AUTOMORPHISMS OF AF-ALGEBRAS

by

V.DEACONU *)

November 1988

Department of Mathematics, The National Institute for Scientific and Technical Creation, Bd.Păcii 220 79622, Bucharest, Romania.

AUTOMORPHISMS OF AF-ALGEBRAS by V.Deaconu

INTRODUCTION

Given $T \in L(H)$, where H is a separable infinite dimensional Hilbert space, it is easy to see that we can find an increasing sequence of finite dimensional subspaces H_n with $H = \overline{\bigcup} H_n$ and $T(H_n) \subset H_{n+4}$ for every n.

Given an unital AF-algebra A, it is natural to consider automorphisms α for which there exists an increasing sequence of finite dimensional C*-subalgebras A_n such that $A=\overline{\bigcup A_n}$ and $\alpha(A_n)\subset A_{n+1}$ for every n. Such an α will be called (s)-automorphism.

In his paper [6], Voiculescu shows that the almost inductive limit automorphisms of an AF-algebra (a notion analogous to that of quasitriangular operator) are approximable by inductive limit automorphisms.

In this note we prove that every automorphism of an unital AF-algebra can be approximated by (s)-automorphisms. Also, given A and $\alpha \in \operatorname{Aut}(A)$, we define a new AF-algebra $\operatorname{A}(\alpha)$ which depends only on A and α and reflects some properties of α . In general A and $\operatorname{A}(\alpha)$ are not isomorphic; however, if $\operatorname{A} \rtimes_{\alpha} \mathbb{Z}$ embedds into an AF-algebra, it seems that $\operatorname{A}(\alpha) \simeq \operatorname{A}$.

\$1°.THE FORM OF AUTOMORPHISMS

Let A be an unital AF-algebra and denote by $\mathcal{F}(A)$ the set of all finite dimensional C^* -subalgebras of A. By a nest of finite dimensional C^* -subalgebras of A we shall mean an increasing sequence

$$\mathbb{C} \cdot A = \mathbb{A}_0 \subset \mathbb{A}_1 \subset \ldots \subset \mathbb{A}_n \subset \ldots$$

with $A_n \in \mathcal{F}$ (A) for every n and $A = \bigcup_{n \neq 0} A_n$.

If C_1 , C_2 are C^* -subalgebras of an arbitrary C^* -algebra C and E_7 O we shall write C_1 C^E C_2 if

 $\sup \{\inf\{\|x-y\| \mid y \in C_2, \|y\| \le 1\} \mid x \in C_1, \|x\| \le 1\} < E$ and $d(C_1,C_2)$ is defined by

$$d(C_1,C_2) = \inf \{ \xi > 0 \mid C_1 \subset^{\xi} C_2 \text{ and } C_2 \subset^{\xi} C_1 \}.$$

We shall use the following approximation results

- 1.1. If C_1, C_2 are C^* -subalgebras of C, C_4 is finite dimensional and E>0, then there is E>0 depending only on E and E>0 and E>0, then there is E>0 depending only on E and E>0 with C_4 and E>0 and E>0 and E>0 with E>0 and E>0 and E>0 and E>0 and E>0 and E>0 and E>0 are E>0 and E>0 and E>0 are E>0 are E>0 are E>0 and E>0 are E>0 are E>0 are E>0 are E>0 and E>0 are E>0 are E>0 and E>0 are E>0 are E>0 are E>0 and E>0 are E>0 are E>0 and E>0 are E>0 are E>0 are E>0 and E>0 are E>0 are E>0 are E>0 are E>0 are E>0 and E>0 are E>0 and E>0 are E>0 and E>0 are E>0 ar
- **1.2.**(Christensen) If C_4 , C_2 are C^* -subalgebras of C, C_4 finite dimensional, $0 \leqslant t^2 < 10^{-4}$ and $C_4 \subset C^*$ C_2 , then there is $u \in U(C)$ such that $C_4 \subset Adu(C_2)$ and $\|u-4\| < 64 t^{1/2}$.

In his paper [6], Voiculescu considers inductive limit and almost inductive limit automorphisms of AF-algebras. We recall the definitions.

1.3.DEFINITION. We say that $\alpha \in \operatorname{Aut}(A)$ is an inductive limit automorphism if there exists a nest of finite dimensional C^* -subalgebras $(A_n)_{n \geqslant 0}$ of A such that $\alpha \in \operatorname{Aut}(A) = A_n$ for every n. $\alpha \in \operatorname{Aut}(A)$ is called almost inductive limit automorphism if there exists a nest $(A_n)_{n \geqslant 0}$ of A with $\lim_{n \to \infty} \operatorname{d}(\alpha \in \operatorname{An})_{n \geqslant 0} = 0$.

It is natural to consider another class of automorphisms

1.4.DEFINITION. $\alpha \in \operatorname{Aut}(A)$ will be called (s)-automorphism if there exists a nest $(A_n)_{n \geqslant 0}$ of A with $\alpha (A_n) \subset A_{n+1}$ for every n.

1.5.REMARK. Let $A=\overline{\cup}A_n$, $\alpha\in Aut(A)$ arbitrary and E>0. It is easy to see that there exists an increasing sequence $(n_k)\subset \mathbb{N}$ with $\alpha(A_n)\subset A_n$ for every k. Thus every automorphism of an AF-algebra is an 'almost' (s)-automorphism.

In his paper, Voiculescu shows that almost inductive limit automorphisms are approximable by inductive limit automorphisms (Proposition 2.3. in [6]). In analogy we prove the following result which shows how large is the class of (s)-automorphisms.

1.6. THEOREM. Let A be an unital AF-algebra, $\alpha \in \text{Aut}(A)$ and $\epsilon > 0$. Then for every fixed nest of A there exists $u \in \mathcal{U}(A)$ with $\|u-4\| < \epsilon$ such that Aduo α is (s)-automorphism with respect to a subnest of the fixed nest.

Proof. Let (B_m) a nest of A such that $\alpha(B_m) \subset \mathcal{E}_m B_{m+1}$ with $e_m \vee 0$ (see 1.5.). We shall construct inductively a subnest (A_n) of the nest (B_m) , automorphisms α_n and unitaries u_n such that

$$A_0 = \mathbb{C} \cdot 1$$
, $A_1 = B_1$, $u_1 = 1$, $\alpha_1 = \alpha$

 $\alpha_{n+4} = \mathrm{Adu}_{n+4} \circ \alpha_n \ , \|\mathbf{u}_n - \mathbf{1}\| < \epsilon \cdot 2^{-n} \ \text{ and } \alpha_n(\mathbf{A}_j) \subset \mathbf{A}_{j+4} \ , 0 \leq j \leq n-4 \, .$ Having constructed $\mathbf{A}_n, \mathbf{u}_n, \alpha_n$, the proof will be concluded since $\mathbf{u} = \lim_{n \to \infty} \mathbf{u}_n \dots \mathbf{u}_4$ is well defined, $\|\mathbf{u} - \mathbf{1}\| < \epsilon \ \text{and} \ (\mathrm{Adu} \circ \alpha) (\mathbf{A}_n) \subset \mathbf{A}_{n+4}$ for every n.

and assume $\varepsilon < 10^{-4}$ which is no loss of generality. Since $(B_{m_n}) \subset {}^{m_n+p} B_{m_n+p+1}$ for every p > 0 and

$$\lim_{p\to\infty} d(Adu_n(B_{m_n+p}), B_{m_n+p}) = 0,$$

we can find $m_{n+1} > m_n$ with $\alpha_n(B_{m_n}) \subset {}^{\mbox{$^{\circ}$}} B_{m_{n+1}}$, therefore $\alpha_n(A_n) \subset {}^{\mbox{$^{\circ}$}} A_{n+1}$

with $A_{n+1} := B_{m_{n+1}}$. By 1.2. there exists an unitary $v_0 \in A$ with $(Adv_0 \circ \alpha_n)(A_n) \subset A_{n+1}$ and $\|v_0 - 1\| < \delta_1 := 2(n+1)10^2 \cdot \delta_0^{1/2}$.

Putting $\xi_j:=(2(n+1)10^2)^j \xi_0^{1/2}$, we shall find inductively unitaries $v_j \in A_{n+2-j}$, $1 \le j \le n$ such that

 $(\text{Adv}_j \circ \dots \circ \text{Adv}_o \circ \bowtie_n) (\text{A}_{n-j}) \subset \text{A}_{n+1-j} \ (1 \leq j \leq n)$ and $\|\text{v}_j - 1\| < \$_{j+1}$.

Indeed, assume we have found v_j for $j \le k < n$. Then

 $(Adv_k^{\circ}...^{\circ}Adv_{\circ} \circ \alpha_n)(A_{n-k-1}) \subset {}^{\delta_k}A_{n-k}$

where $\delta_k \le 2 \| \mathbf{v}_k \dots \mathbf{v}_0 - 1 \| \le 2 (\xi_1 + \dots + \xi_{k+1}) \le 2 (n+1) | \xi_{k+1}$. We have

 $(\mathrm{Adv}_k^{\circ} \cdots^{\circ} \mathrm{Adv}_0^{\circ} \alpha_n^{\circ}) (\mathrm{A}_{n-k-1}) \subset (\mathrm{Adv}_k^{\circ} \cdots^{\circ} \mathrm{Adv}_0^{\circ} \alpha_n^{\circ}) (\mathrm{A}_{n-k}) \subset \mathrm{A}_{n+1-k}^{\circ},$ therefore there is a $\mathrm{v}_{k+1} \in \mathcal{U}(\mathrm{A}_{n+1-k})$ with

$$(Adv_{k+1}$$
... \circ Adv $_{0}$ $\circ \alpha_{n})(A_{n-k-1}) \subset A_{n-k}$

and

 $\|v_{k+1} - 1\| < 10^2 (2(n+1) v_{k+1})^{1/2} \le v_{k+2}$,

which concludes the proof of the existence of the v_j 's $(1 \le j \le n)$.

Defining un+1=vn···vo we have

$$\|u_{n+1} - 1\| \le \xi_1 + \dots + \xi_{n+1} \le (n+1) \xi_{n+1} < \varepsilon \cdot 2^{-n}$$

and for $0 \le j \le n$

1.7.COROLLARY. Any automorphism of an AF-algebra A is of the form Adv. β ,where v \in U (A) and β (A_n) \subset A_n+4 \forall n for a certain nest (A_n) of A.

1.8.REMARK. Let A be an AF-algebra and (A_n) , (B_k) two nests of A. By lemma 2.6.[1] there exists an approximately inner automorphism $\sigma \in \operatorname{Aut}(A)$ such that for every k there is a n with $\sigma(B_k) \subset A_n$ and $A_k \subset \sigma(B_n)$. We obtain two strictly increasing sequences (n_p) and (k_p) of positive integers with

 $\begin{array}{c} A_{n_1} \subset \sigma(B_{k_1}) \subset A_{n_2} \subset \sigma(B_{k_2}) \subset \dots \\ \text{Now if } \alpha \in \text{Aut}(A) \text{ is such that } \alpha(A_n) \subset A_{n+1} \ \forall n \text{, we have} \end{array}$

\$2°. THE AF-ALGEBRA A(∝)

2.1.DEFINITION. Let $\alpha \in \text{Aut}(A)$ be a (s)-automorphism relatively to the nest (A_n) of A. We can consider the inductive system

where \hookrightarrow denotes the inclusion map. Of course, α commutes with the inclusion maps. Define $A(\alpha)$ to be the C^* -limit of this system. A priori, $A(\alpha)$ depends on the nest (A_n) , but we shall see later that it is not the case.

2.2.LEMMA. Let $(n_k) \subset N$ be a strictly increasing sequence with $n_k > 2k$ for every k and denote by $A_n \xrightarrow{\alpha} A_{n_{k+4}}$ the composition

$$A_{n_k} \xrightarrow{\alpha} A_{n_{k+1}} \cdots \xrightarrow{A_{n_{k+1}}} \cdots$$

Then $\lim_{n_{l_{r}}} (A_{n_{l_{r}}}, \propto) \simeq A(\propto)$.

Proof. Inductively we shall construct a commutative diagram

$$A_0 \longrightarrow A_2 \longrightarrow A_{2m} \longrightarrow A_{2m} \longrightarrow A_{n_q} \longrightarrow A_{n$$

Suppose $A_{2p} \hookrightarrow A_{n_k}$ with $p \le k$. Let m with $m-p \le 2m-n_k$, therefore $m > n_k-p$. We define $\alpha = A_{n_k} \hookrightarrow A_{2m}$ and the diagram

is commutative. But $n_{k+m-p} \geqslant 2(k+m-p) \geqslant 2m$ and the diagram

is commutative etc.

2.3.REMARK. If $\alpha(A_n) \subset A_{n+4}$ for every n,then for $k \geqslant 4$ fixed we have $\alpha^k(A_n) \subset A_{n+k}$ for every n and one can see that $A(\alpha^k) \simeq \alpha(\alpha)$ because $A(\alpha^k)$ is the limit of the inductive system

$$A_0 \hookrightarrow A_k \xrightarrow{\alpha^k} A_{2k} \hookrightarrow A_{3k} \xrightarrow{\alpha^k} A_{4k} \hookrightarrow \cdots$$

- 2.4.LEMMA. Let A be an unital AF-algebra, (A_n) a fixed nest of A and C_1 , $C_2 \in \mathcal{F}(A)$ such that $C_1 \subset C_2$ and there exists $n_1 \in \mathbb{N}$ with $C_1 \subset A_{n_1}$. Then there exist $m \in \mathbb{N}$, $m > n_1$ and $u \in \mathcal{U}(A)$ such that
 - (i) $uC_2u^* \subset A_m$
 - (ii) $uxu^* = x \forall x \in C_4$.

Proof. By lemma 2.3. of [4], given E>0 we can find $u_0 \in \mathcal{U}(A)$ and $m > n_4$ such that $\|u_0 - A\| < E$ and $u_0 C_2 u_0^* \subset A_m$. Let $C:=u_0 C_4 u_0^* \subset A_m$. We have C_4 and C finite dimensional C^* -subalgebras of A_m and $\beta:C_4 \longrightarrow C$, $\beta(x)=u_0 x u_0^*$ a *-isomorphism with $\|\beta-id\|C_4\| < A$ (we take E<1/2). By lemma 2.4. of [1] there exists $w \in \mathcal{U}(A_m)$ with $\beta(x)=wxw^*, x \in C_4$. Let $u:=w^*u_0 \in \mathcal{U}(A)$. We have $uC_2 u_0^* = w^*u_0 C_2 u_0^* w \in W^*A_m w=A_m$

and for $x \in C_4$,

 $uxu^* = w^*u_0xu_0^*w = w^*\beta(x)w = \tilde{\beta}^1\beta(x) = x.$

2.5.LEMMA. Let A be an AF-algebra, (A_n) , (B_m) two fixed nests of A and $u, v \in \mathcal{U}(A)$ such that $(Adu \circ \alpha)(A_n) \subset A_{n+1} \ \forall n$ and $(Adv \circ \alpha)(B_m) \subset B_{m+1} \ \forall m$. Then $A(Adu \circ \alpha) \simeq A(Adv \circ \alpha)$.

Proof. We shall find inductively two increasing sequences of positive integers (m_p) , (n_p) such that $m_{p+1} \gg m_p + 4$, $n_{p+1} \gg n_p + 4$, two sequences (u_p) , $(v_p) \in \mathcal{U}(A)$ such that $\mathrm{Adu}_i(B_{m_i+1}) \subset A_{n_i}$, $\mathrm{Adv}_i(A_{n_i+1}) \subset B_{m_{i+1}}$ and the following diagram is commutative:

Suppose that $u_1,v_1,u_2,v_2,\ldots,u_k$ have been constructed with the desired properties. We shall construct v_k . We have

$$Adu_k(B_{m_k+1}) \subset A_{n_k}$$

therefore $B_{m_k+4} \subset u_k^* A_{n_k} u_k$. Now

$$(Adv \circ \alpha) (B_{m_{k}+1}) \subset (Adv \circ \alpha) (u_{k}^{*}A_{n_{k}}u_{k}) = v \alpha (u_{k}^{*}) \alpha (A_{n_{k}}) \alpha (u_{k})v^{*} = v \alpha (u_{k}^{*})u^{*}u \alpha (A_{n_{k}})u^{*}u \alpha (u_{k})v^{*} \subset v \alpha (u_{k}^{*})u^{*}A_{n_{k}+1}u \alpha (u_{k})v^{*}.$$

Using 2.4. for $(Adv \circ \alpha)(B_{m_k+1}) \subset v \propto (u_k)u^* A_{n_k+1}u \propto (u_k)v^* \subset A=\overline{\bigcup B_m}$,

there exist $w \in U(A)$ and $m_{k+1} \gg m_k + 4$ such that

$$wv \propto (u_k^*)u^*A_{n_k^{+1}}u \propto (u_k)v^*w^* \subset B_{m_{k+1}}$$

and

$$wyw^* = y$$
, $\forall y \in (Adv \circ \alpha)(B_{m_k^{+1}})$

Let v_k :=wv $<(u_k^*)u^* \in \mathcal{U}(A)$. For $x \in B_{m_k^{+1}}$ we have

$$(Adv_{k} \circ Adu \circ \alpha \circ Adu_{k})(x) = v_{k} u \alpha (u_{k} x u_{k}^{*}) u^{*} v_{k}^{*} =$$

$$= wv \alpha (u_{k}^{*}) u^{*} u \alpha (u_{k}) \alpha (x) \alpha (u_{k}^{*}) u^{*} u \alpha (u_{k}) v^{*} w^{*} =$$

$$= wv \alpha (x) v^{*} w^{*} = w(Adv \circ \alpha)(x) w^{*} = (Adv \circ \alpha)(x),$$

therefore the following diagram commutes

The commutative diagram (1) defines an isomorphism between $A(Adv \circ \alpha)$ and $A(Adv \circ \alpha)$.

- 2.6.COROLLARY. For $\alpha \in \operatorname{Aut}(A)$ arbitrary, by 1.6. there are $u \in U(A)$ and a nest (A_n) of A such that $(\operatorname{Adu} \circ \alpha)(A_n) \subset A_{n+1}$ for every n. We can define $A(\alpha)$ to be $A(\operatorname{Adu} \circ \alpha)$ and by the previous lemma this definition is correct (it not depends on u or (A_n)). We have associated to A and α a new AF-algebra $A(\alpha)$ which in general is not isomorphic to A (we shall see an example later).
- 2.7. THEOREM. Let A be an unital AF-algebra and $\alpha \in Aut(A)$. Then we have:
 - (i) $A(\alpha^k) \simeq A(\alpha) \forall k > 1$
 - (ii) $A(\sigma \circ \alpha) \cong A(\alpha)$ for any approximately inner automorphism σ ; in particular $A(\alpha) \cong A$ if there is $k \geqslant 1$ with α^k approximately inner
 - (iii) A(\ll) \simeq A for \ll almost inductive limit automorphism Proof. (i) It follows from 2.3.,2.5. and 2.6.
- (ii) The proof is analogous to that of 2.5. because for every n there is $u_n \in \mathcal{U}(A)$ with $\sigma \circ \alpha \mid_{A_n} = \mathrm{Ad} u_n \circ \alpha \mid_{A_n}$ ([4]).
- (iii) By corollary 2.6. of [6] there is an unitary $u \in A$ such that $Adu \circ \alpha$ is limit periodic i.e. there are a nest (A_n) of A and a sequence of positive integers (d_n) such that $(Adu \circ \alpha)(A_n) = A_n \text{ and } (Adu \circ \alpha \mid_{A_n})^{d_n} = \mathrm{id}_{A_n}.$

Therefore, telescoping the system in the definition of $A(\ll)$, we obtain a system in which appear only inclusions, so that $A(\ll) \simeq A$.

§3°. EXAMPLES OF AUTOMORPHISMS

Given an inductive system (A_n, φ_n) with A_n finite dimensional C^* -algebras and φ_n unital *-monomorphisms, $\varphi_n : A_n \longrightarrow A_{n+4}$, to construct an automorphism of $A=\lim_n (A_n, \varphi_n)$ it is sufficient to construct a commutative diagram

where an are unital *-monomorphisms.

Of course, the sequence (α_{2k+4}) determines an automorphism α , while the sequence (α_{2k}) determines its inverse.

Suppose Ψ_n are given (passing to K-theory) by matrices $\Psi_{n*} \in \operatorname{GL}(p,\mathbb{Z})$. If we can find $x_n \in \operatorname{GL}(p,\mathbb{Q})$ such that $x_n \Psi_{n*}$, $\Psi_{n+1*} x_n^{-1}$ have positive integer entries and $x_n \Psi_{n*}$ defines a homomorphism $A_n \longrightarrow A_{n+1}$ for every $n \geqslant 1$, we can take $\alpha_{n*} = x_n \Psi_{n*}$, $\alpha_{n+1*} = \Psi_{n+1*} x_n^{-1}$. The condition $\alpha_{n+1} \Psi_{n+1*} = \Psi_{n+1*} x_n^{-1}$ implies the recourence formula

$$x_{n+1} = \psi_{n+1} \times x_n^{-1} \cdot \psi_{n+1}^{-1}$$

This construction depends on the existence of a (nontrivial) x_4 with the desired properties.

3.1. EXAMPLE. Let $A = \bigotimes_{-\infty}^{\infty} M_2 = \text{UHF}(2^{\infty})$, where $A_n = \bigotimes_{-\infty}^{n} M_2$ and $\Psi_n : A_n \longrightarrow A_{n+4}$, $\Psi_n(a) = 1 \otimes a \otimes 4$. The shift automorphism on A is given by $a \longmapsto 1 \otimes 4 \otimes a$ and its inverse by $a \longmapsto a \otimes 4 \otimes 4$.

Since every automorphism of an UHF-algebra is approximately inner, it follows that $A(\propto) \simeq A$.

3.2. EXAMPLE. Let A be the GICAR-algebra, which has the following Bratteli diagram

 $\psi_n: A_n \rightarrow A_{n+1}$ is given by a (n+2) x (n+1) matrix

Let α_n given by the $(n+2)\chi$ (n+1) matrix

$$\begin{pmatrix}
0 & 0 \dots 0 & 0 & 1 \\
0 & 0 \dots 0 & 1 & 1 \\
0 & 0 \dots 1 & 1 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & 1 \dots 0 & 0 & 0 \\
1 & 0 \dots 0 & 0 & 0
\end{pmatrix}$$

We have $\alpha_{n+1} \propto_n = \Psi_{n+1} \Psi_n$ and α_n defines a homomorphism $A_n \longrightarrow A_{n+1} \Psi_n$ We obtain an automorphism α of A such that $\alpha^2 = id$. Therefore $A(\alpha) \simeq A(id) \simeq A$ by 2.7.

3.3.EXAMPLE. Let A=UHF(2^{∞}) \otimes \mathcal{K}^{\sim} . A can be described by the following Bratteli diagram

In this case φ_n are given by

$$\varphi_{n*} = \begin{pmatrix} 2 & 2^{n+1} \\ 0 & 2 \end{pmatrix}.$$

Let α_{2n+1} given by

$$\alpha_{2n+4*} = \begin{pmatrix} 1 & 3 \cdot 2^{2n+4} - 1 \\ 0 & 2 \end{pmatrix}$$

and «2n by

$$\alpha_{2n*} = \begin{pmatrix} 4 & 2 \\ 0 & 2 \end{pmatrix} .$$

The compatibility properties are verified, therefore we obtain an automorphism << Aut(A).

Remark that $K_0(A) = \mathbb{Z}\left[\frac{1}{2}\right] \oplus \mathbb{Z}\left[\frac{1}{2}\right] K_0(A)_+ = \{(p,q)|q>0\} \cup \{(p,0)|p>0\}, [1_A] = (0,1)$ and the group of automorphisms of $(K_0(A), K_0(A)_+, [1_A])$ is isomorphic with \mathbb{Z} by the map

$$\mathbb{Z} \ni m \longmapsto \begin{pmatrix} 2^m & 0 \\ 0 & 1 \end{pmatrix} \in Aut(K_0(A), K_0(A)_+, [l_A]).$$

By the functor K, & goes to

$$\begin{pmatrix} \frac{1}{2} & 0 \\ 0 & 1 \end{pmatrix}.$$

Remark that & k is approximately inner only for k=0.

We have $A(\alpha) \simeq UHF(2^{\infty}) \otimes B$, where B is an extension

$$0 \to \mathcal{K} \to B \to UHF(2^{\infty}) \to 0$$

while $A(\alpha^{-1}) \simeq UHF(2^{\infty}) \otimes (UHF(2^{\infty}) \otimes \mathcal{K})^{\sim}$ and therefore $A(\alpha) \not = A \not = A(\alpha^{-1}) \not = A(\alpha).$

3.4. EXAMPLE. Let $A=\mathfrak{S}(X)$, where X is the one point compactification of \mathbb{Z} and $\alpha \in \operatorname{Aut}(A)$, $\alpha(x)(t)=x(t+1)$, $t \in \mathbb{Z}$, $\alpha(x)(\infty)=x(\infty)$. It can be shown that $A(\alpha) \cong A$. It is known that $A \rtimes_{\alpha} \mathbb{Z}$ embedds into an AF-algebra.

3.5. EXAMPLE. Let $A=\mathbb{Q}(X)$, where X is the two points compactification of \mathbb{Z} and $\alpha \in \operatorname{Aut}(A)$, $\alpha(x)(t)=x(t+1)$, $t \in \mathbb{Z}$, $\alpha(x)(\infty)=x(\infty)$, $\alpha(x)(-\infty)=-\infty$. Also $A(\alpha) \cong A$, however $A \bowtie_{\alpha} \mathbb{Z}$ embedds not into an AF-algebra. ([5])

REFERENCES

- [1] O.Bratteli. Inductive limits of finite dimensional C*-algebras, Trans. AMS vol. 171, Sept 1972, 195-234.
- [2] E.Christensen. Near inclusion of C*-algebras, Acta Math. 144(1980)3-4,249-266.
- [3] E.G.Effros. Dimensions and C*-algebras, Conf. Board Math. Sci.46(1981)
- [4] E.G.Effros & J.Rosenberg. C*-algebras with approximately inner flip, Pacific J.Math.77(1978),417-443.
- [5] M.Pimsner. Embedding some transformation group C*-algebras into AF-algebras, Ergod.Th. & Dynam.Syst.3(1983),613-626.
- [6] D.Voiculescu. Almost inductive limit automorphisms and embeddings into AF-algebras, Ergod.Th. & Dynam.Syst.6(1986) 475-484.

Valentin Deaconu

Department of Mathematics

Bd.Pacii 220,79622 Bucharest

Romania

INCREST