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Introduction

: Let (R,m) be a local CM-ring and.M a finitely generated
,,@hbrtly f.g.) R-module. M is a-maximally CM module (shortly
MCM R-modules). The isomorphism classes of indecomposable MCM
R-modules form the vertices of the Auslander-Reiter quiver
[T(R) of R. Section 3 studies the behaviour of ['(R) under base

change; best results (cf. (3.10), (3.14)) being partial answers

e ke conjecthres from [Sc] (7.3). Unfortunately, the proofs

use the difficult theory of Artin approximation (cf.[Ar], or [Pol]).
A different easier method is to use the so-called CM;reduc—

tibn ideals as we did in [Po2] (4.9) or have in (3.2), (3.3).

This procedure is very powerful in proving results describing
'ﬁaw~large is the set of those positive integeﬁs which are multi-
plicities of the vertices of T(R), in fact the first Brauer-.
Thrall conjecfure (ciks [0il,[vol, {Po2] or here (4.2), (4.3)).
However thé Corollary (3.3) obtained by this method is much

weaker than (3.10) which_usés Artin approximation theory. The
reason is that the conditions under which we know the existehce

’

 of CM~reduction ideals are still too complicated. Trying to
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' siwniFy them we see thét the difficulty is just to prove some
bound properties on MCM modules -(cf. Section 2) which we hope
~to hold for every excellent henselian local CM-ring. Our
Theorem (4.4) and Corollary (4.6)
giQe sufficient conditions when the second Brauer-Thrall coniec-
ture holds, and our Corollary (4.7) is a nice application to
rational double pdints (ins&?ated by [Yol(4.1)).

We would like to thank L. Badescu and J. Herzog for helpful

conversations on (4.7), (3.10), (3.16) respectively.

1. Bound properties on MCM modules

(1.1) Let (R,m) be a local CM-ring, k:= R/m, p:= chark and

Reg R ={qG.Spec RIRq regular}; Suppose that Reg R is open (this
- happens for instance when R is quasi-excellent). Then

IS(R) = [w q defines the singular locus of R. We say that

q¢ Reg R
R has bound properties on MCM modules if the following conditions

hold:
i) there exists a positive integer r such that
IS(R)P Exté(M,N) = (0 for every MCM,R-m;dule M and for
evefy F;g. R-module N, i.e. IS(R) Iis iin the radical of the
Dieterich Ext-annihilating ideal of R (cf. [Di] § 2),

ii) for every ideal aCR and every element y GIS(R)'there
exists a positive integer e such that _
(aM:ye)M:={zG;M|yéz eaM}= (aM:ye+1)M for every MCM R-
module M. ' :

Clearly it is enough to consider in i), ii) only in-

decomposable M. Let M be a MCM R-module and
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AM:={XG,R!x'Exté(M,N) = 0 for every f.g. R-module N}

(1.2) Lemma: IS(R)c:{AM ’ ’
Proof: Let x€I_(R). Then R is a regular ring and so M,

is projective over R, . Indeed,if q¢€ Spec R'with x ¢£q then Mq is
free over Rq by [He](l 1) Mq being still MCM by [Maz] (174 3)

and R_ is regular. Thus

q
= 1 ' 7
R, ® ¢ ExtR(M,N) = ExtRx(Mx,Nx) =
- and so a certain power of x kills Ext; M,N), i.e. X eVAM.

: ; . &
(1.3) Remark: The above Lemma shows that for each MCM R-module

M we are able to find a pos1t1ve integer ™M such that

I (R) ExtR(M,N) = 0 for every f.g. R-module N. Thus the trouble

in (1.1)i) is just'to show that r,, can be bounded.when M runs

in CM(R) Also for each f.g.R-module M by.Noetheriarit? we can

find in (1 1)ii) a positive integer e, such that (aM:yeM)M =
(aM y +1)M. Again the trouble is to show that e, can be bounded

when M runs in CM(R). However, if R has finite CM-type (i.e. ["(R)

- _ has juét a finite set of verticés) then R has bound properties

on MCM modules (compére with [Di] Proposition 8). .

(1.4) Lemma: Suppose that (R,m)‘is reduced compléte with k perfect

and Reg(R/pR) = {q/pRlgeReg R, q3pR} if pR # 0 (i.e. if p #

# char R). Then R has bound properties on MCM modules.

-+---Proof: Clearly either R contains k or R ié a flat algebra over

a Cohen ring of residue field k, i.e. a complete DVR (T,t) which

in an unramified extension of Z(p)’ PO, &t =.p-le i let

x = (X 1""’)(n) be a system of elements from m such that (t,x)

forms a system of parameters in R. By Cohen's structure Theorems

the canonical map j: TI[XTI=R, X = (X Xn)Fé-x is finite. As

1[.."
R-is CM we obtain R flat (thus free) over the image S, of J.
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~ Let I, be the kernel of the mu1t1pllcation map R C) R-—E- R

: rn
and~K; 2= pu(Ann I ) the Noether different of R over S
R(&I% o
Then ;n = ; j
1) ‘“‘x"QR/§<“ 0 and I (R) "5_;_,5& .

where the sﬁm is taken over all systems of elements x such'that
(t,x) forms a system of parameters'of R (see [P02)(2.8), (2.10),
the ideas come in fact from [Yo]).

- Using ‘the Hochschild cohomology we get a surjective map

HomR((ZR/SX,HomSX(M,N))¥ oersx(R,Home(M,N))f—éExté(M,N)
for every MCM R-module M and every f.g. R-module N (see e.g.
in [Di] Lemma 6). By (1) . follows (Y, Exti(M,N) = O and so
there is r&IN such that . | %

2) I_(R)" Ext:(M,N)=0
for every MCM R-module M and every f.g. R-module N, i.e. (1.1)i)
holds. :

Now, let aCR be an ideal and yG,IS(R). We show that there
exists a positive inﬁeger e such that (aM:ye)M=(aM:ye+1)M fior
every MCM R-module M. If there exists x as above such that
ye (', then it is enough to apply [Po2] (3.2) for S, CR. Other-
such thét

wise choose in I (R) a system of elements (n, )1‘1‘5

:jI (R) = ’gz:n R and for every i there exists x(l) as above such

that n, c,d‘() Then yn; c o (1) and so there exists a positive
integer €4 such that
: €5 ei+1
(aM:(yni) )M = (aM:(yni) )M
for every MCM R-module M. Choose a positive integer e' such that
ety s (8
I_(R)®C 2 n.'R. We claim that e = e' + max e, works. Indeed,
: ! : 14i4s 1!
let M be a MCM R-module, 1F y zc;aM For a certain zeM and v &N

then (yni)v ze aM and .so (yni) ze aM. Thus



i
e s e
( f__ niiR)zC-Z—_(yni) lpsc aM.
i=1 i=1
(1.5) Lemma: Suppose that

_ yeZ c ye-e‘

i) (R,m) is quasi-excellent and reducéd,
ii) Reg(R/pR) ={q/pRlqe Reg R,q 2pR} if pR # O,
iii) there exists a flat Noetherian complete local R-algebra
(R',m') such that
iiil) R iig Formally smooth over R,
iii,) k' := R'/m' is perfect.
Then R has bound propertieé on MCM modules.

~Proof: By André-Radu's Theorem the structural morphism

~j: R—>R' is regular (see[An] or [BR1), [BR2]). Then

Reg R* ={q e Spec R'lj“lq €Reg R}

by [Ma1] (33.B). Hence I_(R') = fIS(R)R' and Reg(R'/pR') =
={q/pR'[q EReg R',q:)pR'}. Thus R' has bound properties on MCM

modules by Lemma (1.4) and it is enough to show the following

(1.6) Lemma: Let j: R—>A be a flat local morphism of local CM-
rings such that IS(A)i)Is(R)A. If A has bound properties on MCM
modules then R ﬁas too. .

Reoof: Letiribe the positive integer given for A as in (1.1)i).
We claim that r works also for R. Let M be a MCM R-module and N
a f.g. R-module. By flatness we have :
A® p Extr(M,N)¥ Exti(A @ ¢ M, A® ; N).Since
depth, A;Qngi = depthRM+depthA A/mA=depth R+depth, A/mA=depth A,
the A-module A ® M is a MCM. Thus I_(A)" (so I_(R)") kills
Exty(A ® M, A® pN) and it follows I_(R)"(A @ Exti(M,N)) = 0.
By faithful * flatness we get I_(R)"Exty(M,N) = 0. |

Now let aCR be an ideal and y GlséR). Then j(y)eils(A), and

by hypothesis there exists an e€IN such that
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'(aP:j(y)e)P = (aP:j(y)e"1

? . for every MCM A-module P,

)p

Let M be a MCM R-module. As above, M' :;/\GDR M is a MCM
A-module and by flatness we obtain
[ .." S ~ 2 S
(aM' 4 (y) Iyr = A 6al2 (aM:y )M
for every s cIN, Thus the inclusion

(1) (aM:y®), < (aM:y

goes by base change into an equality. Then (1) itself is an

e+1)

'equality, j being faithfully flat.

(1.7) Proposition: Suppose that

i) (R,m) is quasi-excellent reduced and (k:kPJcco if p >0,

ii) Reg(R/pR)}={q/pR|q€.Reg R, q:)pR} I pR % O,

Then R has bound properties on MCM modules.

Proof: If k is perfect then apply Lemmas (1.5), (1 6), where A is

‘the completion of (R,m). If k is not perfect, let K:= R
r = .()_ =-‘p ]

We have rank ', = rank % ,p [k:kP] (see e.g. in (Po2]

"~ (4.4)) and so there exists a formally smooth Noetherian complete

= dim R + rank T (see EGA (22.2.6), or [NP] Corollary (3.6)).

K/k

i
]
|
] local R-algebra (R',m') such that R'/m' ¥ K and dim R' =
| ;
1
i
Now apply Lemmas (1.5), (1.6).

é 2.-CM-reduction .ideals

(2.1) Lemma: (inspirated by [Po2] (3.1)). Let A be a Noetherian
“ring, M,N two f.g. A-modules, Xx€ A an element such that '
X Exti(M,P) = 0 for every factor A-module P of N, e a positive

integer such that (O:xe)N ='(0:xe+1)N and s €IN. Then for every

A-linear map < : M %>N/xe+s+;hjthere exists an A-linear map

ny: M —>N which makes commutative the following diagram:
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L e

‘? >N/Xe+s+1N

ZG -z

> N/xSYSN .

Proof: Let N':= (O;Xe)N. We have the folloWing commutative

diagram
xe+s+1 e+s+1
0—>N/N' —=——> N/N' ———~—%N/N +X Noe—>10
(1)
ot e+s
0 —>N/N'—=—> N/N' > N/N' +X Nit=——ee—u )

in which the lines are exact. This follows from the elementary

- (2.1.1) Lemma: xSNAN' = 0.

Indeed, if x®"®ze¢ N' for a certain z€N then x®*%z = 0 by the

above Lemma and so z&¢N', Applying the functor HomA(M,-) te (1)

we obtain the following commutative diagram

Hom, (M, N/N" ) ———> HomA(M,N/N'+xe+S+1N) —-—.——~>Ext}\(M,N/N')

3

Hom, (M,N/N') —> Hom, (M,N/N'+x8*SN) — > Extl (M, N/N)
A A . . A

with exact lines. Since the last column is zero by hypothesis
we obtain a R-linear map o : M —>N/N' such that- the following
diagram is commutative:

e+s+1 e+s+1

M > N/%, N = N/N 4 X N
(4) o '

: .

N/N’ > N/N' +xE*°N

Note that in the diagram
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ﬁ > N/xe+s+1N

!

(4) T e e N/xEFoN

W e ——> N/N'+x®*ON
the small square is c@rtesian and so there exists YV which

makes (4) commutative. Now apply Lemma (2.1.1).
Proof of Lemma (2.1.1): If yeN'Nnx®N and z eN satisfy y = x%z

2e e

then 0 = xey = Xz and se zeN', f.es ¥y = x2 =0,

(2.2) Lemma: Let (R,m) be a local CM-ring which has bound
properties on MCM modules, a<R an ideal and y€,IS(R). Suppose
that Reg R is opeﬁ. Then there exists a function v : IN—IN,

91 %N such that for every s €IN, every MCM R-modules M,N and every
R-linear map (?: M'—>NKa,xQ(S))N thebe exists a R-linear map

Y: M— N/aN such that the following diagram commutes:

M & > N/(a,xo(s))N
¥ 1
N/ aN —> N/ (a, x5)N

Proof: Let r,e be the positive integéers given by (1.1)i), (1.1)ii),

. respectively. Define v (s) =.r(1+max{e,s}). Let M,N,@ be given.

Since yrExté(M,P) = 0 for every f.g. R-module P and (aN:ye)N =

"“QT(aN:ye+1)N we get ¥ by Lemma (2.1).

(2.3) Let A be a local CM-ring and acA an ideal. As in [Poz}l

(3.6) the couple (A,a) is a CM-approximation if there exists a
»function G NI DA %N_such that for every s¢ciNj every: twio
MCM A-modules M,N and every A-linear map (?‘ M-iN/aQ(S)N

there exists an A-linear map ¥ : M—=> N such that A/aSCX)A§>§

g A/aS(X)A@H , in other words: the following diagram is commutative
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(? .>N/69(S)N’

e

Ze - —=

>N/ aN

(2.4) Lemma: Let (R,m) be a local CM-ring which has bound

propertiés on MCM modules. Suppose.that Reg R is open. Then for
every ideal a CI_(R) the couple (R,a) is a CM-approximation. .
Proof: Let YyreeorYy be a system of generators of a. Apply in-
duction on t. If t = 1 then use Lemma (2.2) for a = 0. Suppose
t>1 and let ¢' be the function given by induction hypothesis
for b:= (yl""’yt—l)' Let 7; be the function given by Lemma
(2.2) tor bV'(s) and yt; s €IN. Then the function y given by
2(s) = 2'(s)+ ?;(s) works..Indeed,let M,N be two MCM R-modules,

sc|IN and Q: M——>N/a3(S)N a R-linear map. Then there exists a

Q'(S)N such that (R/yiR) & ROL“:’

2(s) 2 (s) Ysls)

c (b Y )). Moreover,

R-linear map o. : M—>N/b

2 (R/yi[}) ® g¢¥ (note that a
there exists a R-linear map Y: M—N such that :

(R/D%) @ ¥ ¥ (R/b%) @ (. As b%C a® we get R/a® @ W2 R/a® ® ¢
(2.5) Let b be an ideal in a local CM-ring A. Then b is a CM-

reduction ideal if the following statements hold:

i) A MCM A-module M is indecomposable iff M/bM is indecomposa-"-
ble over A/b,

ii)}Two indecomposable MCM A-modules M,N are isomorphic iff
M/bM and N/bN are isomorphic over A/b.
(2.6) Lemma: Let R be a Henselian local CM-ring and ac<R an
ideél such that (R,a) is a CM-approximation. Then a" is a CM-
reduction ideal for a certain positive integer r.

. ihe proof follows fren [Po2] (4.5), (4.6).
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(2.7) Proposition: Let (R,m) be a Henselian local CM-ring

which has bound properties on MCM modules, Suppose that Reg R

~is open. Then for every ideal aciIS(R) there exists a positive

I is a CM=-reduction ideal.

integer r such that a
The proof follows from Lemmas (2.4), (2.6).

(2;8) Corollary ([Foz](4.8)): Let (R,m) be a reduced quasi-ex-

cellent Henselian local CM-ring, k:= R/m and p:= char k. Suppose

that |

i) [k:kPlcoo if p> 0

_ 11) Reg(R/pR) ={q/pRlqe Reg R, q DpR} if p # char R.

Then IS(R)P is a CM-reduction ideal for a certain positive

integer .

The result follovws from Propositions (1.7), (2.7).

-

3. Stability properties of Auslander-Reiten quivers under

base change

(3.1) Let (R,m) be a local CM-ring, k:= R/m, p:= char k and M,N

two indecomposable MCM R-modules. The R-linear map f is

irreducible if it is not an isomorphismﬂ»and:given any fac-
torization £ = gh in CM(R), g has a section or h has a retraction.
The AR-quiver T[(R) of R is a directed graph which has as
vertices the isomorphism classes of indecomposable MCM R—modﬁles,
and there is an arrow from the isomorphism class of M to that

of N provided there is an irreducible linear map from M to N.

Let FO(R) be the set of vertices of ["(R). The multiplicity

defines a map e r;(R)~—>W, M**?eR(M). If R is a domain and K

R:

is its fraction field then let rank

R’ T—O(R)'QIN be the map given



= N/IS(R)FN and so M
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by M—>dim, K ® M. Clearly ey = e(R) rankg by [Ma2) (14.8).

(3.2) Proposition: Suppose that

i) R is an excellent Wenselian local ring,
ii) R has bound properties on MCM modules. _
Let A be the completion of R with respect to I (R). Then the

base change functor A @)R-indces a bijection f"(R)-—— (A)

Proof: Clearly A is a CM-ring because the canonlcal map R—>A
is regular by i). First we prove that a F.g. R-module M is an
indecomposable MCM module iff A @)R M is an indecomposable MCM
A-module. Using the following elementary Lemma, it is enough to
show that if M is an indecomposable MCM R-module then A(E)R M
is 1ndecomposab1e over A.
(3,2.1) Lemma: Let B be a local CM-ring, M a f.g. B-module and C
a flat local B-algebra. Suppose that C is a CM-ring. Then

i) M is a MCM B-module iff C® 5 M is a MCM C-module,

ii) If C® g M is indecomposable then M is so.
By Prop031t10n (2.2) 1 (R)P is a CM-reduction 1dea1 for a certain
reiN and so R/IS(R) ® g M is still 1ndecomposab1e. As R/I_ (R)F
= A/IS(R)PA it follows that A(X)RM/IS(R) A(X)R M is indecomposable

and so A(X)R M is indecomposable by Nakayama's Lemma. If M,N are

two indecomposable MCM R-modules such that A(g)R M Z A(Z)R N

e M/T (R)™M 5 A ® ¢ M/IS(R)"A MEAG N/IS(R)PA® g N2
= = N, because IS(R)r is a CM-reduction fdeal.
Thus A(Z)R - induCes an injeétive map & : f" (R) —> | (A)

ol is also sur]ectlve by [El] Theorem 3 because a MCM A-module

is locally free on Spec A\ V(IS(A)) and IS(A) ﬁl (R)A  (see
(1.2) and (1.5)), the map R— A being regular by i)

Using (1.7) we get
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. (3.3) Corollary: Suppose that

i) (R,m) is an excellent reduced Henselian local ring and
[k:kPlew if pso, . _
1i) Reg(R/pR) ={q/pque,Reg R, q:)pR} if p # char R.
-Leﬁ A be the completion of R with respect to IS(R). Then the
base change functor A &)R- induces a bijection r‘O(R)——M-:)(A).
In particular # FO(R) = # PO(A).' | .
The above Corollary can be improved if we use Artin approxima-

tion theory (see [Ar] or [Po1]).

(3.4) Let n: B—>C be a morphism of rings. We call n algebraically

pure (see [Po1] § 3) if every finite system of polynomial

equations over B has a solution in B if it has one in C. Also

n is called strong algebraically pure (see [Pol](Q.l)) if for

R

every finite system of polynomials f from B[X], X=(Xg, 00 e X))
and for every finite set of finite systems of polyncmials
(gi)léiér in BEXY], v - (Yl""’Yt) the following conditions

are equivalent:

e S NS R R Y SRRy

1) f has a solution x in B such that for every i, 1<€i4r
the systen gi(x,y) has no solutionsin B,

2) f has a solution x in C such that for every i, 1£i#r the

il et et WA b b

.system gi(x,y)_has no solutions in C.
Suppose that B is Noetherian and let bC B be an ideal, C the
g ~ ~ completion of B with respect to b and n the completion map..

Then (B,b) has the property of Artin approximation (shortly (B,b)

is an AP-couple) if for every finite system of polynomials f in
; : B[X], X=(X1,...,XS), every Positive,integer e and every solution

x of f in C, there exists a solution xe of f in B such that



- 13 -

x ‘= x mod b®C. It is easy to see that (B,b) is an AP-couple

e

iff n is algebraically pure (see [Pol) § i). When B is local

and b its maximal ideal then (B,b§ is an AP-couﬁle tbo iff n is
strong algebraically pure (see [BNP] (5.1) whefe these morphisms
are called T"-existentially complete). If (B,b) is a Henselian

couple and n is regular then (B,b) is an AP-couple by [Po1] €1.2).

" (8.5) Lemma; Let A—=B be an algebraically pure morphism of

a

Noetherian rings and M,N two f.g. A-modules. Then B C)A.M =

B@ANover‘Bif‘FMé'Nover‘ A.
n - '
Proof: Let M 2 A"/(u), N2 A™/(v), u i = > i 1] j i 1
—_— . : j=1
z:: Vog€or T = 1,...,m', where ul]' Vg€ A and (ej) resp.
(e ) are canonlcal bases in A" resp. Al Let @ : A"— A" be a
I
11near A-map given by elkevé__ xJSe‘, where ijG.A. Then @
s=1
*induces a map f: M—>N iff there exist (Zir) in A such that
. m'
ar N
LQ(ui) = ﬁjl Z; Voo L.ee. _
= >
(1) U Xoiu o5 Z, V., dclZn, 1%scm.
=1 ij s g5 IEows .
Clearly f is an isomorphism iff there exists "W : Am-f>An‘given
0

vby el Z_ YgiCj ysj‘e,A suqh that qj_/_(v)C.’(u), (@Y -1)(e')C (v)

j=1
-and (qu7—1)(e)CL(u), l.e. there exist t_,, w ., w3i6—A such,that
- . .

521 VesYsj = i=h trluij' I€ncn o 1 0kn

m n'
S c o Bty T

n m'

51 Toifier 58 0 B 2 %Y. Mege -

where dss' denotes Kronecker's symbol. Thus M 2 N iff the

following system of polynomial equations:



n m
) = 1€i4n’ £g¢
- ullxjS - Z”vr_sL 1£ién , 1l%=st&m
. é£ Lis v
(%) é%i ns s - i Trluij' Ll oD
* % 5
m (§ n' : -
X. .Y s (i E W aUias 1€ 'en
22% I5 o 1] =1 13°° b
< S <£: Z V4
- 1o )
\—55% YsJst' ss’ :;1 Mol I=oys -

has a solution in A. Similarly B ® , M = B(E7A N as B-modules iff
(;) has a solution in B. But (*¥) has a solution in A iff it has
one in B because A—B is:algebraically pure.

(3.6) Lemma: Let h: A—>B be a morphism of Noetherian rings and

M a f.g. A-module. Suppose that either

'i) h is strong algebraically pure, or

ii) h is algebraically pure and B is the completion of A

et 2 A G A S R DU QRN S SO DA KR, LS

with respect to an ideal aCA contained in the Jacobson radical

of A.
Then B @DA M is an indecomposable B-module iff M is an indecomposa-
ble A-module.

Proof: Conserving the notations from the proof of (2.5) tor

M

N we note that

1) £ is idempotent iff (cp (9)(e) C(u), i.e. there exist

d . A such that

’ L - e
E;l js¥sr” Xir ={§1 djiuir’ L
2) f # 0,1 iff the following two systems of polynomials
n'
= A
;Zi ]1 is. st L hen
(62) & . = .
Q5050 = Xy 95, Thjustn

[
H]
=
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have no solutions in A with X = x. Thus M is decomposable iff:

the following system

]

n :
o 1 é&n' 1L s
2; 1] = Eé_ Zou 1£i¢n', 1%sn
= r=1 : :
(EJ oy, . sl :
- = i ré
ég; stxsr Xjr 521 A]i i : Jit ot

has a solution (x,z,d) for which the systems Gl(x,Q), Gz(x,Q')
have no solutions in A. A similar statement is true for B(DA M
and they'are equivalent if h is strong algebraically pure.

Now suppose that ii) holds. Then h is faithfully flat and
we obtain: M is indecomposable~if!3()A M is so (cf. (3.2.1)).
If B(:)A M is decomposable then it has an idempotent endo-
morphism # b,l which gives a solution (X,Z,d) of F in B. Since
(A,a) is an AP-couple, h being algebraically pure (see (3.4))
there exists a solution (x,z,d) of F in A such that (x,z,d)
= (§j§,3) mod aB. Let f be the idempotent endomorphism of M
given by x. Then A/a® , f 2 B/ab® g * because A/a 2 B/aB. By
Nakayama's Lemma (B/aB)(:)B £ Z 0,1 ahd so f£0,1, L.e. Mis
decomposable. » '
(3.7) Remark: When A is a local ring, a its maximal idéal and

B the completion of A with respect to a then h is strong al-

.gebraically pure if h is algebraically pure. Thus in the above

Lemma ii) may be a particular case of i).

(3.8) Proposition: Let (A,a) be an AP-couple and B the completion

of A with respect'to a. Suppose that A,B are local CM-rings.

-Then the base change functor B éDA— 1nduces an 1n]ect10n

= ) ),

The résult follows from Lemmas (3.5), (3.6).

(3.9) Lemma: Conserving the hypothesis of the above Proposition,
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let M, N be two indecomposable MCM A- modules and f: M— N an
irreducible A-map. Supposc that the base change functor B(:)A
induces a bijection {" (A) -——>f‘ (B) Then B®A f is an
irreducible B-map. |
Proof: By faithfully Flatnessl3QDA f is.nbt biject@ve.‘Let
[369,A £ =g h be a factorization in the category of MCM B4modu1es,
h :’B®A M—P, g: T’-——>B®A N. By hypothesis P 2 B®A P for
a MCM A-module P. Suppose that g has‘no section and h has nb
retraction. Then B/aSB(:)Ava has no section and B/asB®A h has
no retraction for a certaintsEHN by the following
(3.9.1) Lemma: Let (B,n) be;a Noetherian local ring, bcB an
ideal and u: M—N a B-liﬁeér map. Then there exists a positive
integer scN such that u has a retraction (resp. a section) iff
it has one modulo b®. :

As (A,a) is an AP-couple we can find a factorization f = g h,
h: M—>P, g:P—>N such that (8/a°8) ® , h % (8/a°8) b,
(8/a°8) ® , ¢
€3.5), (3.6)). Since A/a"

ne

(B/a°B) C)A g (the idea follows the proofs of

e

B/a®B it follows that (A/a®) ® h has
no retraction and (A/a®) ® g has no section. Thus h has no
retraction'and g has no section. Contradiction4(F is irreducible)!

Proof of (3.9.1): As in the proof of (3.5) we see that u has a

retraction (resp. a section) iff a certain linear system L of
equations over B has a solution in B. Let g_be the completioh
of B with respect to n. Then by a strong approximation Theorem
(cf. e.g. [Po1] (1.5) there exists a positive integer s¢iN such
that L has solutions in B iff it has solutlons in B/nsn.

If u has a retractlon (resp. a section) modulo b% then L has a

: : A
solution in B/bs. Thus L has a solution in %/nSB and so a solution



S
in B. Then by faithfully flatness L has a solution in B, i.e.

u has a retraction (resp. a section).

'(3.10) Theorem: Suppose that (R,m) is an excellent Henselian

‘local ring and A is the completion of R with respect to IS(R). :

Then the base change functor A QDR- induces an inclusion

M(R) C T(A) which is surjective on vertices. In particular

i R = FO(A)-

Proof: By hypothesis (R,IS(R)) is an AP-couple (cf. [Po1](1.3))
and thus A &) - induces an inclusion [(R) C r;(A) (e, (3.8))
which is in fact an equality by [E1] Theorem 3 (cf. the proof

of (4.2)). Now it is enough to apply Lemma (8.9).,

. (3.11) Corollary: Conserving the hypbthesis of Theorem (3.10)

suppose that

i) R is a Gorenstein isolated singularity and p = char R
(i.e. R is of equal characteristic)

ii) k is algebraically closed.
Then R is of finite CM-type iff its completion A is a simple
hypersurface singularity. ' :
Proof: Note that R is of finite CM-type iff A is a simple hyper-

surface singularity by [kn], [BGS] Theorem A and [6K}(1.4) since

# TR = # Ty

té:12) Corollary: Cdnserving the hypothesis of Theorem (3.10),
suppose that k = € and the completion B of R with respect to.m
is a hypersurface..Then R has &ountable infinite CM-type iff B
is a singﬁlarity of type Ay s+ Do

The result Fbllows from [BGS] Theorem B and our Theorem (3.10)
(3.13) Remark: Concerning Theorem (3.10), it would be also nice

to knoi when T(R) =[E@). Unfortunately it seems that Artin

frod 1457
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approximation theory does not help because the definition of

irreducible maps involves in fact an infinite set of equations

corresponding to all factorizations.

(3.14) Proposition: Let A be a flat local R—élgebra.such'that

mA is the maximal ideal of A. Suppose that
i) R is an excellent Henselian local ring,

ii) A is a CM-ring,

1ii) the residue field extension of R—>A is strong algebraically

pure (e.g. if k is algebraically closed).
Then the base change functor A @)R— induces an injective map

f;(R)-9 rL(A). In particular # [ (R) & # [ (A},

Proof: (R,m) is an AP-couple by [Pol] (1.3) and so the map

R—>A is strong algebraically pure by iii) (cf. [BNP] (5.6)).
Now apply Lemmas (3.5), (3.6).

(3.15) Remark: If R is not Henselian or iii) does not hold then
our Proposition does not hold in general:

(3.16) Example: 1) Let R=R [X,Y] ry yy/(x*+Y2),

Ar= € X, Y]y yy/(X 2V

Then M:= (X,Y)R is an 1ndecomposab1e MCM R-module but

A® 2 (X+iY)A ©® (X-iY)A is not. Moreover, # FO(R) = 2 and
" (A) = 3 by feEn] (2.1).
ii) Let R:="C[X, Y](X Y)/(Y -x2-x3) and A its henselization.

Clearly A contains a unit u such that u? = 1+4X. Then M:= (R

is an indecomposable MCM R-module but A ® r M = (Y-uX)A ®
~
® (Y+uX)A is not. Also note that # [ (A) = [_(A) = 3, A being

the completion of A (see (3.10)).

.
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4. The Brauer-Thrall conjectures on isolated sinqularities

-

Let (R,m) be a MHenselian local CM-ring, k= R/m, p:= char k.

We suppose that R is an isolated singularity, i.e. Is(R) = m,
(4.1) Proposition: Let ["° be a connected component of F(R);
Suppose that

i) R has bound properties on MCM modules,

ii) T° is of boﬁnded multiplicity type, i.e. all indecomposable
MCM R-modules M whose isomorphic classes are vertices in =2 have
multiplicity e(M) £ s for a certain cdnstant integer s = s(f~o).
Then [T(R) =1"° and M(R) is a finite graph.

Proof: By Proposition (2.7) there is a positive integer r such

that m" is a Dieterich reductioﬁ ideal, i.e., a CM-reduction ideal
which is m-primary. Now it is enough to follow [Po2] (5.4) (in

fact the ideas come from [Di] Proposition 2 and [Yo] Theorem (1.1)).

(4.2) Corollary: Suppose that

i) R has bound properties on MCM modules,
"~ ii) R has infinite CM-type.
Then there exist MCM R-modules of arbitrarily high multiplicity

(or rank if R is a domain).

(4.3) Corollary: ([PoZ}(l.Z)) Suppose that
i) R is an excellent ring and [k:kP]<oz if p >0,

ii) Reg(R/pR) ={q/pRlgecReg R, g-O>pR} if pR # O.
Then the first Brauer-Thrall conjecture is valid for R, i.e., if
R has infinite CM-type then there exist MCM R-modulas of arbitrarily
high multiplicity (or rank if R is a domain).

(4.4) Proposition: Suppose that

i) (R,m) is a two dimensional excellent Gorenstein ring

ii) R has bound properties on MCM modules,
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iii) the divisor class grodp C1(R) of R is infinite.

Then for all n¢iN, n ® 1, there are infinitely many isomorphism

 classes of indecdmposable MCM RQmodules of rank n over R. In

. particular, the second Brauer-Thrall conjecture holds for R,

i.e., if R is of infinite CM-type then for arbitrarily high
positive integers n, there exist infinitely many vertices in
FB(R) with multiplicity n (or rank n if R is a domain).
Proof: Let K be the fraction field of R and A a Weil divisor
on Spec R. Then JZX:={XG Kldiv x 2 ﬁ% is a reflexive R-module
of rank one and the correspondence [&rf>%& defipes an injec-
tive map u: C1(R)— T _(R). |

Fix oo €Imu. Let [, be the connected component of ol in

"["(R), I the set of vertices of I, and M an indecomposable MCM

R-module whose isomorphism class M belongs to I. T &M £ R then
there exists an almost split séquence

0 >P —E —>M—"20
because R is an isolated singularity (cf. [Au3]). As R is a two
dimensional Gorenstein ring we obtain P = M by [Aul]) 11I
Proposition (1.8) (cf. also [Yo)a14 or [Re])-

Let N be an indecomposable'MCM R-module. If there is an

irreducible map N—>M (resp. P ® M —>N) then it factorizes by

"E—sM (resp. M—E) and thus N is a direct summand in E.

The converse is also true (cf. e.g. [Re] (3.2)) and in particular
1) there exists an irreducible map N—> M iff there exists

an irreducible map M = N (so we can consider instead of .E;

its undirected graph IE;{ obtained by removing all the loops and

forgetting the direction of the arrows)..

~N

2) 2 rankpM = rankgE > rankpN,

R

| =2[M



S .

where N runs through the vertices of lﬁ;l which are incident
" to M.

For M = R the fundamental sequence.(an exact sequence of this

form corresponding to a nonzero element of Exts(k,R) =
GHK (Au2] § 6 or [AR) § 1 or [Re]) shows that 2) is valid also

In this case. v . :

We proceed with a combinatorial remark (cf. also [HPR]).

Let ["= ( bl 1) be an undirected graph, f; the set of vertices,
Fl £ f; X r;'the set of edges ((i,i) ¢,FH for all ié.fﬁo and
(i 1) e iﬂl HhfeCide ). [ (Fg,f“i) is a subgraph of [
if f‘(')C r"o and f"i ={(i,j)6 f—'lli,je P(',IJ . A function r: FO‘")lN
s subadditive if ’ '

(B) 2 p(i) > : nGj)  forall Qe
N

(4.5)4Lemma: Assume that

i) [ is connected,
ii) r is subadditive,

iii) r is not bounded and has minimal value 1.

Then [Mis Ad}: 1 > 5 and r(i) = i for all i.

®roof: Note that (*) implies: :

Ga) 2r(d) 2 ape= #liel NG, §)e Oy, e 1,

{b) (Monotony) Let ;‘_—3“‘“; be a subgraph of ['. Then

o r(i) 2 r(j) implies r(j) 2 r(s) (Indeed, by (*) we have

2 () 2 - pi(i) + rls), thus 2 r(j) 2 r(jlarGs)).
(t,j)e f‘-l : .

The assertion of the Lemma immediately follows from

{**) For all n 2 1 there is a subgraph

o] © = o——v
©

o= o e e @o

1 2. 3 n-1 n

of I’ such that
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() for 1€jén-1, d; = 1 if § = 1 and dj = 2 1f §>1,

(d) ri(j) = ] Bor 12 2.

(Then [ contains a subgraph A, , which must be [ itself by c)

e ~‘ 3
.since | is connected.)

We prove (**) by induction on n. If n ='1, choose an element
1€.r1o such that r(1) =-1. Now assume (**) is true for n 2 1.

Then we find a subgraph

dn-l for n>1,

- where t =
d for n = 1,
n
By (*) we have 3
t
2n2np-1+ > pGL ).,
s=1 -
and one of the numbers r(is) is >n (otherwise r is bounded on
t
° ° ° ) r o ° 13 AL
r; by (b)). This 1mp;1es n+l 2 é:l r(1s) S0, lues izl g o

for n = 1, respectively, dn = 2 for n>1. If we denote i1 by

n+l, we obtain r(n+l) = n+l, which completes the proof.

Back to our Proposition, we want to apply (4.5) to (| for

r:= rank. By 2) r is subadditive. If r is bounded we obtain

E&~= ["(R) finite (cf. (5.1)) and thus Cl1(R) finite, contradiction!

Thus r is unbounded. By (4.5) [I,| = A . and rank (i) = i for

o0
every 1i.
Let o' € Im u, ' # ¢ . Then o' ¢ I because E; contains only
one vertex of rank one. Thus qxf\ﬁk. = f and so for each nelN

we find # rank—l({n}) 24 C1(R):

(4.6) Corollary: Suppose that
i) (R,m) is a two dimensional excellent Gorenstein ring,

4
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1i) [: kp]400 if p >0, .
1ii) Reg (R/pR) -{q/pquc,Reg R, q)(ﬂ?} if p # char R
fv)): Cl(R) is infinite.
Then for all nelN, n 2 1 there are infinitély many isomorphism

classes of indecomposable MCM R-modules of rank n. In particular

‘the: second Brauer-Thrall conjecture holds.

The result follows from (1.7) and (4.5)

(4.6.1) Remark: Dieterich shows in [Di] Theorem 20, that the

LN

second Brauer-Thrall conjecture is valid in arpitrary dimension

for complete isolated hypersurface singularities over algebraically
closed fields of characteristic # 2. Using our (3.10) we are able
to extend it for a large class of excellent henselian local rings.
However in the two dimensional case our Corollary (4.6) gives

a shafper version.

(4.7) Cocollary: let n be a positivé integer. Suppose that

i) (R,m) is a two dimensional excellent Gorenstein ring

'ii) R is a k-algebra and Eéalgebraically closed.

Then the following conditions are equivalent:

1) R is not a rational double point,

2) There are inFinitely mény isomorphism classes of
indecomposable MCM R-modules of rank n.
Proof: Byva well-known result (cf. e.g. [Ba]) R is not a rational
double point iff R is not rational (R is Gorenstein!) and thus
166 CIER) is impinite efi. L] (17.4), (16.2)). Hhus 1) — i i)
follows from the above Corollary. On the other hand, i1) implies:
R is of infinite CM-type and thus R is not a rational double

point by [AV] (1.11) (see also [EK]) and our (3.3) or (3.10)).
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