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ABSTRACT

We study the lexicographical index of the elements of R*, which we introduce here, and the linear
operators on R™ which preserve the lexicographical order, or the lexicographical index, as well as those

which do not increase or do not decrease the lexicographical index

§0. INTRODUCTION

In some previous papers, we have given applications of the lexicographical order in R® to separation
of convex sets by linear operators [9], surrogate duality in vector optimization [10] and the study of hemi-
spaces, i.e., convex sets with convex complements [11] (see also [6]-[8] and [13], for other applications of
the lexicographical order). In several proofs of these pa\peré, there appears, implicitly, the “lexicographical
index” of the elements of R, which we shall introduce below. :

In the present paper we shall study the lexicographical index (§1), the lexicographical order preserving
linear operators (§2), and the linear operators which preserve (§3), respectively, which do not increase or do
not decrease (§4) the lexicographical index. Iinally, in an Appendix (§5), we shall give some applications of
the lexicographical order to the separation of P convex subsets of K",

Let us recall now some notions, notations and results which will be used in the sequel.

The elements of R* (where R = (—o0, +00)) will be considered column vectors, and the superscript
T will mean transpose. We recall thﬁt z=(£1,...,6,)T € R® is said to be “lexicographically less than”
Y= (m,...;n )~ € R* (in symbols, z <r y) if 2 # y and if for %k = min {i e {1,...,n}l&; # n)
we have & < np. We write 2 <f y if £<ry or z =.y. The notations Yy >rp cand y >p z,
respectively, will be also used. We shall denote by {e;}1, or, in some cases, by {e}}1, the unit vector
basis of R". When {€}}7 is an arbitrary basis of R?, we shall also consider the lexicographical order
on R “in the basis {e}}}”, defined similarly to the above, with = = (&,...,6,)T = i-1t5e; ond
y="(m,....m)" =37 nje; replacedby z= >i=1&ie} ond y= Yi-1mj€; respectively.

We recall that, for any function h:R" — R = [-00,+0], andany XER, the A-quasi-conjugate
of h, in the sense of Greenberg and Pierskalla (2], is the function A] : (R")* - R defined by

R(¥)=- inf hy) (Te(R)), (0.1)
2(5)2A :

where (R"®)* is the conjugaté space of R"; in the sequel we shall sometimes identify (R®)* - with . R”

in the usual way (with the aid of the scalar product). Let us also recall that the quasi-subdifferential of
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h:R"—R at yo€R", in the sense of (2] and [14], is the subset 87h(yo) of (R"™)* defined by
O"h(yo) = {¥ € (B")* | h(yo) = =k}, (D)} (0.2)

For a linear subspace S of R™, we shall denote by St its orthogonal complement in R”.

We shall denote by L(R"), U(R")and @(R") the families of all linear operators, all isomorphisms,
and all linear isometries v :R™ — R® respectively, and by L(R™, R*) the family of all linear operators
u: R* — RF. We shall identify each u € L(R* R*) withits kxn matrix with respect to the unit

vector bases of R" and RF, that is, we shall write

w=(mig) = (61,0, 00), " ' (0.3)

wherer ;o= (my;. . ing )b = u(e}) (j = 1,...,n) are the columns of (mij); hence, for example,
instead of u € U(R") we shall sometimes say, equivalently, that u € L(R™) and wu is non-singular.
We shall consider on  L(R™, R¥) the lexicographical order u >1 0 in the sense of [7], defined columnwise

(i-e., u > 0 if and only if all columns of u are >p 0).

§1. LEXICOGRAPHICAL INDEX

Definition 1.1. a) Let {¢f}? be a basis of R". For any y = Y i=17j€; € R", we define the
lexicographical index o'(y) of y with respect to {ef}?, by

af(y)z{r:;rg geélz,-d.,n}lnﬁé()} if y£0 .

b) In the particular case when {e; 3}t = {e;}7, the unit vector basis of R",.we shall omit the words
ny

“with respect to {€;}7”, and we shall denote the lexicographical index of Y= = }:;‘___1 njej €
R* by a(y).

Remark 1.1. For y # 0, a generalization of the lexicographical index occurs implicitly, in [3],
theorem 2.1; see also [1], § 3.3.

"Given a basis {e;}1 of R®, we have the following characterization of the function o : R® —»

{1,...,n} U{+0co} defined by (1.1):

Theorem 1.1. For a function f:R™ — {1,..:,n}U{+co0} and a basis {e;}t of R*, the follow-
ing statements are equivalent:
1°. B =« the lexicographical index with respect to {11,
- 2°  We have ‘
B(0) = +oo, (1.2)
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B(R™) ={1,...,n} U {+c0}, - (1.3)
BOW) =Bly) (e R, X£0), . @
v, RER, nu<pw > Al) > B). (1.5)

Proof. The implication 1° = 2° is obvious, by the definiton of o'.
28 =17 122 holds, leti 04y — E?:l nje; € R*. Then, since g = v, = Na'(y)-1 = 0, we have

-(lna’(y)l T l)e;’(y) <p y<rp (lna’(y)l T 1)6;’(3/)’ (1'6)
whence, by (1.4) and (1.5),

Blew(yy) = B(=(Inarw)] + Deyy) = B®) 2 B(1narw)] + Deaigyy) = Blehiqyy)-

This proves that
BW) =Bl (€ RO}, , (L)

‘whence, by (1.3), : :
bt ook = B(RE) = Bl .o el . 0). (1.8)

On the other hand, by e, <p/... <y e}, (1.5) and (1.2), we have

Beh) < ... < Bleh) < +00 = B(0). (19)

From (1.8) and (1.9) it follows that

Blej)=3 (i=1,...,n), ' e i)
whence, by (1.7), we obtain
B(y) = Blewy)) =a'(y) (v € R"\{0}), (1.11)
which, together with (1.2) and o/(0) = 400, proves that § = o’ 0

Let us mention separately the particular case {e;}? = {¢;}7, L' = L, of theorem 1.1:

Corollary 1.1. For a function §: R* — {1,. ,n}U{+0c0}, the following statements are equivalent:
1°. B = a, the lexicographical index with respect to the unit vector basis {e;}} of R™.

2°. We have (1.2)-(1.4) and

Vi B €RN  yi<pyp =Py >Pp) . (1.12)



Now we shall give conditions on §: R® — {1,...,n} U{+00}, in order to have 8 = o’ for some basis

{€;}7 of R™. To this end, let us first prove

Lemma 1.1. Let o' be the lexicographical index with respect to a basis {€;1} of R*, and let

b= E?:l 77}6;', Y2 = E?:I 77]?63' € R" be such vthat

o (y1) # o' (y2). (1.13)

Then
o(y1 +y2) = min {/(y1), ¢/ (v2)}- (1.14)

Proof. By (1.13) we may assume, without loss of generality, that
o'(y1) < o/ (12), (1.15)
whence, by the definition of o/, we have y; # 0 and
=0 =1 )1 k=12 : (1.16)

Mo 28 gy =0 : (1.17)

From (1.16), (1,17) and (1.15), we obtain

o/ (y1 +y2) = =i o/(y1) = min {o'(y1), o'(y2)}. "

Lemma 1.2. Let B:R® — {1,...,n} U {400} be a function such that

y,¥s € B, Bw) £ 6(v2) = Blyr +v2) =min {B(y)B:)}. g

Then, for any yi,...,y, € R® satisfying

B(y:) # Bluk) (i £ k), (1.19)
we have :
q
ﬂ(z yk) = 1r<nkigq By ). = 20
k=1 TR

Proof. For ¢ =2 the statement is true, by (1.18). Assume now that it holds for some ¢ > 2 and let
Y1y. .., Yg+1 € R® satisfy (1.19). Then, by our induction assumption, we have (1.20), whence, by (1.18),

ﬂ‘(gyk) | (Zyk +yq+1) : min {ﬁ(kzq: ), ﬁ(yq+1)} =

= min {11}1121 Blys), ,B(yq+l} B(yi)-

<<+1
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Theorem 1.2. For a function 8 : R® — {1,...,n} U {400}, the following statements are equivalent:

1°. There exists a basis {ef}? of R, such that g = o', the lexicographical index with respect
to {e;}7. :

2°.  We have (1.2)-(1.4) and (1.18).

Proof. The implication 1° = 2° is immediate from the definition of o’ and from lemma 1.1.

2° = 1°. If 2° holds, then, by (1.3), for each j € {1,...,n} there exists €; € R such that we have
(1.10). Then, by (1.4) and (1.10), we have

B(Aje;) = Blej) =5 (A #0), : (1.21)

whence, by (1.18) and lemma 1.2 we obtain, assuming that some A; is non-zero,
Elalm e = = i ] : 2
#(304) = #(3204) = gy 5(ut) = gy i<n (122)

Hence, by (1.2), we must have EJ 1Aj€; # 0, which proves that {e}}7 is a basis of R™. Fmally, by
(l 22), (1.2) and the definition of o, we have =o'

Remark 1.2. a) Obviously, (1.10) and (1.2) imply (1.3). Moreover, the above argument shows that if
B:R*— {1,...,n} U {40} and {ej}T C R® satisty (1.2)-(1.4), (1. 18) and (1.10), then {ej}} is a basis
of R" and B = o, the lexicographical index with respect to {e’}7.

b) By the above, conditions (1.2)-(1.4) and (1.18) (or, conditions (1.2)-(1.5) for a basis {e}}? of R™)
imply (1.22) (respectively, ( 10 whence

BR™N0)) = {1,...,n}; g
on the other hand, it is obvious that (1.2) and (1.23) imply (1.3j.
Theorem 1.3. Let f#: R* — {1, cooyn} U {400} be a function satisfying (1.4) and (1.18). Then

B(ys +y2) > min {B(y;), B(y2)} (¥1,92 € R™). (1.24)

Hence, B is quasi-concave and upper semi-continuous.
Proof. By (1.18), for the proof of (1.24) we only have to consider the case when B(y1) = B(y2). Assume,

a contrario, that B(yi+y2) < ﬁ(yl) = B(y2). Then, by (1.4), we have B(yr+y2) < B(y2) = B(—y2), whence,
by (1.18), we obtain '

Bwn) = B((wn +32) + (30)) =min {81 +12), A1)} = s +32),
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in contradiction with our assumption. This proves (1.24).

Furthermore, by (1.24) and (1.4), we have

B(dw +(1~ )

v

min {B0w), B((1- M)} =
= min {8(n), AW)} (v e R",0<A<1), (1.25)

so B quasi-concave.

Finally, by (1.24) and (1.4), for any ¢ € R we have
YLy € B, B(11),B(y2) > ¢ = By +12) > ¢, (1.26)
YER®, fy)2c, A#£0 = Bhy) >, (1.27)
VER' = PO =Ay+(-w) 2 min {f) A-v)} = min {B4), AW} =pG),  (128)
whence (1.27) remains valid also for A = 0. Thus, in this case, each upper level set
{yerr l» By) > c} - (1.29)
1s a linear subspace of R™, whence closed, which proves that £ is upper semi-continuous.

Corollary 1.2. The lexicographical index B=cao:R" — {1,...,n} U {4+c0} with respect to a basis
{e;)? of R™ satifies (1.24) and is quasi-concave and upper semi-continuous. :

Proof. By the definition of o and by lemma 1.1, # = o satisfies (1.4) and (1.18), so theorem 1.3
applies. u

By corollary 1.2, for any basis {e;}1 of R, the function h = —a’ is quasi-convex and lower semi-

continuous. For notational simplicity, let us consider only the case e} =le)i e e
s (1.30)

The following two propositions compute the Greenberg-Pierskalla quasi-conjugate {0.1) and the quasi-

' subdifferential (0.2) of h, respectively.

Proposition 1.1. We have, for each ¥ € (R

() = {i(i) z.;f AA;O? (1.31)

where

=, o el Bl & Lo if W= 1y in ) (R ENTD)
5(‘1’)—{_;.“3‘1-?\1,:0_ ) . (1.32)
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Proof. Let A >0, ¥ = ((1,...,(n) € (R*)*\{0}, y=(m,...,m)T € R*. Then

n §(T) _
L= G = > Gui . (1.33)
= $2at0)

Hence, if a(y) > 6(¥), we have ¥(y) = 0 < A. On the other hand, for 4o, =G0, ... .02 € R?
defined by '

{ 0 if j#6(T)

= A if §=6(T), (1.34)

1
Cs(w)
we have a(yo) = 6(¥) and, by (1.33), U(yo) = ('5(@)7}2(\1,) = A. Hence

R(¥) =~ inf h(y) = sup a(y) = 6(T).

T2 V()22

Furthermore, let A > 0 and ¥ = 0. Then {y € R" |\I/(y) > A} = 0, whence R](0) = —inf § =
—00 = (5(0).
Finally, let A < 0. Then ¥(0) =0 > X, whence

hX(¥) = sup a(y) > «(0) = +oo. B
i YER™

¥(¥) 22

Remark 1.3. The “reverse lexicographical index” §(¥) can be also expressed with the aid of the
lexicographical index, namely,
§(¥) =n+1-a(p(P) (¥ € (R™)), (1.35)

where we use the notation

p(qj):(Cm"-)Cl)T : (\IJZ(CD-H,Cn)E(Rn)*). (1.36)

Proposition 1.2. We have
OLR{0y= RE, : (1.37)

and, for any yo = (17,...,m)" € R"\{0},

0"h(yo) = {\II = (C1y---16n) € (R™)* | sign Ca(ye) = sign ng(yo)(;é B Catyign = =G = 0}. (1.38)

Proof. Since h(0) = ~a(0) = —co =min A(R"), we have (1.37) (see [14], theorem 1).
Let yo = (n7,...,m)" # 0. Then, by (1.31), (1.23), (1.33) and (1.32),

0"h(yo) = {¥ € (R | h(yo) = ~h}oy (1)} =

- {\If € (R | Lwo)>0, —alye) = 6(T)} =
5(%)

={T=. @)y | Y G50 Chygn=..=C =0} =

Jj=a(yo)

- {‘I’ =(Cirev16n) € (B | sign Cagyo) = sign Mqyeyr Catyoytt = «vv =Gn = 0}' 7
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§2. LEXICOGRAPHICALLY ISOTONE LINEAR OPERATORS

Definition 2.1. a) Let <y and <z~ be the lexicographical orders on R" and RF, with respect

to bases {¢}}} of R® and {e/}} of RF, respectively. We shall say that an operator u € LR, RY) s
(L', L") - isotone, if '

uy)zpm 0 (yeER", y>r:0). (2.1)

b) In the particular case when {e53t = {e;}7, {e!}t = {eF}%, the unit vector bases of R® and RF

respectively, whence <+ and <p» are the usual lexicographical orders <; on R® and R* respectively,

an (L, L)-isotone operator u € L(R™, R*), i.e., which satifies
u(y) 2L 0 (e s, y>: 0), (2.2)

will be called a lexicographically isotone (or a lexicographical order preserving) linear operator.
The following lemma reduces the study of (L, L")-isotone linear operators to that of lexicographically

isotone linear operators.

Lemma 2.1. Let {e}}?, {e/}¥, {e;}7, {e}}%, be as in definition 2.1. An operator u € L(R", R*)
is (L', L")-isotone if and only if v uv, € L(R™) is lexicographically isotone, where v; EU(R™) and vy €

U(RF) are defined by

vi(e;) = ¢} =1 n) (2.3)
va(el) = el =l b (2.4)
Proof. By (2.4),
k : k
s D Ehl e BE = il SoleE (4 eT (2.5)
=1 121 -

and ilence, for any ¥ € R®, we have the equivalence
u(@) 207 0 = ;' (w(@)) 2. 0. (2.6)
Similarly, by (2.3), for any ¥ € R” we have the equivalence
7200 < vwli(@ >0 (2.7)
Therefore, (2.1) holds if and only if |
vy (u(@) 2 0 (el & @) (2.8)
Hence, writing ¥ = v1(y), vy =v7'(9) in (2.8), we obtain that (2.1) holds if and only if

vy lwvi(y) 21 0 el g 0). (29)
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Theorem 2.1. For u € L(R™, R*), the following statements are equivalent;

1°. u is lexicographically isotone.

2°. u>1 0 and a(u(y)) depends only on a(y). .

3°. u 2>y 0 and there exists a unique mapping ¢y : {1,...,n,+00} — {1,.. ., k,+00}, such that

a(u(®)) = pu(a(y)) wer). (2.10)

4°, u>; 0 and
a(u(ej_l)) +1 < afule)) (=2,0.m) (2.11)

Proof. 1° = 2°, If 1° holds, then, since ej 21 0, we have ¢; = u(e;) >L 0 (j = Lo n); that
is, u >r 0. Assume now, a contrario, that there exist Y1,92 € R* with a(y1) = ofy2) and alu(y;)) #
a(u(yg)); say, Y1 <r Y. Then, by 1°, we have u(y;) <, u(ys), whence —u(ys) <p ~u(y1). Hence, by
(1.12) and (1.4) for 8 = a, we obtain

a(u(y1)) > a(u(ya)) = o(~u(y2)) > a(-u(y; ) = a(w(w)),
which is impossible. This proves that
Y2 € R, a(y) =a(y) = alu(y ) = o (u(y2))- (2.12)
2° <= 3% If 2° holds, then, by a(e;) =j (j=1,...,n) and a(0) = +co, we have 3°, with
Puld) = pu(ale;)) = a(u(e;)) (G=1,...,n), (2.13)

Pu(+00) = pu (a(0)) = a(u(0)) = a(0) = +oo. (2.14)

On the other hand, the converse implication 3° = 2° is obvious.

2° = 4°. Assume that 2° holds, but not 4°, so there exists j € {2,.. .., n} such thz.zt
afu(ej_1)) +1> a(u(e;)). (2.15)
If a(u(ej'_l)) = 400, then a(u(e;)) < 400 and thus u(ej—1) =0 # u(ej), whence
a(u(ej-1 +¢;)) = a(ule;)) # a(ulej-1), (2.16)

which, together with :
a(ej_l +6J‘) =j-1 _—_a(ej_l), (217)

contradicts 2°.

On the other hand, if oz(u(ej_l)) < +00, then (2.15) is equivalent to

a(u(ej-1)) > a(u(e;)). _ (2.18)
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If +o0 > a(u(ej-1)) > a(u(e;)), we can write
uej—1) =ief +..., & £0; u(e;) =veef +..., 1 £0, ' (2.19)
where i > £, whence |
oulej-1 + ;) = alyeel +... + Yieref + (G +yv)ef +..) =t<i= a(u(ej—1)),

which, together with (2.17), contradicts 2°.

Assume, finally, that +co > a(u(ej_l)) = a(u(e; ). Then we can write
u(ej_l) = 5,‘6? Sy b; ;é 0; u(ej) = 7,-6{-“ S 75 0, (2.20)

whence
a(u(——'ﬁej_l +6,-ej)) = a((~7;5;+1 + 6;7,-+1)ef+1 + .. ) >i+1>1 = a(u(e_,-_l)),
which, together with a(—v;e;_; + biej) =j—1=a(ej_1), contradicts 2°.
4° = 1° Assume 4° and let y = s )T >0 0, Jo = a(y). Then, by (L) (for ofi=0), we

have m = ... =m;,_1 =0 (and e >0 whence, by (0.3),
L T
w(y) = (Z M yeeey kajnj) . (2:21)
J=jo Jj=Jjo

If ¢j, =0, then a(cj,) = 400, whence, applying (2.11) successively to j = jo + 1,...,n, we obtain,

Cjo+1 = ... = ¢; = 0. Hence, by (2.21) and (0.3), we obtain u(y) = 0, so (2.2) holds for any y >; 0 with
Ca(y) = 0. '

Assume now that cj, = (myj,, ..., my s 0. Tien, by (L.1) (for o’ = a), and u >, 0, we have
Mijo = +a0 = Ma(e; )-1,5, = 0 and Ma(ej )0 > 0. If cJO+1 = 0, then, as above, we obtain = n=

¢n =0, whence

my; =...= ma(cjo)—l:j =0 (] = jo, ey Tl) (222)

On the other hand, if ¢joq1 # 0, then, by (2.11) and (1 1) (for o = a), we have a(ejo) +1 < ofejoq1) <

+00, whence, by (1.1) (for o/ = = a), we obtain
Mol = vt = Ma(ej)=1jo+l = Ma(ejy)jotl =« -+ = Ma(e;,+1)-1,jo4+1 = 0. (2.23)
Passing to c¢j,42 and continuing in this way, we obtain that, whenever c¢;, # 0, we have (2.22) and

Ma(cjo)g = 0 (F=dot1,..in) ' (2.24)
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But, from (2.21), (2.22), (2.24), Ma(e;o)do > 0 and n;, > 0, it follows that

wy) =(0,....0, Ma(esy) o Mor -+ .)T > 0,

and thus (2.2) holds for any y >r 0 with cqqy) # 0, too. W

Remark 2.1. a) As shown by the above proof, the equivalence 2° <= 3° and the implication 2° ==
4° remein valid for any u € L(R", RF) (not necessarily satisfying u >, 0).
b) By the above, if there exists a mapping ¢y : {1,...,n,+o00} — {1,...,k,+oo} satisfying (2.10),

then it is unique and it satisfies

Pu(i — 1)+ 1 < pu(4) G2 . 1) (2.25)

or, equivalently, ¢, is strictly increasing on ¢! ({1, o ,k}). For a proof of the latter equivalence, note that

if we have (2.25) and j;, j; € 90;1({1,...,13}), J1 < J2, then ¢4(j1) < pu(j2) < +00. Conversely, if ¢, is

strictly increasing on ¢z ({1,... ,k}) and there exists j € {2,...,n} such that Pu(i—1)+1 > @u(j), then

Yu(j) < 400, and hence $u(j—1) = 400 (since otherwise i—1, je 90;1({1,...,13}), whence ¢y (j—1) <

Pu(d) < pu(—1)+1, which is impossible). Thus, by (2.10), a(u(e; —1)) = ¢, (aej-1)) = pu(i—1) = 400,

’whence u(ej—1) = 0; similarly, by ¢u(j) < +o0, we have a(u(e;)) < +oo. Hence, by (2.10), we obtain
pulales-1 +¢)) = alulej_y + ¢j)) = a(u(e;)) < +00 = a(u(ej1)) = pu (alej_1),

which contradicts (2.17).

Definition 2.2. a) For <;, and <rv asin definition 2.1 a), we shall say that an operator u €
L(R™, R¥) is strictly (L', L")-isotone, if

u(y) > 0 (y€R", y>L 0). o = o
b) In particular, a strictly (L, L)-isotone operator u € L(R", RF), ie., which satisfies
u(y) > 0 (W€ R y>L0), (2.27)

wil be called -Iexicographically strictly isotone (or, a linear operator presefving the strict lexicographical

order).

Remark 2.2. u € L(R™, R*) is strictly (L', L")-isotone if and only if it is (L', L")-isotone and one-to-
one; hence, in this case k > n. Since lemma 2.1 remains valid for u € L(R", R¥) strictly (L', L")-isotone
and vy luv, € L{R") lexicographically strictly isotone, it will be enough to consider lexicographically strictly

isotone linear operators u € L(R", RF).

Theorem 2.2. For u € L(R",R*), the following statements are equivalent:



1°. u is lexicographically strictly isotone.
2°. w21 0 and there exists a unique strictly Increasing mapping ¢y : {1,...,n, oo} —~{1,... ko)
satisfying (2.10). :

3°. We have u >; 0 and

a(ulej-1)) < a(u(e;)) <k (3=2,...,n). (2.28)

When 'k —n, thesé statements are equivalent to

4°. uw>1 0 and u is non-singular and lower triangular,

Proof. 1° = 2°. If (2.27) holds, then, by theorem 2.1 and remark 2.1 b) we have u >; 0 and there
exists a unique mapping ¢y : {1,...,n, shoek sl .k Aeo) satisfying (2.10) and strictly increasing on .
go;l({l,...,k}). But, we have now w;l({l,...,k}) ={1,...,n}; indeed, if j € ool vl = 400,
then, by (2.10), we obtain alu(e;)) = @y, (a(e;)) = ¢u(j) = o0, whence u(ej) =0, in contradiction
with 1°.

2° = 3° If 2° holds, then, by (2.10), we have

a(ulej-1)) = pu(i — 1) < pul(j) = a(u(e;)) G

Furthermore, if a(u(e; )) = o0 for some j < n, then ¢, isnot strictly increasing on Y1, ..., n, +o0},
since @y (j) = 400 = a(0) = a(u(0)) = ¢, (2(0)) = pu(+00). Thus, a(u(e;)) <k (j=2,... )

3° = 1°. If 3° holds, then, by the above proof of theorem 2.1, implication 4° = 1° (case
Cio #0,...,¢;, #0), we have (2.27).

1203 = % when k=5, By 1°, w is non-singular. Also, by 1 < a(u(el)) et a(u(en)) <
k =n, we have

a(u(e;)) = j (G =1,....n), (2.20)

so u is lower triangular.

4° = 3°, when k=n. If4° holds and % — n, then we have (2.29), whence (2.28). m

Remark 2.3. a) For k = n,‘ one can also give the following alternative proof of the implication 4° =
1°: If 4° holds and k =7, then we have (2.29), whence (2.11), and thus, by theorem 2.1, there holds (2.2).
Hence, since u is non-singular, we obtain (220 :

b) From theorem 2.2 one obtains again [9], lemma 1.2, according to which, every unitary lower triangular

u € L(R™) is lexicographically (strictly) isotone.

Proposition 2.1. Foreach wu € L(R™, RF)  there exist a basis {e}1 of R and a basis {ell}5
of R, such that u is (L', L")-isotone, :

Proof. Given u € L(R™, R¥), let {ef}{ and {ej}i11  be bases of (Ker u)t (C R") and Ker u(=
{y € R | u(y) =0}) respectively, and let

e =ule)) - G=1,...,0. (2.30)
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Then, since u . 1s an isomorphism, e" ¢ is a basis of u((Ker u)t) = u(R" , 50 it can be
(Ker u) &

extended to a basis {e/}¥ of RF. Then,

) ¢ " '
u(y) = aju(e) =Y azel }; el € RM), (2.31)
=1 g

and hence we have (2.1). =
However, if we require that k = n and {ef}? = {ef'}}, then the situation is different. Let us give

Definition 2.3. a) Let {¢}}} be a basis of R®. We shall say that an operator u € L(R") is lexi-
cographically isotone (or, that u preserves the lexicographical order) In the basis {e; )%, if u is (L', L))
isotone (in the sense e of definition 2.1 a)).

b) We shall say that an operator u € L(R™) is lexicographically isotone .(or, that u preserves the
lexicographical order) in some basis, if there exists a basis {ef}? of R™, in which u is le)ucographlcally

isotone.

Theorem 2.3. For u € L(R™), the following statements are equivalent:

1°. u lexicographically isotone in some basis.

2°. The eigenvalues of u are real and non-negative.

For w € L(R™), these statements are equivalent to

3°. The eigenvalues of u are real and positive.

For v € O(R™), these statements are equivalent to

4°, u Is the identity operator.

Proof. 1° = 2°. If 1° holds, then, by lemma 2.1 (with n = k, {51 = {ef}3, v = w); viluy e
L(R") is lexicographically isotone, where v € i (™) is defined by

v(es) = ¢} G-1. o ' (2.32)

Hence, by theorem 2.1, v~luv is lower triangular, and its diagonal elements are real and non-negative.
Bit, the eigenvalues of v~ uv are its diagonal elements (since v™luw is lower triangular) and they coincide
- with the eigenvalues of u (since u(y) = Ay if and only if v=luv W iy) = 20~ ().

2° = 1°. Assume that u € L(R") satisfies 2°, and let {€j}? be the “canonical” (Jordan) basis of
R?, for which the 1’s in the matrix of u (in {e}}7) are below the disgonal and the ej’s such that u(e}) =0
are the last ones; such a basis of R" exists, by 2° (see e.g. [5], pp. 397-399). Define v = v; € L(R™) by
(2.3) and let A and B be the matrices of u and v, respectively (in the unit vector basis {e;}}). Then,
since B is the matrix of the exchange of basis, B~1AB is the matrix of u in the canonical basis 1e; )i
and thus B-'AB satisfies 4° of theorem 2.1 (since it is lower triangular, so its diagonal elements are the

eigenvalues of u, which, by our assumption, are real and non~negat1ve). Hence, since B~!AB is the matrix

=
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of v"luv in the unit vector basis, from theorem 2.1 it follows that v luw is lexicographically isotone, and
therefore, by lemma 2.1, u is lexicographically isdtone iii the basis e 1.

Finally, for u € U(R") and v € O(R™), respectively, the equivalences 2° <= 3° and 2° «= 4° are

obvious. "

§ 3. LEXICOGRAPHICAL INDEX PRESERVING LINEAR OPERATORS

Definition 3.1. a) Let <z and <p» be the lexicographical orders of R® and R* with respect
to bases {e;}! of R* and {e/}} of R » respectively. We shall say that an operator u € L(R?, RE) iy
(L', L")-index préserving, if

o’ (u(y)) = o/ (y) (y € R™). (3.1)

b) In the particular case when fei}e = {e; 12, {3k = {ef}* (the unit vector bases), an (L, L)-index

preserving operator u € L(R®, RF ), i.e., which satisfies

o(u(y)) = a(y) (v € R™), (3.2)

will be called a lexicographical index preserving linear operator.

Remark 3.1. If u € CERE S BE) 15 (L', L")-index preserving, then v is one-to-one, and hence, in this
case, k > n. Indeed, if y € R", u(y) =0, then o/(y) = a”(u(y)) = a"(0) = +oo, whence y = 0.
The following lemma reduces the study of (L', L”)-index preserving linear operators to that of linear

operators preserving the lexicographical index.

Lemma 3.1. An operator v ¢ LR REY.is (L), L")-index preserving if and only if vy luv € L(RM)
is lexicographical index preserving, where v; € U(R™) and vy € U(RF) are defined by (2.3) and (2.4),
respectively.

Proof. By (2.5), :
o' (u(@) = (o7 (u())) (e R, (3.3)
and, similarly, by (2.3), '
o(y) = a(vy (7)) (FeR"). (34)

Therefore, (3.1) holds if and only if

(6m) =e(m)  gem. (35)
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Hence, writing 7 = v1(y), ¥ = v7 () in (3.5), we_obtain. that (3.1) holds if and only if

a(v7 tuvy () = a(y) ' Wers

Theorem 3.1. Let {¢;}} C R™ be any set of n elements of R", such that

dfe )= =1 )

For an operator u € L(R"™, R¥), the following statements are equivalent:
1°. u 1s lexicographical index preserving.
2°. We have
a(u(e})):j (=tem),
3°. We have :
a(u(ej)):j =1 ).
When k =n, these statements are equivalent to
4°. u Is non-singular and lower triangular.
Proof. 1° = 2°. If 1° holds, then, by (3.2) and (3.7), we have a(u(e?)) =alef)=7 (=1
2° = 3°. DBy (3.7), there exist 77{ € R such that '-

n
e;:Z me; m#£0 (=1 :: 1)

=)

and hence there exist 7{ € R such that
1L . .
ejzzvyfe:-, 73?;&0 G=1.. .n)
§=1
(moreover, this also shows that {e5}1 is a basis of R™). Hence,

u(es) =D Hule)= 3 rufel) G=1,...,n)
= ilvi#o
But, by (1.4) (for 8 = «) and (3.8),

a(rfu(e})) = alu(e}) = @si<i<n o £0)

Thus, by (3.12), (3.13) and lemma, 1.2, we obtain

a(ule;)) = jIE];iénn a(yiu(el)) = min i=j =il )
;{;to -7{;0

Yoo

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

3° = 1°. Assume that 3° holds, and let y = (y,... n)E #0. Then y = E;:a(y) njej, whence

n

u(y) =Y niule;).

Jj=al(y)

(3.14)
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But, by (3.9), there exist 6{ € R such that

n
el e s 8 L0 G=1,...,n), (3.15)

=)
whence, by (3.14),

uy)= Y 1y e (3.16)

: j=aly) =)
Thus, by (3.16), 7a(y) # 0 and 62’8)) # 0, we obtain o(u(y)) = a(y).
Finally, when k = n, the equivalence 3° <= 4° is obvious, since wu(e;) (j = 1,...,n) are the

columns of the matrix of wu. B

Remark 3.2. a) By theorem 3.1, if for an operator u € L(R") there exists a basis {¢;}] of R" such

that
ale) # ale;) (Gyi€fl,...,nki #£14), (3.17)
a(u(e})) = a(e)) =1 ...0) (3.18)
then u Is lexicographical index preserving; indeed, by (3.17), there exists a permutation = of {1,...,n},

such that a(e;(j)) =j (j =1,...,n), so one can apply theorem 3.1 to {c;(j)}?. Condition (3.17) cannot
be omitted here, as shown by the following example: Let y; = (1,1)7, yo = (1,2)7 € R?, and define
u € L(R?) by u(e1) = ez, ulez) = e1. Then alu(y;)) = a(y;) =1 (G = 1,2), but 52 —y = (0,17,
u(ys —y1) = (1,O)T, whence a(u(yg — yl)) =142 =as—4)

b) From theorems 2.2 and 3.1 it follows that, if k > n, there exist operators u € L(R™, R*) which are
lexicographically strictly isotone but not lexicographical index preserving. However, for k = n the situation
is different; indeed, again by theorems 2.2 and 3.1, every lexicographically strictly isotone operator u €
L(R"™) is lexicographical index preserving. Moreover, the above results also show that a lexicographical

_Index preserving u € L(R") is lexicographically isotone if and only if u >y 0.

As an application of theorems 3.1 and 2.2, let us give the following result on classification of the elements

of (R%,<p):.

Theorem 3.2. For y,y’ € R", the following statements are equivalent:

~1°. There exists a lexicographically strictly isotone linear isomorphism u € U(R™) such that u(y)=y'.

2°. oy) = a(y') and y,y’ ”have the same lexicographical sign” (e.e., either y >r 0, ¥y >r 0, or
y=y' =0, or y<; 0, ¢ <p 0).

Proof. 1° = 2°. If 1° holds, then, by theorem 2.2, u > 0 and u is lower triangular. Hence, by
theorem 3.1, u is lexicographical index preserving, and thus a(y) = a(u(y)) = a(y’). Also, since u is

lexicographically strictly isotone, ¥ and ¥’ = u(y) have the same lexicographical sign.
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'2° = 1°. f y =y’ =0, one can take u = I, the identity operator. Assume now that 2° holds and
v,¥ # 0. Then we can write :

n _ n
y=3 e, V=Y nje, ' (3.19)
=l F=4 :

where £ = a(y), nm, > 0. Define u € U(R") by

ules)—e; ; (j:l,...,E—1,£+1,...,n), (3.20)

we) = (rect 3 (0 =n)es). (321)

j=t+1
Then, a(u(e;)) = ofes) =dsamle ) >r g =1 0= 851 ..,n) and, by (3.21) and nemy > 0,
we have a(u(e)) = ¢, u(eg) > 0. Thus, we have (2 28) and u 21, 0, and hence, by theorem 2.2, u is
lexicographically strictly isotone. Finally, by (3.19)-(3.21),

. u(y)_z niu(e;) = nges + Z (771 —nj)ej + Z nicj "277161 —y

j=t+1 j=t+1

Proposition 3.1. For u € L(R", R¥), the following statements are equiva]eni‘:

1°. There exist a basis {e;}} of R* and a basis {ef}} of RE, such that u is (L', L")-index pre-
serving.

2°. u is one-to-one.

Hence, if 1° holds, then k > n.

Proof. The implications 1° = 2° = L > n are nothing else than remark 3.1.

Finally, the proof of the implication 2° = 1° is similar to that of proposition 2.1 (with £ = n, since

’by 2° we have now Ker u = {0}, (Ker u)t = R"). B
Finally, let us consider the case when k = n and {e£}1 = {ef'}7. Let us first give

Definition 3.2. a) Let {€;}7 be a basis of R”. We shall say that an operator u € L(R™) preserves
the lexicographical index in the basis {e;}2, if u is (I',L')-index preserving (in the sense of definition
S a)):

b) We shall say that an operator u € L(R™) preserves the lexicographical index in some basis, if there

exists a basis {e;}1 of R", in which u preserves the lexicographical index.

Theorem 3.3. For wu € L(R"), the following statements are equivalent:

1°. wu preserves the lexicographical index in some basis.

2°.  The eigenvalues of u are real and # 0,

Proof. The proof is similar to the above proof of theorem 2.3, using now lemma 3.1 and theorem 3.1,

equivalence 1° <= 4° (instead of lemma 2.1 and theorem 2.1, respectively). =

/

2l S

/(UJ L
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§ 4. LINEAR OPERATORS WHICH DO NOT INCREASE OR DO NOT DECREASE THE
LEXICOGRAPHICAL INDEX

Definition 4.1. a) Let <z and <p» be the lexicographical orders on R™ and R* , with respect to
bases {e;}7 of R™ and {ef } of RF, respectively. We shall say that an operator u € L(R”, R ) is

i) (L', L")-index non-increasing, if

o’ (u(y)) < o'(y) (v € B™); (4.1)

ii) (L', L")-index non-decreasing, if

o (u(y)) = o/ (y) (veRM); (42)

b) In the particular case when {e}}7 = {e;}7, {e/}} = {e}} (the unit vector bases), an (L, L)-index
non-increasing (non-decreasing) operator u € L(R", R¥) will be called a linear operator which does not

increase (respectively does not decrease) the lexicographical index.

Remark 4.1. If u € L(R™, R*) is (L', L")-index non-increasing, then u is one-to-one, and hence, in
this case, k > n. Indeeed, if y € R?, u(y) =0, then o'(y) >o"(u(y)) = o"(0) = +00, whence y = 0.
The following lemma reduces the study of (L', L”)-index non-increasing (non-decreasing) linear opera-

tors to that of linear operators which do not increase (decrease) the lexicographical index.

Lemma 4.1. An operator u € L(R", R¥) is (L', L")-index non-increasing (non-decreasing) if and only
if v;luv; € L(R™) does not increase (decrease) the lexicographical index, where v, € U(R") and vy €
U(R*) are defined by (2.3) and (2.4), respectively.

Proof. The proof is similar to that of lemma 3.1. u

Theorem 4.1. For an operator u € L(R",R*), the following statements are equivalent:
1°. u does not increase the lexicographical index.

2°. u is lexicographical index preserving. -

Proof. The implication 2° = 1° is obvious.

1° = 2°, If 1° holds, then

a(u(e;)) < ale;) =3 (Gi=1, n) (4..3)

By theorem 3.1, it will be enough to show that in (4.3) we have the equality sign, for all j. Assume not,
and let

L=min {i<nlolule)) <} (4.4)

Since a(u(el)) > 1, we have £ > 2. Let

p = a(u(er)). (4.5)
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Then p < £, and there exist 7p,...,7: € R and 0p,...,6r € R such that

k k
WW)=§:7Wﬂ‘h#0;M%)=§:5mﬁ6p¢& - (46
i=p

i=p
Let
Y =Tpep — bpey. (4.7)
Then, since p < 2,‘ we have «(y) = p. On the other hand,

k

u(y) = 1pulep) — Spuler) = E ('Ypfsi o 5;)71’)3?:
i=p

whence, since the term corresponding to ¢ = p is 0, we obtain
a(u(y)) > p+1>p=afy),
in contradiction with 1°. u

Theorem 4.2. For an operator u € LR, Rk), the following statements are equivalent;
1°. u does not decrease the lexicographical order. 5
2°. We have
a(u(e)) > 4 =1 .. (4.8)
When k =n, the above statements are equivalent to

3°. u Is lower triangular.

Proof. If 1° holds, then
a(ule;)) > ale;) = G=1,...,n).

2° = 1° For y = 0 we have u(y) = 0, whence a(u(y)) = +00 = a(y). Assume now 2° and let
= Z_?:a(y) 77]6] € R"\{O}. Theﬁ

n

uy) = ) njule;),

j=a(y)
whence, by theorem 1.3, (1.4) and (1.2) with 8 = « and by 2°, we obtain
a(u(y)) > min {a(na(y)u(ea(y))),...,a(nnu(en))} >
> min {a(y),...,n} = a(y).
Finally, for k =n the equivalence 2° <= 3° is obvious. ]
For the case when k = n and {e}}7 = {e”}¥, one can introduce, similarly to definition 3.2, the concepts

of operators u € L{R") which do not increase (decrease) the lexicographical index in the basis {e;17 (of

R™), respectively, in some basis (of R™). Then, frem lemma 4.1 and theorems 4.1 and 3.3, we obtain
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Corollary 4.1, For an operator u € L(R"™), the following statements are equivalent:
1°. w does not increase the lexicographical index in some basis.

2°. The eigenvalues of u are real and # ().

Corollary 4.2. For an operator u € L(R™), the following statements are equivalent:

1°. u does not decrease the lexicographical index in some basis.

2°. The eigenvalues of u are real,

Proof. The proof is similar to the above proof of theorem 2.3, using now lemma 4.1 and theorem 4.2,

equivalence 1° <=> 3° (instead of lemma 2.1 and theorem 2.1, respectively). B

§ 5. APPENDIX: LEXICOGRAPHICAL SEPARATION OF p SETS

Let us recall the following “lexicographical separation theorem”([9], theorem 2.1); for another lexico-

graphical separation theorem, see also (4], § 2.4):

Theorem 5.1. For any sets, G,Gq C R, the following statements are equivalent:
12 co Ghil) co0, G =0 (where co G; denotes the convex hull of Gi).

2°. There exists u € L(R™) such that

u(y1) <r u(ys) (11 € Gy, y2 € Gy). (5.1)

We shall now give an extension of this theorem to p subsets of R".

Theorem 5.2. For any sets G;; ... yGp C R", the following statements are equivalent:
1°. ., co G; =0. v
2°. There exist p linear operators Uy...,Up € L(R?, R™), where ¢ = min {p — 1,n}, such that

p
> m=0 (5.2)
=1

» ;
Z U,’(y,’) <70 (y,' € G,‘, = 1,... ,p). (5.3)

i=1
Proof. 1° = 2°. Assume 1°. We shall first prove that there exist ui,...,u, € L(R", R*®-1) gatis-
fying (5.2) and (5.3). Indeed, 1° is equivalent to

p

(H co G,-) A=, _ (5.4)

=1

where IT denotes the cartesian product and where

D= {(yl,...,yp) E(R")P l = =yp}. ‘ (5.5)
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Hence, by Zorn’s lemma, there exists a maximal convex set H in (R™)P, such that

P :
J] o GicH, - HnD=. (5.6)
3=z
Then, by [11], theorem 3.2, H is a hemi-space of type <p, (in the sense of [11], definition 2.1) and £
is the linear manifold associated to H (in the sense of [11], definition 3.1). Hence, since codim D = n(p—1),

there exist u € L(R™, R*®=D) and z € R*®~1 such that

H:{(yl,...,yp)G(R“)p | alonss o) <z x}: (5.7)
D={@ ) € B | ulun,....tp) =2}, - (658)

But, by (5.5), we have 0 € D, so D is a linear subspace of (R")?, and hence we must have z = 0 in

(5.8) and (5.7). Now, define u; € E(R“,R”(p"l)) by

ui(y) = u(0,...,0,y,0,...,0) (e Rl a=il. T (5.9)
i-1

Then, we have

p
w(yn, ) =) wilw) (B €R, i=1,...,p). (5.10)

i=1
Hence, by the first part of (5.6) and by (5.7) Wi_th ¢ = 0, we obtain (5.3). Finally, by (5.10), (5.5)
and (5.8) with z = 0, we get 3F_, wi(y) = w(y,...,y) =0, ie., (5.2). This proves our assertion on the
existence of wy,...,u, € L(R?, RPG=-1)
Now, if q =min {p—1,n} =p—1, then ng = n(p— 1), so we are d-one. On the other hand, assume
now that ¢ =min {p—1, n} =n, or, equivalently, n+41 < p. Then, by 1° and Ielly’s theorem for a finite
collection of sets (see e.g. [12], p. 196, theorem 21.6), there exist distinct 4y,... yint1 € {1,...,p} such that

n+41 _ >
[ oG —0 (5.11)

j=1
By (5.11) and the first part of the above proof, there exist u;,, ..., Wi e (it an) satisfying
n+1

Y u =0 (5.12)
g=1

n+1

Z uij(yij) <t 0 (yij € Gij: .7: 1,.,.,71 4= 1) (513)
=1

Hence, if we set

w; =0€L(R", R™) Gedl,. .o\ Hinil), (5.14)
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then u1,...,up € L(R?, R»)=L(R", R™) satisfy (5.2) and (5.3). _
.90 = 1°, Assume 2° and non-1°, say, Yy € ﬂf__:l co G;. We cl&im that for each 4 € {1,...,p} there
exists y; € G; such that

wy) 2 wly)- o (5.18)

Indeed, if for some i we had
ui(y') <o wi(y) (v €Gy),

that is, Gi € {¢' € R* | wi(y') <v wi(y)}, then we would obtain y € co G: ¢ {yhe R | wlyl) <=
u;(y)}, which is impossible. This proves the claim. Then, for y; € G; satisfying (5.15) we get, by (5.2) and

(5.3),

P
0= 2 u;i(y) <t Z ui(yi) <r 0,
=1

$=1

which is impossible. L]

Remark 5.1. For a recent result on separation of p setsdin R" by hemi-spaces, see [11], theorem 5.1.
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