology (use the spectral
sequence relating HC,to HH,) .Using the same argument it follows
£ s NYere s 4 < S 3 I
that L(A,GP,(h,) _}(L(A’GP'hyZﬂkad“7(L(A'G 'h)ZZﬁ)NP . give

[} 14

isomorphism for cyclic homology.Then use the claim for Nh acting on

W/
the Connegcomplex of L(A,G,hb/ h.The corresponding long exact
iy
sequences for all x &€<{G> containing at least one h & G_ for some

P

E’é.XO build up the exact sequence of the theorem,part b,in view of
the preceding isomorphisms.

Part a) follows from part b) using the exactness of lim.

2.8.As anticipated in the proof of theorem 2.7. it may happen
that S is nilpotent on certain components HC%(L(A,G,X)),X:€¥<G>,

It turns out that this is related to the cohomology of Nh’
‘ The next section contains a more detailed analysis of this phenomenor
. Here we content oufselves to give a short proef to a particulazr

case of theorem .3.



Proposition Suppose that h E:x_is torsion free and that

Nh has finite homological dimension over k. Then the S operator

of the Connes exact sequence of L(A,G,x) is nilpotent((.e.fﬁzw
ety meiN Auwel Gl V=0 ). '

Lemma If G =2, h= 1 then s = 0.

Proof of the lemma  Consider the bicomplex

' -2 -D
T2 y V< LA, 4 1) S

n+1
\Ll"('l) Lo Ll'('l) L

) v d v o
AML(AIZ* Il)n<““'L(A,E l)

n+il
The homology of the total complex is HC (Lln, Z ;31 )0,
It follows that there exists a commutative diagram

: w2
HH (L(a,Z,1))

gty

HH (L(A,Z,§$1%)) ————->H(‘ (L(AZ,415))

g being obtained by identifying the Hochschild complex of

P

L(A,Z,1) with the bottom line of the previous bicomplex., It follews
that g is an isomorphism since the top line is acyclic. This shows

that I is onto and hence S vanishes.

Proof of the proposition, 2As in lemma 2.7.1

L(A,2Z,1) .-af(A,G,h%?‘aﬁ_ induces isomorphisms in both Hochschild
and cyclic homology. This shows that S = 0 on HCX(L(A,G,h}QZﬂ).
Note that i%A,G,h)ézﬁis %ndeed a cyclie objeect. Since

L(A,G,x) (EQA'G’hbéiﬁ%/Nh it follows from lemma 1.7.

that HQx(L(A’G’X)) has a filtrationeiuch that the graded operator
of S vanishes. The length of this fiygétion is'at most the

homological dimension of N, over k and hence S is wilpotent.



In this section we make a more detaliate discussion of the
action of S on HC*(L(A,G +%X)) for h& x torsion free. It follows
that HC%(L(A,G,X)) is a module over H™ (Nh,k) and we identify the
action of S as the multiplication by the class of

0—=>Z hmeGh—aNh—sz J_nH (N k).

3.1. Define the category A %W G, to be the opposite of the

category having (/Bn(G)) as objects and as morphisms all

n e
compositions of di'si'Ti and g (o & Gh) OF 2.5 fop A=l

Note that A X G, contains the category ARG, If we denote by
(N ')th) /3 (G)opp the n-th object ofA)<lGh then the group of

automorphisms of (A A Gh)n is generated by T and G_ and is

n+1 h

determined by the following commutative diagram with exact rews:

0—-?2.——->G N

0 = Z, —Aut (/\)‘iG ~—-}N -0

It follows form the definition of A4 Gy, and[ }, lemma 2,
that every morphism 7() in A X Gh can/be u{llqueiy wrltten as YDO(FI
with ({)O €A and ‘{’16 Aut(/\XlGh)n for SOme?:

It is obvicus form the definition that EJ(A,G,h) has a right

k[/\ b Gh] =structure.

3.2. Observe that there exists a functor AAG —/\

defined by (/\xxGh)n;s;/\n,di ~—>dys Sy —>s

i T — ty and Gp —» 1.

1k e n
This gives a morphism of k-algebras k[/\ A Gh-]v—? k[:/\] o
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Let M be a k[/\x]Gh] module, using the above morphism we

: . ¥ %
define a transformation of functors TorZPA>QGh](M,kl*)-;>
s 3 .)‘: o2 '." :
TorkU”th](yyb ,kh ) —> Tor#ﬁAJ (M/% ,khy. We denote by f0 this
* h ey h

composition. Note that %/é is a k[A] module.
h

£

% - b o : Do >
l'Eth[k] (MG k) —> Extkg)qGH](M,ﬁs is defined 51mllanf1y.

h

- Lemma Suppose that M is a right kﬁrﬂGh] module which is

projective as Gh module, then foand f1 are isomorphisms.

Proof. The general strategy for proving this is that used foz

prooving the uniqueness of the derived functors. We show that :

i

a) fo and fl are isomorphisms for Tor, and Exto;

0

b) the functors satisfy long(co}-homology exact sequences;

c) fO and f1 commute with the connecting morphisms of

these exact sequences;

d) the category of right kEAXQGh] modules ,projective as

Gh modules,contains the kernel of each epimorphism;
e) £, and £, are isomorphisms for free k@?ﬁGh] modules.

With this in mind everything is simple.a) is an obvious computation.
b) and c) follow from definition ,the proprieties of Tor,Ext and
of the fumetor of changing the ring [1{]. d) is a consequence Of
the projectivity. kJAX G '~ Kk[al as kla] right modules.

(726 Y/, ’_ (4] [A] . .
It follows that for M a free q0%3Gh] module,%/Gh is a free KLA}
module and hence both groups are 0 for ¥ >0. This proves e) and

concludes the proof.
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3.3. Let us contemplate the following commutative diagrams

(denote H}x&Gh] by R, k[Al by: Rj)

o :
=, i ) ® Extd h - )»»Torﬁ_p(M,kh%)
T & loe T i
Ro L e Ro “x
Torm (M/G k)R Ext O(k Wk )-—>Tor WG

ExtE(M,kh ) @ Extp(kq kh) — Ext"7P (i, kk)

£.®¢ | ‘tfl
. ok e+ i
Bxts Extl (k,k) —Ext™'P M/, ,k )
ol @ S0 e e

Here M 1s &a right R module projective as Gy -module and
\ : v
it ExtR —>ExtR isdefined using R -—> Ro.
g = b % w bx b
It follows that Tori(vf,k )-has a right ExtR(k 'k )-module
structure and that the action of S is obtained via the

multiplication with the image of crc k[%jfv

(kk1 ,kh) b ExtR (kh’

0 .
O___ROpp since /\ is isomorphic to A\ oPp L7],lemma 1).

fyx
K )v—>E £ (k ,k ) (we used the fact that

The same is true of Ext.

. b 5
- 3.4, Weiare left with the determination of ExtR(k Sl

) A
and ' the morphism EXtRO (kh,kh) — ExtR(k k)

It is well known that

b kh

* hax
EXtR (k ’ i

: o
) o B (B(WAG,) k) & H (B (xG,) PP, k) & Bxt (K , k|
[19]. Here we have denoted by B(AMGh)_the classifying space of
the =small category/\leh [9], see also l‘ 19].

Consider the following commutative diagram of categories and

functors



Lo N

AX Gy V>A
el
Nhé‘-/'\){\Gh ——»’l‘;’/\

BA is contractible, BA = Pm(@) = BS1 due to [7_], theorem 10.
B(AxGh) = BAXBGh = BGh.Ax Gh —> Nh is defined using the morphism

& Nj - SD is given by ?((/WGh)n) = % , the unique object of Ny
if (€ Hom((AG,) , (ANGy) ) write P =@, with @ & Rut(AXG),,
({)OQA and let P((P) =‘rr(<l)l>.

3.5. Lemma S) gives a homotopy equivalence B(/\>1Gh)-——5> BN, .

Pfoof. Recall [19] the definition of the category-)é\f'.
Its objects are pairs (n,t) , n€E N, t éNh. X morphism (n,t) —> (m, o)
is a morphism(F: (A)th)n~-~>> (Ax\Gh)m such that JO(({))t = s.According
to [19] , theorem A , it is enough to show that-}&\JC' is. eentractible
fite. B(,se\)o) i< contractible).

Lek j :/\}QZ->9<\9 be defingd by j(/\fiz;)n = (m,e)', j((f’) =
(1 is sent to h). A left adjoint of j is defined by 3 (n,t) = (AWZ),;
lette : Ob(%\f)ﬁ Aut(/MGh) satisfying Z(n,t) & Aut(/\x]Gh)n,
Wlz(n,e)) —e, Then j%(fﬁ) = Z(m,s)_%{ﬁ‘iﬁ(n,t) for any "f“ (n,t) > (M, S) .
It follows that j is a homotopy equivalence [19_].

BWAKZ) is connected since Hom((/\;dz)n,(/\>ﬁ’é:)m) is not empty. for
any m,m> 0. The homoiogy of B(AX¥Z) with coeficients in'Z is

Zanz] _h . hdA9]
isomorphic to Torz‘r/\néj(Z/_,Z)L’.”fejat us compute these groups.

Let e €Z[AMZ | be the iden'tity of (A1Z) o E =Z’L7\><f"/2jen ic a
projective module. Let () : E,—>E _, be the right multiplication
I -
by @) -1 5 be the right multiplication by
g n=l Nl

Q7]
1—(-—1)'1‘n . The double complex & :



Lo e

\ |
-2 o -9
L En~1'< En ~—

n=1
1=(-1) i 1-(=1)"'T
0 . @ >
S S Fn

b . -
gives a projective resolution of %, over Z;E/\X}l](compare with [:7],

lemma 6 ).
: h
To Z)E/MZ] is the homology of Z ® e that is,the homology of
o tetal chm[?% ardceoctod u,w(fﬁ iz
-1
‘Z‘é—-———Z <———7L 7 <

0 1

744———-[.4——,74 7 <

It follows that Hn(B (AAZ)) = 0 if n =z 1 and hence all homotopy
groups of BAXZ) vanish ( use Hurewich’s theorem [21}). It follows
from Whitehead’s theorem that BANZ) is contractible (21] .

h h

3.6. Theorem EthE\xiG ] kY2 H (I\;h’kt)" ‘
: * K
The morphism Extk[/q k', k') —> Eth[:/\xi Gﬁj(k , k) sends the
generator &~ to the class of the extension 0 —=>Zh — Gh-——»Nh-——_‘-pO

_dn BE (k)

Proof.  The first part follows from lemma 3.5. and the

isomorphism H*('BNh,k) o~ H*(Nh,k) .
The commutative diagram of 3.4 gives, using lemma 3.5.,
a commutative diagram

) .
BN, L > E;LA —po



- 22..

wha'che .
Jx is a morphism of fibrations. ¢ is the obstruction to a lifting
1 ,4 X 2 D : 1
of BA —>»BS~. It follows that q ¢ = %’GH (BNh,Z) = H (BNh,iTl(S ))
is +he obstruetion to a lifting for BGh ~—3> BN, .

Let us compute this obstruction. BN, is a CW-complex,its
low dimensional cells are: one O-dimensional cell, denoted
1-dimensional cells denoted [n], n é':Nh'\gze} ;
dO[nl = dl[nl = 2-dimensional cells [m,n] e Nh\Qe'ﬁ

o - . =l
do['m,n] = [_n] ,dl{m,n] = [mn] ifmn #e , dl[n,n ] = ¥, .
dz[m,n] =[m]. Let? : Np—> G satisfy T(Z(n)) = n, Tle) = e.

A lifting s-en the l-dimensional sgueleten 1s eobtained fyrom

s = ¥, s[n] = [t(n)_] . The cobstruction for lifting s on [m,n]

cotnc1des with the obstructlon of extending shLm n_] 1-—;»
BG, to all of Cm nj It coincide with the class of
= . ] - -1
SlaLm ]l”" (BG,) = G e with Z(m)Z(n)Z(m) ~. It £ollows

that the same cocycle represents both % and the extension

0.>Z—> Gu=> N 0. in H (Nh 2
3.7. We obtain

Corollary HC_X_(L(A,G,'X)) and HC%(L(A,G,X)) are
modules over H'X'(N‘h,k). The action of S corresponds to the

multiplication by g & HZ(Nh,k) , the class of the extension

0-=Z — G > Nh‘—iv 0.
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