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AB S T RAC T

In the paper we bresent the‘microstructural ba-
sis, the initial macroscopical formulations, and a possible
axiomatic reconstruction of the elastoviscoplastic model for
metals, based on the use of the local current relaxed confi-
gurations, .

The structural analysis and ‘the éxperimental

data show that the utilization of these configurations offers

avantages for the formulation of the material laws, when the
deformations‘are moderately large (30%).

We think our review paper constitute a concise,
hlstorlcal and: eritical exposition of the main stages, con-
tributions and results, which led, during 1966-1972, to the
formulation of the fundamental ideas lying at the basis of
the model. } |

We hope that the paper shows clearly the role

played by LEE, LIU, TEODOSIU, SIDOROFF, MANDEL and KRATOCH-

VIL in the first formulation of the ﬁheory between 1966-1972,

and the contribution of DAFALIAS and LORET to the develop~
ment of the model between 1983-1985,
’ The paper is divided into 5 chapters.
In the first one we present concisely the mi-

crostructural basis of the model.

- In the second chapter, based on the papers due
O LEE, LIy, TEODOSIU SIDOROFF, MANDEL, KRATOCHVIL, HALPHEN
and NOLL, we deal with the axlomatic presentation éf the mo-

del together with the principal properties following from
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the hypotheses and definitions adepted.

Chapter 3 is devoted to the analysis played by
the plastic rotation and by the internal state variables in
modelling the anisotropic hardening of the structural isotro-
pic materials,

In the forst chapter, based on the results due
to PIPKIN, RIVLIN, OWEN, SILHAVY, LUCHESI and PODIO-GUIDUICGLI,
we present the model of the materials with elastic range, and
we analyse the connection existing between the two models.

The last chapter presents some results obtained
between 1985-1988 concerning models based on the local cur-
rent relaxed configurations and which were published in In-
ternational Journal of Plasticity. As we think, our discus-
sioﬁ reveals the unsatisfactory and confusing situation exis-

ting in the theory today.
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Introduction

In this review paper'we present briefly the mi~
crostructural basis, the “initial phenomenological formula-
tions, and, a possible axiomatic reconstruction of the elas-
toviscoplastic model for metals,based on the local current
relaxed cbnfigurations concept. Both, the structural analy-
sis based on the dislocations theory, and the éonvincing ex-
perimental data, show that the utilization of these configu-
rations offers significant advantages for the formulation of
the constitutive and evolution laws, when the deformations
are large, but moderate,

In elaborating this paper we have tried to com-
ply-with the main A.M.R. recommendations: "Inclusion of ori-
ginal research should not per se invalidate an articole for
A.M.R., but its <<review>> character should be dominant",
and "a particular point of view or slant is okay if valid,
openly stated, and interesting and useful".

In the framework of these recommendations, we
think that our exposition constitutes a concise, historical
and critical presentation of the main staggs, contributions
and results, which led, during 1966=1972, to the materiali-
zation of the fundamental ideas lying at the basis of the mo-
del. .

We hope that the paper shows cleérly and in a
convincing way the role played by Lee, Liu, Teodosiu, Side-
roff, Mandel, Kratochvil in the first formulations of the

theory between 1966-1972, and the important contribution of

R T e B P
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Dafalias and Loret to the development of the model between

1983~1985,

Taking into account the first recommendation, we
consider that the inclusion of our research regarding the
axiomatic reconstruction of the model in this review consti-
tutes a useful development of the theory dealt in this paper.
The eritical analysis carried out in this review, using re-
sults obtained from the emphasized a#iomatic system and the
properties inferred on the basis of the adopted hypotheses,
has had several aims: é) to show explicitly the suppositions
tacitly assumed by the founders of the model; b) to underli-
ne the constitutive nature of the existence of the local re-
laxed configurations; c) to find an adequate mathematical
language in order to formulate the hypotheses based on the
essential structural facts; d) to eliminate~the ambiguities,
vagueness, errors, suppositions and unacceptable conclusions
which are present in the considerations of both those who
founded the model and those who contributed to its develop-
ment; e) to emphasize the physical basis and the experimen-
tal facts which motivate and justify the assumed hypotheses,
and to outline in the process the limits of the applicabili-
ty of the model; f) to point out the decisive role played
by thelset of local, current, relaxed, isocl@nig configura-
tions (L.c.r.i.c) in constructing the theory,:' in defining
correctly the elastic and plastic deformations, in formula-

ting the material laws,in underlying the fact that both the elastic and
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Cand plastic deformations are not purely kinematic concepts,and their correct

presentatim requires anhiadequate constitutive framework. The omis~-
sion of this facts lies at the basis of the inaccurate for-
mulations, erroneus interpretations ana unacceétable suppo-
sitions present in many papers devoted to the model analysed
here, such as: 1) disputes on the uniqueness or non-unique-
ness of the current relaxed configurations; 2) the 'proof”

of the isotropy of all material functions (see for instance
Sidoroff (1971), Casey, Naghdi (1980), (15819 Dafalias(1983),
(1985)); 3) removing the "non-uniqueness" on the basis of ge-
nerally unacceptable criteria, with a limited domain of ap-
plicability (see for instance Lee (1969), Lee. McMecking
(1980), Lubarda, Lee (1981 )"

We hope that our axiomatic reconstruction succee-
des in showing convincingly the unacceptability of fhe facts
underlined at 1)-3),.

In this sense, we belive that our paper answers
the second recommendation, i.e. to be useful;and interesting
'ég‘those who want to understand the essence of the model.

The paper is divided into 5 chapters.

In the first one; Qe present concisely the micro-
strucfural basis of the model, the micro-and macroarguments
which lie at thé basis of the introduction of elastic and
plastic deformations together with the specification of the

constitutive framework.
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In the second chapter; based on the papers due
to Lee, Liu (1967), (1968), Lee (1969), (1970), Teodosiu(1970),
(1975), Sidqroff (L970), (1971), (1973). (1974); Mandel (1971),
(1972),(1973), (1974), (1982), Kratochyvil (1971),(1972),(1974),
Halphen (1975), Teodosiu, Sidoroff (1976), we deal with the
axiomatic reconstruction of the model together with the pEin=
Vcipal properties following from the hypotheses and definitions
.adopted here.

Chapter 3 is devoted to the analysis of the role
played by the plastic rotation and the internal state varia-
bles (i.v.s.) in modelling the anisotropic hardering of the
structural isotropic materials. The analysis outlines the 1li-
mits of the various models.

In the forth chapter, based on the results due
to Pipkin, Rivlin (1971), Owen (1968), (1970),(1974), Silha~
vy (1977), Luccesi, Podio=-Guidugli (1986), we briefly pre- -
sent the model of the materials with elastic range, and we
analyse the connection between their model and our model,

The last chapter presents some results‘obtained
between 1985-1988 concerning models based on the local current
relaxed configurations and which were published in Int.J.of Plas-
ticity., The diseussion reveals the unsatisfacteory and confu-
sing situation existing in the theory.

In the paper we do not deal with the problems re-
laﬁed to the existence of viscoplastic potential (see for
instance Rice (1971), Mandel (1971d), Nguyen, Halphen (1973),

(1975), Teodosiu, Sideoroft (1976)).
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The refference l&st'is not exhaustive, but it
contains, we hope, the main contributions leading~during the

last twenty five years - to the foundation of the analysed

model,



Chap.l. The interference of the microstructure

with the macrostructure

l.1. Physical basis; dislocations

In all what follows.we denote by F,0,a (ordj),
T and ue the deformation gradient, the absolute temperature,
the set of the internal state variables, tﬁe Cauchy’s stress
and the shear modulus, respectively. The meaning of other
symbols will be given simultaneously with their occurence.

The main problem of the macroscopic theories of
plasticity is to establish the constitutive and evolution
equations. Two types of theories have been developed (1) the

history type and (2) the internal state type (see Kroner,

Teodosiu (1972)):

1) In the history type theories the material‘is
specified by a response functional, of a priori unknown form,
usually taken as a local time functioﬁal of the strain. An
essential difficulty arises (in all these theories): in order
to obtain the unknown functional from experimen£s, one must
aéply in these experiments, all possible load histories. The-
refore thé specification of such functionals is practically
an almost impossible task.

2) "It is therefore, preferable to replace the
past history (say,.for instance) of F and 0 by the present
values of some internal vafiables a(t), generally a set of

scalars and/or tensors, which should account, in a condensed



- g o
and simplified way, either for the past inelastic history of
F and 0, or for the current structural'arrangement it has
produced at the microscale" (Teodosiu, Sidoroff (1986)).

The complex behaviour of metals derives from
the complexity of their micrcétructural rearrangement and
consequently any phenomenological theory must contain micro-
structural informations, relevant for certain classes of ma-
terials and deformation processes and able to aéheive a sim-
plified macroscopic description of the microstruchral phy-
sical mechanisms.

The interference of the microstructure with the

macrostructure can be acheived, for instance in the frame-

work of the models with internal state variables, elaborated

for metals. The intermnal state variables are mathematically
described by scalar, vectorial or tensorial .fields, and their
present values replace, in a simplified manner, the depen-
dence on the history of the deformation (or of the stress)
and of the temperature. .

The problem is to identifie the internal state
variables with a sufficiently small number of parameters,
which would be relevant for the microstructural rearrangement
(see for instance Kréger (1958), (1963), (1970), Kroner,
Teodosiu (1972), Teodosiu (1982), Sidoroff, Teodosiu (1986).

"The physical research on plastic and viscoplas-
tic, i.e. crystalline materials, has revealed the existence

of an internal mechanical state which is the lattice defect

state. The quantities used for the description of this state
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are calléd internal quantities, From the phenomenological
standpoint they are hidden quantities becéuse'devices on a
microscopic scale are necessary to make these quantities vi-
sible. We call internal state variagles those quantities
which vary during the experiments, in contrast to internal
state parameters, which also specify the internal state, but
remain constant during the deformation" (Krdner, Teodosiu
(1972)).

"A theory which claims to be a.physical theory
must not leave open the physical meaning of the internal
variables. It is above all the physical identification of
these variables which fills the frame of the theory with
physical live" (Krdner, Teodosiu (1972))., Whendealing with
plaSticity the most important variable part of the internal

state is the dislocation state.

The physical research shows that the plasticity

and the viscoplasticity are typical properties of the crys-

talline materials and evidence the fact that the defects
(dislocations, point defects, grains, etc,) are the princi-

pal factors of certain elementary processes which can be

observed at macroscopic level via the permanent deformations

produced. From among the defects of the crystalline structu-

re, the dislocations are those which by their motion and ge-

neration produce the plastic permanent deformations and in-
volve changes of the interna; mechanical structure during
the deformation process.

If during'deformation the distribution of the
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dislocations alone varies, then as internal state variables
involved in the theory we choose those which specify the dis-
location arrangement.

In the dislocation thedrz, a domain belonging

to the physics of solids, the connecﬁion between the plastic

properties of crystals and their atomic structure is inves-

tigated.
The starting point of this theory 'is linked to
the papers of Taylor, Orowan and Polényi in the early thir-

ties which attempted to elucidate the atomic mechanism of the

slip in crystals. : -

The fundamental aspects of the slip, as given
by Cottrell (1964) are:

a) One side of the crystal, as a whole, slips
on a slip surface with respect to the other part, along a

determined direction, called the slip direction. Often this

surface is a plane and, then, it is called the slip plane.

b) The distance between the slip planes and the
amount of the slip produced in various planes are usually

~ in the range 108 W o o 10 0

-10 cm.., respectively.
c) The slip direction always coincides (prac-
tically) with the direction of the lattice vector situated
on the plane of maximum packing.
d) Frequently, but not always, the slip plane
is fhat in which the packing is maximum, but one can obser-—

ve smaller slips in other crystallografic planes, as well.

e) The slip in a system (slip plane and slip
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direction) begins when the tangential stress in the slip pla-

ne reaches a critical value, called the reduced tangential

stress (the Schmid law). The influence of the stress compo-
nent normal to the slip plane on the begining of the slip can
be neglected within the usual limits of the standard experi-
ments (stresses up to 10'2u?). -

£f) The critiéal value of the reduced tangential
stress is varying (for a given specimen) within large limits,
depending on the temperature and on the rate of deformation.
For instance, for pure metals (Cu, Al, Zn) it ranges between
lO—Sp? o 10—4ug. _ £

g) Through out the slip process on the slip pla—-
ne the material retains its crystalline structure. This:can
be éstablished by the fact that the slip takes &lways place
mainly along the crystalline direction on the slip plane
which corresponds to a maximum packing even if the tangential
stress is not acting exactly in the corresponding direction.
By icontrast s it the metal is melted, which means that the
crystalline structure is destroyed, then the slip is produ-
ced along the direction in which the tangential stress is
maximum.

In a finite deformation theory of elastoplasti-
city of single crystals we must also take into account (see
Teodosiu, Sidoroff (1976)) that:

b Despiie che high dislocation density, the
region in which the crystalline struéture is deteriorated,

represents an infinitesimal percentage of the total volume.



This allows us to define a mean chstallografic orientation

for each macroscopic volume element.

1) The dislocationS‘Qassing through a volume

element produce an irreversible permanent change of its sha-

pe (the Viscoplastic deformation)and do not change signifi-

cantly the mean orientation of the crystalline structure. In

the case of the non-uniform viscoplastic deformations, the

deformations of the volume elements are generally incompati-

ble with each other and this brings about the elastic defor-

mations and the residual stresses,

j) The self-stresses produced by the disIoca-
tions remaining inside a volume element hinder the motion of
dislocations. This leads to the hardening of the material,
phenbmenon which is ohserved at a macroscopic level.

k) Although the elementary slip produced by
each dislocation is discontinuous, when passing from one par-
ticle to the other, the piastic deformation, as well the elas-

tic deformation, may be considered continuous at macrescopic

level, due to the high dislocation density.

In the theories of plasticity the most important
variable part of the internal mechanical state is the state
of dislocations. Consequently, we must choose those variables

which are able to describethis state at macroscopic level.

1.2, Elastic and plastic deformations

Further on, we present some of the considera-

tions given by Teodosiu (1970) .concerning the concepts of
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plastic and elastié deformations, and which were introduced
on the basis of the thsical and experimeﬁtal argumetns a)-
ki,

We consider a single crystal B which at the mo-
ment t=0 is free of external loading and which is at the uni-
form absolute temperature eo in its global reference configu-
ration ko; We assume that B contains defects, as disloca-
tions, which may oroduce residual stresses (corresponding to
(1)). Consequently, the body has not a stress-free global con-
figuration.

Let X be an arbitrary particle of B, and“NX a ma-
terial neighbourhood of X. This neighbourhood is cQgsen small
. in comparison with dimension of B in.ko, but large with respect
to the mean distance between defects (such type of neighbour-
hood exists according to (b)).

We assume that, at least in principle, we may cut
out from the body this neighbourhood NX anid allow it te relax,
mentaining constant both the temperature and the (relativ) po-
sition of dislocations which are contained in NX' We mention
that in practice the dislocations configuration can be kept
nearly constant by irradiating the crystals with fast neutrons
before unloading (see for instance Teodosiu (1975)).

The configuration KO obtained by such a procedure
will be called the local relaxed configuration (l.r.c.) of
Ny (see Fig.l).

Pig,l
We underline that the existence of the configu-~

ration Kyr in which the macroscopic stress is zero, is a cons-



tutive assumption.

Now we suppose that the singie crystal is de-
formed under an external loading- and, possible, under a non-
ﬁniform temperature field., Let k be a current configuration
of B attime t. We denote by F the deformation gradient from
the initial global configuration ko to the current gldbal
~configuration k., |
We assume that, at least in principle, at any

time t>0 we can repeate the local relaxation procedure used

1)
t

configuration of NX Obtained at the moment t, by the follo-

at the initial moment, We denote by K the local relaxed
wing procedure: we cut out NX from B by bringing the tempe-
rature back to its initial value, and by reducing instanta-
neoﬁsly the macroscopic stress to zero, but keeping at the
same time the (relativ) positions and values of all existing
defects in NX constant (Kroner, Teodosiu (1972)).

We also assume that the local relaxed configu-
rations are defined except for a rigid rotation. (This hypo-
thesis has an obviously intuitive character).

Since the reversible elastic deformation re-
presents the deformation of the crystalline lattice (which
- remains unchanged by the dislocation motion, according to
(h).). the indeterhination in choosing the local current con-

figuration has to be eliminated. We accomplish this task by

assuming that in all local current relaxed cdnfigurations

l)Whenever confusions are not likely to occur we shall use
K instead of Kt.
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the crystalline directions are parallel to each other.

Once K is fixed, this criterion determines
uniquelly the set of local current relaxed configurations,-
apart from ithe ortogonal maps contained in the material sym-
metry group of the analised particle. .

The configurations K, constructed by this pro-

=
cedure will be called local, current, relaxed, isoclinic
configuratiens (lL.c.r . l.c.).

As pointed out by Kratochvil (1971), the use

of the local, current, relaxed, isoclinic configuration en-

sures the invariance of the plastic deformation at a change

of frame. The introduction of this crystallografic triad in
order to define correctly, on a physically motivated basis,
the elastic and plastic deformations is due to Teodosiu
(1970), Mandel (1971), (l972a,b); (1973) and Kratochvil
(1971). "

According to the dhoice_made the local deforma-
tion from K to k describes the deformation of the crystalli-
ne lattice (see (g}, (h), (1)) and further "the glide direc-
~tionsvand planes in the configuration K wili be parallel to
those in the configuration Ky v and at any t" (Teodosiu
(1970)1) .

Therefore the transformation of NX from K_ to K,
characterizes the permanent deformation of N, (according to
(a),(1)).

Taking into account the above remarks, we shall

call the local deformation E from K to k, the current elastic
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deformation and the local deformation P from K, to K the cur-
18

rent plastic deformation, respectively.

"Let us also observe that, since we accept the
constitutive assumption that the rigid body rotations of the
relaxed configurations can be distinct from one particle to
the other, it is necessary to choose in a rational and not
an arbitrary manner, the relaxed configurations in order to

ensure the continuity of the mappings XeB—E(X,t), P(X,t)

for any moment t, with respect to XeB} this means a certain
regularity with respect to the spatial variables. This requi-
rement provides an additional argument for the the use of
certain criteria in order to select the local relaxed con-
figurations.

The use of l.c.r.i. configurations may ensure
the reguired regularity. N

1

The multiplicative decomposition F=EPE; of the

deformation gradient from ko to k follows from the wayin;Mﬁch
E and P have been introduced (see Fig.l).
Fig.2 shows the essential distinction between
the elastic and plastic deformations.
Big2.
In contrast with the elastic deformation the
plastic permanent deformation does not change the ‘mean orien-

.tation of the crystalline lattice and does not deform it.

1) concerning the precise definitions of F,E and P we shall
revert further on. The purpose of these considerations is

the physical justification of the mathematical definitions, which

will be introduced. :
f £ u : q\{
g
\/Uw ‘
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In particular, by pure elastic rotation ﬁhe lattice is rota-
ted together with NX, by pure eléstic strain the lattice is
deformed together with NX’ by pure plastic rotation the ma-

terial element is rotated, but in contrast with the case of

pure elastic rotation, the lattice is not rotated together

with NX, by pure plastic deformation the material element

is deformed, but in contrast with the case of pure elastic '

deéformation the lattice is not deformed together with Ng
(see Teodosiu (1970), Sods, Teodosiu (19839 .)
Eckart (1948), Eglit (1960), Sedov (1962) were

the first to use time-dependent, local, natural (relaxed)

configurations, like K, in order to separate the elastic
from the inelastic part of total deformation.

Lee, Liu (1967), (1968), Fox (1968 a,b) were the
first to introduce independently the multiplicative decompo-
sition rule for F in the special case EO=I, I being the unit
tensor.

Teodosiu (1970), Rice (1971) were the first to
introduce independently the multiplicative decomposition rule
in the general case EO#I.

Teodosiu (1970), Rice (1971), Mandel (1971) for
the first time and iﬁaependently have considered the special
choice‘of the orientation of the local relaxed configura;
tions K.

1.3. The constitutive and evolution equations

An extensive literature exists concerning the
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constitutive theory of thermoelastoviscoplastic deformation
of the materials with intermediate relaxed configurations and
"internal state variables, We shall limit ourselves to the
main results obtained till 1983,

In order to describe the behaviour of materials,

the authors use a thermoelastic constitutive equation.T=

=f(E,0,a), based on the l.c.r.c, which is supplemented by the
evolution equations for the plastic deformation and for the
set a of the internal state variables,

Mandel (1971 d, Cap.3, §2) pointed out: "If har-—
dening does not exists the state is the same in all succesi-
ve relaxed configurations. The cylindrical specimen can be
very much plastically deformed and its actual state is inde-

TE and not on FTF".

pendent on this stretching, depending on E

Lee and Liu (1968) emphasized: "The plastic de-
formation is given by change in permanent shape of the body
from the initial configuration, considered to have ﬁniform
temperature, to the current state modified by removal of elas-
tic strain and the thermal expansion by reducing the entire
body again to the initial‘temperature“.

.~ The two authors underline: "In a problem, for
which the elastic and plastic strains are both finite, the
inclusion of the unstressed cénfiguration is needed to achi~
ve the simplification, concerning the use of unchanged ther-
‘mo-elastic constants".

This fact, based on the experimental data, shows

the importance of the using of the local relaxed configura-
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tions in order to introduce the elastic and plastic deforma-
tions. In this way, the use of the standard thermoelastic
constitutive equations specifying the relation between the
stress and the elastic deformation becomes’possible. The fact
that in spate of the plastic flow the "elastic constants ba-
sed on the true stress and natural strain (determinéd by
using the_relaxed configurations) are effectively unchanged"
(see Lee, Liu (1968)), reveals the advantage of utilizing the
elastic deformation E determined via the plastically deformed
configuration K,

Since "unloading a plastically deformed dey
will usually leave residual.stress and to unstress all elements
it would be necessary to dissect the body into infinitesimal
volume elements, which will not fit fogether without the elas-
tic deformations associated with the residual stresg'. lee
and Liu (1968) evidence that E and P do not represent the
gradients of any global deformation of the body.

Bor this redson, in order to define rigorously
the elastic and the plastic parts of the deformation, it is
-essential to use the concepts of local configuration and of
local deformatioﬁ, introduced by Noll (1967), (1968), (1972,
(19735, (1974},

We insist on the fact that the model based on
the local, current, relaxed, isoclinic configurations is jus-

tified by the experimegtal fact that "the effective uncoupling

'between elastic and plastic laws arises if the unstressed
(permanently, plastically deformied) configuration is uded as

a reference state for deformation changes" (Lee, Germain(1974)).
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Sihce it seems to us essentilal, we illustrate
by one dimensional tests results thevabove.general considera-
tions (see also Haupt (1984)) of Lee, Liu (1967), (1968), Lee
(1969), (1970), Lee, Germain (1974). In the case of the variant
adopted by Lee, Liu (1967), (1968), Teodosiu (1970), Mandel
(1971), (1972), the élastic deformation measured with respect
to the L.eor:loc, is e = (1215 /1P, where 1 and 3P aie the i
nal length and the length of the specimen determined after
unloading, respectivelly, i.e. for the axial stress 0=0 and
for e=eo, when the deformation staﬁe is supposed to be homo-
geneous. In the Green, Naghdi (1965), (1968) considerations,
the elastic deformation is referred to the initial configura-
~tion and it is expressed by Ee=(l—lp)/lo, where lO is the
initial length of the specimen. Since the total deformation
is e=(l—lo)/lo, in the first case we get e=eP+e®(1+eP) and
in the second case €=&5+¢eP where ep=(lp—lo)/lo represents the
permanent, plastic deformation. Consequently, there exists
the relationship Ee#ee(l+ep) between the two "elastic" defor-
mations € dnd 5. We suppose that the elastic conctititive
équation is linear and of the form 0=Ce® in the first case,

and o=E€e in the second one. If C is independent on ep,_accor—

ding to experimental data, then it results that C depends ine-
vitably on P via the relation G=c/(1+€P).

The model considered here is useful in those ca-
ses in which the use of €® as a measure of elastic deformation
leads to a very weak dependence (which can be neglected) of

C on sp.
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We consider that the dispute (see Lee, Germain
(1974), Nemat-Nasser (1982), Lehmann (1982)) between the aut-

hors which made their option for one of these alternatives is

laking any principled basis: the deformation (strain) is a pu-
7 rely geometric concept and the characterisation of tene of its
measure as elastic, is possible, justified and legitimate on-

ly in a constitutive framework. The criteria of utility, sym-

plicity or rationality of the recalled type, which are moti-
vated by experimental data must play a decissive role in the
choosing the measure of elastic deformation.

Our point of view is clearly emphasized by the
following remark made by Lee and Germain (1974): "This state-
- ment by Lee concerning the non-aditivity of elastic and plas-

tic strains at finite deformation is misleading, since it was

made on the assumption unstated that the plastic strain was
expressed as permanent deformation from the undeformed state,
and elastic strains deformation from the plastically deformed

unstressed reference state, in order to achieve effective

uncoupling of elastic and plastic properties. Additivity can

be achieved at finite strain if such uncoupling is not deman-

ded, as illustrated by Green, Naghdi’s theory for instance".

It is clear that in the end only the experiment
decides, if the use of ée instead of € allows the uncoupling.
The dislocations theory sugestes this alternative and speaks
against .

Mandel (1971d) furnished ﬁhe conclusive argu-

ments, based on the de dislocation theory, in favour of models



: - 9a .

using the l.c.r.i.c. He pointed out that the orientation of

the currentj relaxed configuration is specified by ehe direc:
tor frame, the existence and mechanical significance of which
are given by (g), (h), (i). "A director frame is a frame asso-
ciated with the atomic lattice (taken in a relaxed state),

the elastic deformation is the deformation of crystalline
lattice".

The following explanation of constitutive natu-
re is essential to understand the model (Mandel (1971 d4)):
"Using those relaxed configurations for which the director
frame (the crystalografic axes or the mean crystalografic
axes) is keeping fixed the direction, the internal energy,
entropy and free energy are functions of (1/2)(ETE—I),@ and
{ajf alone".

We point out that E is a local deformation from
l.c.r.i.c. K to the actual configurationy(,,t). Therefore, li-
ke Lee and Liu (1967), (1968), Mandel assumes that it is the
use of K which ensures the explicit independence of the cons-
titutive relations on the preceeding, permanent, plastic defor-
mation P.

Like Teodosiu (1970), but in contrast with Lee
and Liu (1967), (1968), Mandel shows that the use of l.c.r.i.c.
leads to a model in which the role of the history of the to-

. tal deformation (unknown in general) can be eliminated only
if the internal state variables (in the Krdner'’s sense (1963))
are introduced. In order to specify the evolution of these

quantities, Mandel states the valability of some evolution
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equations, but utilizing also the local, current, relexed,
isoclinic configurations. At the same timé, based on ihe mi-
crostructural considerations concerning the plastic deforma-
tion produced by the dislocation motion Teodosiu (1990),
Mandel (1971,b,d), Kratochvil (1971) are the first to state
that the evolution equation for the plastic deformatibn must
be given for both the symmetric and antisymmetric parts of

"the rate of plastic deformation", @Phl, L

Taking into account the experimental data (with
limited valability, depending on the values of the imposed
deformations) Mandel in hi% theory assumes that any consti-
tuti&e function has an invariant form (with respect to time)
if it ds velative to the L.c.r. iseclinie configuration.
(This experimental evidence lies at the basis of our tempo-
ral invariance assumption.)

We point out that the existence of l.c.rii. confi=
gurations, as well as the independence of the material res-
ponse on' the preéeeding plastic deforﬁation, (e depends on
E - the elastic deformation) are constitutive hypothesis.
_Consequently, these assumptions determine thé domain of the
valability of the model (which must be experimentally deter-
mined) and the manner in which the elastic and plastic defor-
mations are to be determined. ’

With regard to the first aspect, we can mentione
TT;;"shall analyse later the manner in which this require-

ment of Mandel has been implemented in the last years.
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that (see Lee (1985)) "it has been found-experimentally that
in the moderate strain range (of-about'30%) the usual elastic
law which apply to an initially undeformed metal can be ap-
plied to the elastic deformationvof the unstressed (current)
plastically deformed configurations". Thus the model which
will be presented can be applied to %inite but moderate de-
formations.

Consequently, the model cén be applied to materials
y}th crystalline structure, because the hypothesés "are con-
sistent with the physical basis of plastic flow since even
after appreciable plastic strain only a small portion of

atoms are disturbed from the regular atomic lattice and the

atomic lattice determines the elastic constants of the mate-

rial" (Lee, McMecking (1980)).

The limit of the applicability of the model re-
sults also from the following "hypothesis" made by Lee and
McMecking (1980), and which are incorporated in our axiomatic
system: "Definition of plastic flow as Eermaﬂént deformation
after all macroscopic stresses are removed provides a theory
for materials which do not exhibit plastic flow on unloading".
"In the unstressed configuration the stress have been rémo—
ved and complete reco%ery of the elastic strain with no further
plastié flow is considered to have taken place".

The constitutive functions involved are éenerally
defined in the stress-temperature space. In order to reflect
at maéroscoPic level the fact that the plastic deformation

begins to develope only if the reduced tangential stress rea-
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ches a critical value (see (g)), we accept that the constitu-
tive functions involved in the evolution équations depend on
the stress state by means of the stress measures related to
the 1.c.7. éonfigurations.

For this reason Teodosiu (1970), Kratochvil (1971),
‘Mandel (1971), (1972), (1973) utilize as a measure fof stress
the second type Piola-Kirchhoff tensor II=(det E)E ITE T, with
respect te the 1 evr.c., where T is the Cauchy stress.

Based on thermodynamic considerations, Teodosiu
~and Sidoroff (1975),(1986) propose the use of 2=(ETE)H which
is a conjugate variable to_ﬁP-l. =

Using a similar argument, Halphen and Nguyen
(1975) propose the use of R=(l/5)(E?E)H, D being the mass
density in the relaxed configuration, in contrast with Lee
and Liu (1969), Lee and Mc.Mecking (1980), Lee and Lubarda
(1981), Lee (1985) who introduce the Kirchhoff tensor ==
=T (det E) ! as an independent variable in the evolution equa-
tions.

Although the yield (flow) conditions are general-
ly given in the stress space, as a conSequence of the cqui=
presence principle, Kratochvil (1972) assumes that the cons-
titutive functions involved in the evolution equations depend
on the elastic deformation E,

Further on we do not refer any more to the theo-
rieé that do not use the relaxed configurations in order to

introduce the elastic and plastic deformations, like for ins-

tance those of Green, Naghdi (1965),(1268) ,Kratochvil, Dillon
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(1969), (1970), Perzyna (971 ) (L973)  (1980)

Teodosiu (1970), Mandel (1971);(1972),(1973), Kra-
tochvil (1972), Halphen (1975), Teodosiu and Sidoroff (1996)
repeatedly étressed that at least in the case of anisotropic
materials the rate of plastic deformation ﬁP_l itself, and
not only its symmetric part, should be given by a conétituti—
ve law, as for instance the example of single crystals shows
this in a very convincing way.l)

Since the dislocations play a principal role in
producing the permanent plastic deformations, the most used
internal state variables are those which specify in a more
or less detalied way the dislocations distribution.

Obviously, in addition to. the arguments given abo-
Ve one can introduce in a general theory other variables as
well, which are more or less responsable for the plastic and/
or viscoplastic deformation, for the isotropic or anisotro-
pic hardening, and so on. In this sense, see for instance
Teodosiu, Sidoroff (1976) who take account explicitly the
influence of the evolution of the point defects, or Mandel

(1971 d, Cap.3, §2), who state precisely, in an explicit way,
the significance of internal state variables.

We consider that a well elaborated model must sSpe-
cify, in addition to the concrete nature of internal state

variables, their transformation laws with respect to a change

of frame, as well as, to the change of the reference configu-

1)

For details see thé references in Sidoroff and Teodosiu(1986).
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rations. Obviously, these transformation laws are derived
from the mechaniéal and physical significance of the employed
state variables, )

Although, it is well known that the constitutive
functions depend essentially on the reference configurations
used in order to formulate the materiél laws,-this dépenden-
ce is seldom mentioned in the papers which are founded on
the use of the l.c.,r.c. in order to introduce the elastic
and plastic deformations. Néither are specified the transfor-
mation laws of the constitutive functions and of ‘the inter-
nal state variables at the change of the current relaxed con-
figurations.

Although the authors take into consideration ta-
citly these facts, the importance of these facts is expli-
citly pointed out in Mandel’s papers elaborated by using con-
sistently the director frame, through which is taken into
account the specific role played in the thebry by the crystal—
line structure of metals. :

In the models based on the use of the time sequen-

ce of the l.c.r. configurations, the constitutive functions
.éé any moment are referred to other configurations. Based on
the physical properties (a), (c), (g), (h) one tacitly assumes
that the functional form of tﬁe constitutive functions remain

invariant in time, although the configurations used at each

‘moment are different.
It is only Mandel who has pointed out the existen-

ce of this temporal invariance provided that the sequence of
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the l.c.r. configurations be an isocline set. Indeed, Man-
del - (1971d) has.written:‘fLet f be a scalar function depen-
ding on the thermodynamic state (E,0,0). If we consider the
relaxed configurations for which the director frame D is
fixed (i.e. the sequence of the isoclinic configurations)
then at any time f=%(ETEwe,a) is a fﬁnction 6f the thermo-

dynamic variables in an invariant form".

v
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Chap .2. Axiomatic reconstruction

In this section we deal with an axiomaiic characteri-
zation of the thermoeleastoviscoélastic behaviour of metals.
This reconstruction is based on the mechanical and physical
results due to Lee, Liu (1967, 1968), Lee (1969, 1970), Teo-
dosdu (1970, 1975}, Sidoroff (1970, 1971, 1972, 1973, 1974),
 Teodosiu, Sidoroff (1976)on the one hand, and on the other .hand,
on the mathematical concepts due to Noll (1967, 1968, 1972,
1973, 1974),

The reconstruction takes into consideraﬁion the fact
that the introduction of the local relaxed configuration be-
comes possible only if it is introduced simultaneously with
the laws of material.

In the model, the history of deformation is involved
by the actual value of the internal state variables only, or
other hardening variables, which describe at the fenomenolo;
gical level the essential features characterizing the confi-
guration of the dislocations existing in the body.

In accordance with the characterization given by Kro-
ner (1963) we understand that an external or internal (hid-
den) state variable is "any (macroscopic) quantity which
can be measured at a given time without any infofmation
about the past". In this sense the elastic deformation, the
yield stress, the temperature, the dislocation densities are
state variables, but the existing plastic deformation has
not this quality.

Since the elastic and plastic deformations are not
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the gradient of any global deformation of the body (see (1))
the axiomatic model will be developed by taking into account
the local concepts elaborated by Noll.

Taking into consideration the physical origin and the‘
mechanical significance of elastic and plastic deformations
we shall use with consequence the sequence of the mobile iso-
clinic configurations:

The main idea lying at the basis of the'axiomatic re-
construction together with the ideas of the abové mentioned
authors can be expressed as follow& A

Although the elastic and plastic deformations are lo-
cal deformations, they do not represent pure geometric or
kinematic concepts, In order 40 characterize correctly these
deformations it is necessary to employ the local current re-
laxed configurations which can be introduced only if we in-
voke constitutive and evolution equations.

This fact involves the consideration the dynamic con-
cept of stress as well as the physical concept of intermal
state variébles. For instance, an elastic eulerian fluid
does not have a local relaxed configuration; it is clear
that the assumption conecerning the existence of such a confi-
guration is a constitutive hypothesis, which must be expli-
citly formulated, It is also known that every Symﬁetry group
of crystalline fluids (see Coleman (1965), Wang (1965)) may
contain a local nonorthogonal transformation. The exclusion
of such a possibility in our model is also a constitutive

assumption,
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In conclusion: the consistent characterization of elas-
tic and plastic deformations, hence of the thermoelastic-vis- -

coplastic behaviour of a material, requires a simultaneous

consideration of the geometric, kinematic, thermic and phy-
sic concepts taken together in the constitutive and evolution
hypotheses of the model, : -

The axiomatic system presented subsequently represents
an improved form of the one elaborated by Cleja-Tigoiu (1988)
and it is based on the earlier papers by Sods (1583) and
Cleja—?igoiu (1983, 1984).

The properties derivated from the assumed axioms will
be enounced without demonstration, but references.will be gi-
ven to the papers containing justifications of those results.
Since all thg considerations are local, relative to an arbi-
trary fixed material point X, the dependence on X of the va-
rious involved quant?ties will be understood and will not
be explicitly mentioned whenever fhis does not produce con-
fusions,

At fhe same time, for the sake of conciseness, we
shall also omit the mentioning of the domains of definition
of the involved constitutive functions.

In the following we denote by E,V,L,;i,L+,S,S+,0,0+
the three dimensional euclidian point space, the three dimen-
sional real vector space (the translation space of E), the
set of second order tensors, the subset of invertible ten-

sors, the subset of second order tensors having vositive

determinant,the subset of symmetric tensors, the subset of symmetric and
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positive definite tensors,the sutset of orthogonal tensors and the sub- :
set of proper orthogonal tensors, respectively, By R and R+
we denote the set of real numbers and the subset of positive

real numbers, respectively.

2.1, Material elements. Local configurations.

Thermokinetic processes

In this section we present the mathematical concepts,
developed by Noll (1967, 1968, 1972, 1974) which are neces-
sary in order to define correctly the elastic and plastic
deformations, which are local deformations.

We briefly recall the m;thematical description for
several physical concepts like body, material element, ma-
terial neighbourhood of a given material points,... as gi-
ven by Noll. :

The body B is a set, whose members .X,¥,... are called

material points, endowed with a étructure defined by a class

C of mappings k:B-E, The mappings keC are called the confi-

gqurations of B (im theespace E). The spatial point k(X)eE is
calleé the place of the material points XeB in the configura-
Eion k..

We say that B is a continuous body of class CP (p>1)
if the set C satisfies the following axioms:

Cl) Every keC is one-to-one and its range k(B) is an

open subset of £, which is called the region occupied by B

in the configuration k,

C€2) If k,keC then Aiiok-l:k(B)*E(B) is a deformation
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of class Cp, which is called the deformation of B from the ‘

conflguratlon k 1nto the conflguratlon k.

C3) If keC and A:k(B)-E is a deformation of class Cp,
then AckeC,

The mapping Aek is called the configuration obtained
1)

from the configuration k by the deformation A.

Of central importance for further developements is

the concept of local deformation at a material point X.

Two global configurations k and Xk are said to be equi=

valent at X and we write k&XE if and only if v (kek )/k(X) o

It is immediate that ~, is an‘equivalence relation on €. The

X

resulting partition of C is denoted by CX’ and its members

-

KX’ RKyreeo, i.e. the equivalence classes, are called local

configurations at X. Instead of writing kst when k is an

element of the class KX we write Vk(X)=KX, and we say that

the local configuration Kx is the gradient at X of the glo-

bal configuration k.,

Let KX, XeCX be two local configurations and let k

ek keﬁx. The tensor v (Rok™ ! eL;, depends only on K

X! )/k(X)

and KX and not on the particular choices of keK, and §€EX'
-1

We denote this tensor by KXRX and it is the local deforma-

X

tion from the local configuration KX inke the Jocdl eonfi=

guration KX‘ Thus

1

= —vk(X) (kX)) =

- =1__ -
Ry Ko =V (kok )/k(X)

l)It follows that vx(x)eL

)I represents the unit tensor
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It follows that any local deformation belongs to Li
and conversely, any element from Li is a local deformation.

I KXeCX and F is any local deformation, FeLi, we can

define a new local deformation FKX by

FRy= (AekIVALL (1) F,  VE(X)=K,1,

Fkx is called the"ldéaiicoﬁfiguration obtain?d‘ from

the lqcal‘cdpﬁiguration Kx'bv“the'local‘degg;mation B,

The following relationships take place

Using the above results we define the tangent space
as follows:

Consider the set {(Kx,u)/szC usV}ECXxV. We say

XI

that two pairs (K., u) and (K, u) are equivalent if

(ﬁXKgl)u?E;‘_
It follows that the above relation defines an equi-

valence relation. The resulting equivalence classes are cal-
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led tangent vectors at X and are denoted by u The to-

X’CIQ L]
taliQrof all these tangent vectors is denoted by TX and it

" is called the tangent space at XeB,

Let KyeCy ; we say that ug el determines a unique spa-
tial vector uel such that (KX,u)qu. We can therefore use the
notation

PRy, u=kK 'u if (K., u)en
AEXLo X b:44 X!t
and we say that KX determines a one-to-one mapping of the tan-
gent space TX onto the space . The tangent space TX has the
natural structure of three-dimensional vector space, with

the addition defined by

£

ux+vx=K;l(u+v) if uX=K§ 5, vX=K£lv,
and the multiplication with scalars ?y
Vau =k_1 (au) if u =K—lu, aeR.
X X . X X
It is straightforward that uX+vX and au, are well de-

fined because the results are independent of the choice of

X used to represent Uy and vy in V.

We remark that the local configurations can be iden-

the local configuration K

tified with the invertible linear transformation of TX onto

V.

The tangent vectors and the tangent space at the ma-
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terial point X are the intrinsec mathematical models of the
physical concepts of material elements atUX and oif the infi-
nitesimal material neighbourhood of a given point X, respec-
tively.

Let X be a fixed material point.

We consider the set of all pairs (¥,0) with x.the mo-

tion and 0 the temperature, defined on NXxR, where NX is a

certain neighbourhood of the material point X, Nxc:B. (x,0)

is called the (local) thermokinetic process of NX'

We recall that by definition a motion x of the body
B is a one-parameter family of configurations of B and mo-
reover for all YeNx, X(Y,e) :R-E is continuously differentia-
ble function of class C2. The thermokinetic processes have
certain properties listed in Coleman (1964).

In the following we denotevby (xx,e*) the process
obtained from (%,0) by a change of frame defined by the or-
thogonal time-dependent tensor Q; all quantities associaﬁed

with (xx,ex) will be denoted by a superposed x*.

2.2, Thermoelastic constitutive equations

We say that a continuous body B is made of a thermo-

elastoviscoplastic (t.e.v.p.) material, if the following cons-

titutive assumptions are met for all material points XeB:
Asl. BFor all X and all teR, for any admissible thermo-

kinetic process (¥%,0) there exist K., called local current

configuration (l.c.c.), together with the set of internal

state variables (1.s.7.) {aK } restricted by the requirements
: : it
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listed under the form of several axioms.

D¢l., The local current thermoelastic deformation E

and the local current thermoplastic deformation P are defi-
ned by
o -1 e aag : -

E=VX. K. ™, BEK (1)

In order to simplify'the presentation, we assume the
content of dislocations in the reference configuration k to
be negligible, and consequently KO=Vk.

From: (1) we obtain (in centrast with Cclifton (1972)),

the noncommutative multiplicative decomposition of the defor-
1

mation gradient F=thvk-l=thK;
F = EP (2)

With respect to the local current configuration th,
we denote by T,p,q and g the Cauchy stress: tensor, the mass
density, the heat flux vector and the temperature gradient,
respectively. Consequently, the corresponding quantities
with respect to the local current configuration K, can be

15
introduced by

n=n, —det E oo B=pK =p detE,
t i (3)

= -] = 1y
g=q., =detE E "q, g=g., =E"g.
e Ke

A.2 (The existence of the constitutiye equation of
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the thermoelastic type). For any (Xx,0) the specific free ener-

gy ¢, the specific entropy n, the Cauchy étress T and the
heat flux vector g are determined by the following constitu-

tive relations:

¢=¢ (A _G-K )l n=n (A G‘K )
Ko TRy 5.5
T=f (A,aK ), 9=p (A,g“aK i
S t K TR

T
where A=(E,0) and g=vel).

(4)

The constitutive functions from (4) are related to
the local current configuration Kt'
P.1. If K, and Et are the l.c.c. corresponding to the

same process (¥%,0) then
f= (E,0,0% )=f, (EG,,0, ) (5)
R O’Kt Ko 'k O‘Kt

=_ ==1 e
where E—thKt P thKth , and aﬁt, aKt are related by the
transformation Gt’ depending on the physical significance

~attached to the internal variables.

A.3 (Objectivity assumption). If (Kt,qK ) is a pair
t

Oof l.c.c. and of i,s.v, associated to the process (x,0),then

- For the application to physical situation it is necessary

to limit the domain of the material functions. For brevity
we do not supply the mathematical details which may arise
in the consideration of limitations of this kind.
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: L ox *
Kt s a 'l.c.c. for the process (y ,0+) as well, and axy - the
: t
set of i,s,v. corresponding to the process (xx,@x), but rela-

ted tor K. -, is equal to o ; i.e. ai =a
t 'K .
t t Kt

P.2. If we suppose that ¢x=¢, nx=n, szQTQT, qX=Qq,

then from A.2 and A.3 it results
* 23 5 * g
p*=p, ¥*=gr, n¥-n, Pg =Pg + 9g =9g o+ dg =9 (6)
t t t t t t

and for the thermoelastic constitutive relations we obtain

—

the following reduced form

b=l S, a3 R (A ), m=h, (A® )
Kt Re ; Ry 'aKt . Kt 'GKt ' (7)
- e
g nzEs (N, )
K, Bk, Ke =
where
£8=(c%,0) with c°ETm . (8)

A.4 (The relaxation assumption). The thermoelastic

constitutive function fK and the configuration Kt satisfy
t
the relation
£, (L0 ,a ) =0 (9)
B ool

where Oolis the initial temperature. Moreover, if fK (S,Oo,
: t
aK)=O, for S-a symmetric and positiye defined tensor -, then
t
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On the basis of the property stated in A.4 the confi-

. guration K,_ will be called the local current relaxed confi-

t
guration (l.c.r.c.).

As a consequence of A.3, A.4 and P.1 it follows

P.3: Let K. and Rt bei defined as in-p.1.

i
If Ky is a 1.e,rc.c. then ﬁt is also a local current

relaxed configuration and Gt is an orthogonal transformation.

In particular, it results that 'KO=QKO with Qe0.

§3.3. The evolution equations.

A,5 (Evolution eguations). The evolution in time of

the pair (K v Oy ) is given by the relations
1 . _ :

iDP'1=AK (g,ak ) +<A>By (E,apt) _
t £ £t (10)

o, =L, (E,a, ) +<A>m, (E,a, )

°‘I<t I’Kt_ O'Kt mKt G‘Kt

with the initial data P(0)=I, o (0)=a_, where E=(m,0).
-

A,6, The material functions from (10) have the follo--

wing properties:

B e -0, mo e Jo01EF (B el
i 'aKt mKt ® _Kt o

A, (E )=0 d4f G(E, ) <0,
K, B th
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where GK -the viscoplastic function and FK - the plastic
' t =
function satisfy the conditions:

. (Borx ) <0 FKt(go,aKt)<o for E_=(0,0,).

t

The plastic loading factor A is defined by

A=a§F(§raKt).é+ with E'=(#",6%)

for any E lying on the current yield surface (also called

the instantaneous plasticity surface)

Sit) = {El F... (&, ) =0},
| by o(Kt

The material functions involved in (10) also satisfy

the consistency condition

l+aaFKt‘mKt=0’ aaFK ,ﬁK =0 on. - Stt). (11)

AT (Assumption of temporal invariance). The confi-

gurations K, and the set of material functions satisfy the

15
conditionl):

: £ Wei=t (Aol oo P, (Bol=Fg , (E,@)

t v--t’;. t

£, tlcR.
I1Further on, whenever misinterpretation is unlikely the expli-

cit mentioning of the dependence of the material functions
on the l.c.r.iie, will be omitted.

e
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The configurations K, satisfing A.1-A.7 will be cal-

=

led local current relaxed isoclinic cgonfigquration (l c.r.1l.6.).

Obviously, A.7 excludes the explicit dependence of the

material response on the accumulated plastic deformations.

1)
A.8. (Causality assumption). For all thermokinetic pro-

cess (x,0) and at any time t, the loading plastic factor A
is uniquelly determined if the current values of (m,0) are on
the current yield surface.

From the relations (2), (1), (8), 7.7 and A.8 results
the following proposition asserting £he existence of the

complementary plastic factor B and of the hardening modulus y:

P.4. (Cleja-Tigoiwu (1983)). Let (%,8) be given.

The functions B and y exist and are defined by

a) B—P"la qFJ(C)P c':tra ;(g)-éﬁa ?’(c) E(C)—
e e 4 0 B :

C (12)

-29 F(Z) e R
ks

=T

and
.
=23 F(C).{C"B(L)} —aaF(E).m(E)
(&
_ n
“for “all € such: that Fit)=
b) B and A have the same signum, y>0 and <A>'=Y_l<B>.

We recall that in (12)
1)See also Sidoroff (1974) and Halphen (1975).
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. ,
F(C)=F(a(c®,0,),0,a) with T=(c%,0,a) (13)

e —min - pch

Subsequently, we denote by &, superposed on the sym-
bol of the considered function, the function obtained by the
procedure indicated in (13).

In the constitutive framework accepted heré, assuming
that Clausius-Duhem inequality repreéents a restriction on
the admissible thermodynamic processes and using the comple-
mentary plastic factor B, the procedure employed by Coleman
and Gurtin (1967) can be used in order to obtain thermodyna-
mic constitutive restrictions. »

Consequently,'we have (for details see Cleja—?igoiu

(1983):

P.5. i) The constitutive function U is a Epe:modynamig

-potential, i.e.

T[=2C53Ce¢(;)r T|=-3GLIJ, i

~ ~n
ii) §, p and the viscoplastic functions A and 1 satis-

fy the dissipation inequality
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25 T(T). (A (D)} 5-3 B(6)lE-~g.F20.
(& op

. f\J o
iii) Por all T such that F(T)=0, regular points for

the yield surface in the strain-temperature space, the "ener-

gy" equality holds:

=2 B(T). (c°B (D)} =3 B(L) .;(T)=0.
C

§2.3, Material symmetry

A.9. For any orthogonal transformation Qe(0 and. for any
Set ol ecir,i,c. Iy ={KtlteR+} corresponding to a thermoki-
o
netic process (x,0), theseti%if{ﬂfimthteIKo, teR .} s & set
of l.c.r.i.c. corresponding to the same (x,0) and to the lo-
cal initial relaxed configuration ?0=QKO.

Conversely: if I ={KtlteR+} and IR ={?tlteR+} are

K
(o} o
two sets of l.c.r.i.c. associated to the same process (x,0)
then a local orthogonal deformation Q exists such that

Kt=QKt for all teR,.

Assunming that A.9 holds, it follows:

P.6. The quantities corresponding to the same thermo-
kinetic process (x,0) but refered to the sets of the l.c.r.i.c.

IK and IK ;, respectively, are related by
o o

E=EQ", C°%=0c®T, T=omd®, F=oro”, (14)

o =p .
Re &



The internal variables ak and o= considered with
t e
respect to the above mentioned sets of l.c.r.i.c. are rela-
ted through Q, depending on the attached physical signifi-
cance and must be explicitely stipulated, taking into account

the entities that_are to be modelled,

We simbolically denote this link by

= ~ola. ] ' (15)
ag, = QLo |

For instance, if a, Trepresents the density of the
. t
dislocation line per unit volume in the l.c.r.i.c. then

=0 . When c represents the Noll’s type density of dis-
Cx.Kt aKt GKt e 5

location (1967, 1968) or when Ay is the Piola=-Kirchhoff type
: t

of backstress (with respect to the l.c.r.i.c.) then

= T
aKt QaKtQ .

If we take into account A.7; from (14) used in the
constitutive and in the evolution equations, the following

property results:

.P.5. The material functions with respect to two sets
of l.c.r.i.c. generated by the local initial configurations

K, and 'I'<'0=QKo , respectively, are related by

f= (E,0,a)=f, (EQ,0,0[al)
.Kt Yy Kt [



iy
he (QcQT = .
ﬁt QCQ ,e,Q[aJ)—QhK (C,0,a)0

t

£z (om0”,0,0[al)=0lL, (m,0,0)] . (16)
t £

Fg. (@ua”,6,0la1)=F, (m,0,q)
t t
The material functions A,B obey the same relations
like h, but G,y,n transform under the change of mentioned
l.c.r.i.c. like F, while m satisfies the same relation as £.

Finally, we have

pg (0ce”,6,09,0[01=05 - (C,0,9,a) -
B e

In the previous relations EeLi, CeS+,neS,geV.

On the basis of P.5 we addopt the following defini-

tion for the material symmetrys:

F'. e = S : =
D.2. The configurations KteIKoand KteIKO, with Kt

=QK, and Qe0, are ccalled thermoelastoviscoplastic equivalent

if the material functions corresponding to K, satisfy the res-

t

trictions:

£, (E,9,0a)=f

K (EQ,@,Q[G])'

t I e

or

hK_(QCQT,e,QLaJ)=QthYc,e,a)QT,
£ :

b, (omQ”,mlal) =0l (m0,0)3,
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Fp (@no®,e0,0lalF, (r,0,a).

E i

The material functions A,B satisfy the same relations

like h;G,¥,n like F, while

B, (0co®,0,09,0[al)=g5, (C,0,9,a).
’ t t

The transformation Q is called the symmetry transfor-
mation corresponding to the thermoelastoviscoplastic response

and to the local configuration K.
We denote by I the set of all orthogonal symmetry

it
transformations which obey D.2., Taking also into account the

temporal-invariance assumption the proposition below is

straightforward.

P.6. Ix is a subgroup of the group of orthogonal
t
transformations ( and 9x =9x for alle Koel . .

t (o) £ Ko

We call this group the material symmetry group corres-
ponding to the set of l.c.r.i.c., Ig -
o

For a given (¥x,0) on the basis of the material symme-

try, by taking inte aceceunt the constitutive and evolution

~ equations, the following non-uniqueness of elastic and, plas-

tic deformations results, even if K is fixed and consequently

A.9 holds.

]

P.7. Let Q be in Ix °
o



49

1) If (P,a) is a solution for the evolution equations

with the initial data P(0)=I, a(0)=a_, then BP=QP, a =qlal
is a solution for the same evolution equations but with the
changed initial conditions 5(0)=Q, &(O)=Q[qb].

2) Moreover, we have F=EP=EP with E=EQT and

T=f (E,G’Q)'_‘f (Elela)'
KO KO

2,4, Commentaries to A.1=A.9

1. The statements madeAin A.3 expresses the following
property of mechanical significance: the current, relaxed, on-
ly plastically deformed configugations and the internal varia-
bles with respect to these configurations are invariant under
a changé of frame, hence they are invariant under a rigid mo-
tion superposed on the given thermokinetic process. The formu-
lae (6) which are consequences of A.3. were utilized without
any explicit justification by Teodosiu (1970), Kratochwil
(1971, 1972) and others.,

' 2. The definition of the plastic deformation given by
(1)2, together with the relaxation axiom A.4, are based on the
' fact that the plastic remanent deformation is associated with
an unstressed state of a small neighbourhood of the particle.

3. A local current relaxed configuration K, represents

12
the mathematical model describing the unstressed perfect crys-
talline lattice of the neighbourhood of the particle from the

crystalline or polycrystalline metal.



4, The elastic deformation E, defined with the help

of the local current relaxed isoclinic configuration KtsIK ’
o

is a measure of the deformation of the crystalline lattice,

the relaxed position of which was fixed for all moments E

1

by choosing (to a great extent arbitrarily) the initial local

relaxed configuration Ko‘

5. From the last two remarks it follows that E charac-
terizes that part of the deformation of thevbody which is
reversible,

: 6., The first part of A.4. emphasizes precisely the
reversible nature of the pure elastic deformation: this means
that (at least locally) there exists an one-to-one correspon-
dence between the stress state apd the pure elastic deforma-
tions state in a neighbourhood of the given particle.

7. From the multiplicative decomposition of F we ob-

tain thét the velocity gradient is expressed by

1 1=

LBE R PD

According to 'the accepted interpretations Le=ﬁ:E"l re-—

presents the rate of elastic deformation and Lp=§]?-l the rate

° - } . _l
of plastic deformation. Consequently De={EE l}sandeE%EE }a're—
present the elastic rate of strain and the elastic spin, respectively, On

545 ana wP=gpp~ 2 represent the plastic

the other hand DP={Pp
rate of strain and the plastic spin, respectively. The evolu-
tion equations prescribed for D and WP have a mechanical mea-

ning.
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8. The evolution equations introduced by A.5 are writ-
ten in an invariant form under the change éf frame. Consequent-
'ly, the isotropy of the phfsical space does not impose any ad-
ditional restrictions on the material functions presented in
(10).

9, The plastic loading factor is defined in a classi-
cal maner (as in Green, Naghdi (1968), Teodosiu (1970), Si-
doroff (1972)) in contrast to Mandel (1972, 1973) so that
the loading (A>0) (hence a variation of the plastic deforma-

tion), the unloading and the neutral process, respectively,

is established according to the direction taken by é+eSxR g
the stress-temperature space, either outwards, or inwards, or
finally tangent to the yield surface (when this is a closed
surface).

10. The evolution equations (10) contain both visco-
plastic and instantaneous plastic terms in order to describe
the viscoplastic effects, as well. These can occour during un-
loading characterized by A<O0 (see Manael (1971, 19925, 1973)
and Halphen (1975)).

' 11. The restrictions imposed to the matérial functions
from (10) by A.6 take into account the fact that the change of
the internél variables can occour also during the processes
" in which the plastic deformations remain unchanged in time.
This property is shown by experimental data for hot deformed
metals, for instance.

12. The causality assumption A.8 ensures the consis=-

tency of A.l and A.6, because it allows the introduction of

T
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the complementary plastic factor B, with which we can deter-
mine the evolution of (P,a) based on the knowledge of the
~history of the thermokinetic process (y,©).

Indeed, the knowledge of A requires the knowledge of
the history of m which, in its turn, depends on the history
of P and thus generally A can not be determined when the
elastic deformations are large, even if the history of T is
given.

13. Further one usually considers (see Nguyen, Hal-
phen (1975), Mandel (1971)), that the constitutive restric-
tions obtained in the viscoplastic case still remain walid
when we take into consideration the insténtaneous plastic
terms as well. These restrictions can be found correctly on-
ly by using the complementary plastic factor, the existence
of which is assured by the axiom A.8 (for the proof see Sanda
Cleja-?igoiu (1988)),

14, The statement contained in A.7 is tacitly admitted
in all the papers which use the model analysed here. The
temporal invariance condition stipulated in A.7, is based on
the physical properties h) and i) mentioned in §1.1.At the same
time, the propert& emphasized in A.7 points outvthe advantages,
as well as the limitatiens of the model based on the l.c.r.i.c.

15, In connection with the préceding remark we mention
that A.9. underlines the fact that any thermoelastic deformation

vis the deformation of the unstressed perfect crystalline latti-
‘ce. At the same time, A.9 shéﬁs that ény thermoplastic deforma-

1)

tion leaves the crystalline structure unchanged, its irrever-

T) Within the limitatiens of the model’s applicability.
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sible, permanent nature is thus ensured. The appearence of.
the plasticdeformation is due mainly to the motion,generation and rear-
rangenent of the dislocations.

16. For a given thermokinetic process bbth types of
deformations can be felated to the arbitrary local current
relaxed reference configurations, but these configurations
must be the elements of a certain set of l.c.r. isoclinic
configurations. Such kind of configuration sets can be ob-
tained from the perfect unstressed crystalline lattice via a

rigid motion remaining the same at any moment t. The degree

of arbitrariness is reduced to the choosing of the lecal re-=
laxed isoclinic configuration at the initial moment.

17, While the initial values'aO of the internal state
variables (in the Kroner'’s sense) can be determined, the ini-
tial value of the permanent plastic deformation (which is not
an internal state variable) is in principle unknown and pracs=

tically undeterminable. The definition of the plastic deforma-

tion is consistent with the mentioned facts and leads automa-

ically ition P(0)=I. :

tical condition P(0)=I . Pig.3

18, The deformation P from P.7. does not correspond to

an isoclinic set of l.c.r.c. and hence it is not a plastic de-
formation in the sense of the definition given here. On the

contrary, B from P.7. corresponds to an isoclinic set of

locar.Ch IK =IQK and, therefore, it represents an elastic de-
o o

formation, according to our definition. The relationship bet-
ween (P, E) and (F, E) is given by P=PQ, E-E (see Eig.3).

From these relations it. follows that "the plastic deformation"
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P represents an elastic rigdd rotation of KO in the eguivalent
- configuration ?o followed by the plastic deformation T of Ko'

Obviously, we have T =f_ (E,0,0. )=¢f .(EQT,@,QT[a 1), which
; Ko Kt Ko Kt

justifies the interpretation given above.

According to the above arguments we can state that thé-
re are several elastic and "plastic" deformations, whiéh cor=-
‘respond to a given motion and to a fixed Ko' Thus one can not

distinguish between two equivalent sets of l.c.r.i.c. on the

basis of the thermoelastoviscoplastic response of the material.
19. At the same time, we remark that from the polar

decomposition P=RPUP and B=RPUP it results §P=uP and from E=
=v®R® and E=V®R® it follows §e=Ve(there Rp,ﬁpjf§10+;Up,Ve,Vee
eS+). Consequently, once Ko is fixed.the "pure" plastic strain
u® ahd the pure elastic deformation V€ are uniquelly determi=-
ned even when we replace KO by an equivalent configuration
KO=QKO. Consequently, it results from here that, the Lee’s

choice according to which the élastic rotations are equal ‘to

I, during unloading, can be applied for the isotropic bodies

_only, d.e, =0.

9k
(o]



Chap.3. Plastic rotation., Anisotropic hardening

Concerning the formulation of the constitutive equa-
tions in the early eithies, Dafalias (1983) mention:

"The definition of the proper co-rotational rates for
the stress and internal structure variables is still being
debated in the macroscopic constitutive formulation at lar-
ge deformation elastoplasticigy: In his elucidative work Man-

del (19714d) (so as Kroner, Teodosiu (1970, 1972), Kratochvil

(1971, 1972a,b, 1974), our note} supplemented the notion of

thé multiplicative decomposition of the deformation gradient
into ‘an elastoc and plastic part, introduced by Lee, Liu
(1967, 1968) (and Lee, Liu (1969, 1970), Fox (1968a,b), Kro-
ner, Teodosiu (1970, 1972), Mandel (197l1a,b,c,d), Kratochvil
(1971, 1972a,b, 1974), our note) with director vectors atta-—
ched to the matefial.substructure in the relaxed configura-
tion. Motivated by well understood concepts of the micromecha-
nics of crystalline structures, Mandel defined as proper co-
rotational rate the one associated with the spin of the triad
of the director vectors, However, he never tries to present a
‘Systematic macroscopic derivation of analytical expression for
this spin and instead, he attempted to approach the problem
from microstructuralvconsideration (also see Teodosiu, Sido-
roff (1976)), a formidable task not yet fully developed".

The main aim of the>papersvelaborated soon after 1980
was to provide the "missing link" for the macroscopic formula-
tion and the application of Teodosiu (1970, 1975), Lee, Liu

(1969, 1970), Mandel (1971, 1972, 1973) theories, to extend
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and\generalizé certain of ‘its aspects and to illustrate it by
examples, An immediate consequence of these theories was that
evolution equations were required. not only'for the plastiec ra=-

te of strain {bP“l}s, but also for the plastic spin {PP

-l}a.
The plastic spin was introduced also since the evolution of
the stress state is determined only if the evolution of the

elastic deformation E=FP-l is known, and consequently, the

evolution of P is also necessary.

3.1. Rotation of the direction frame

—

In order to formulate the material laws, Mandel (1971
d,chap.I, §4.2) used, as a first step, a: set of local current
' relaxed isoclinic configuration or, using his therminology
"the configuration is relaxed so that the direction frame keeps
fixed its orientation",

Starting with Mandel’s fundamental idea, we were leaé
to the formulation of the constitutive equations by the comple-
te set of the axiomé A.1-A.9. We give precise formulation of
both the assumptions clearly stated by Mandel, and 6f the hy-
potheses only tacitly accepted and currently used by him in
his subsequent developments.

Assuming tacitly the valability of P.3 Mandel has for-
mulated the laws of the material with respect to the arbitrari-
ly relaxed configurations K, obtained from the isoclinic ones

t

by an orthogonal transformation, denoted by Bt'

Bl B
Let be Kt—Bth ylth K, eIKO and P—KtKO ; it follows

that




e

= . S e =
P=B.P, F=EB, DeVp Ky =HEL, Tedet B E

T
=B nB =R =B [ ] X
P OLKt t “Kt

o T

TE ~ =

1)

The following proposition is a consequence of the

above relations

P.8. If A.1-A.9 hold then the following relations ta-

ke place:

T=f_ (E,0,05 ,B.)=f. (EB.,0,B la= 1)
R, HTeR T K O‘Kt

and fﬁt(I,eo,a)=O,

DP —-1_ - 5 T 10 1
SE T —Aﬁt(n,Q,aﬁt,Bt):BtAKt(BtnBt,@, Bt[“Kt])Bt ’

el = : e a ay
pe e Tlg B a0 bo (BanB e 0/ By R0

where

DP _ = e o
Do
and the formula for bt depends on the concrete form of the
relationship between Az and O o For instance, if ap re-
t t i
- presents the density of dislocation line then we have

Uy

n order to simplify the presentation we have considered
here the case without instantaneous plasticity only.
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DGK ;

5E-E =&E g Or IF o represents the Piola-Kirchhoff type
t 1= Doy

of back stress tensor relative to Kt we get 5T £

S steg. fog o

Relative to the form of the laws of the material writ-
ten in P.8, we make the folloWing remarks:

1. In order to khow the material functions with res-
pect to Kt it is necessary to know their form with respect
tora setiof l.c.r.l.c.

2, Generally, the material functions with respect
to Et are dependent on Bt.'Therefore the employement of the
alternative procedufe ofered by P.8. requires the knowled-
ge of the temporal evolution of B .

3. This alternative procedure is sugested by the fol-
lowing Mandel’s remark: "The relaxed configuration K

t

fined besides a rigid rotation Bt’ in such a way that E and

is de-

P are defined besides an orthogonal transformation. Conse-

quently, P can be replaced by BtP and E by EBi, 1€ B£6t=1".

Wé consider that this conclusion does not téke into
account the reai significance of the elastic deformation
which is the reversible deformation of the crystalline lat-
tice, as well as the real significance of the permanent plas-
tic deformation, representing that part of the total defor-
mation which is produced by the motion of dislocations and
therefore has a permanent character.

Consequently, the alternative procedure sketched in




e S0L L
~ P.8. is not usefull in general, it generates confusions and
the real physical significance of the elaétic and plastic
part of total deformations respectively is obscured.

4, From P.8. it is straightforward that in the case
of structural isotropic materials (defined by material fuan

tions with respect to IK , which are isotropic with respect
o

to all their arguments) the material functions do not depend
explicitly on Bt. Consequently, it is only in this case that,
the employment of Mandel’s alternative procedure can be use-
fuls i |

5. From the above follows that the Lee’s alternative,
which corresponds to the choice Bt=Re is also useful in the
case of structural isotropic materials only.

6. It is necessary to distinguish between the meaning

of the objectivity assigned by Mandel to the derivatives in-

troduced -in P.8 (i.e. they awe Independent of the wigid mo-
tion of the director frame) and the oQbjectivity felatiVe to
a change of the frame in the actual configurations.

The Lee’s choice realises both these objectivities
—~for the rate of plastic deformation, as weli as: for the ra-

te of elastic deformation", if they are "defined" by:

= ° : o ) °
DB =-1 2=-1 Ve _%e  =e . =e
—D-E P "=PP W, DE ‘-— ,V VvV~ + V w,

since, if Q(t)e0 characterises a change of frame, we have
*

— == =0 s O
BE: =2 -1 B0 & By BT T
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Generally, such kind of relations do not take place
for another choice of Bt , since there is no relation bet-
ween the change of frame with respect to which the motion is
refered and the choice of the relaxed configurations with
respect to which we describe the behaviour of the material,
This fact is compleﬁely misunderstood by Casey, Naghdi
(1980, 1981) and Sidoroff (19705, 1971},

7. If the material is structuially isotropic and mo-
reover the elastic stretch are small during the given pro-
é;ss,then the alternative procedure from P.8. allows the
characterization of the material response via the quantities
with respect to the current configuration (since it is‘pos—
sible to substitute m by T in the evolution equations).

8., Let us remark that the hypothesis according to
which the elastic deformations remain small.while the plas-
ticldeformations become very large may not have a real signi-
ficance since the evolution in time of these deformations is
governed by the material laws_%?riori postulafed. Therefore
for a given deformation process these mater}al laws can lead
to elastic déformations of comparable magnitutde with the
plastic ones. ‘

It is not exclﬁdea howener that the well known anoma-
lies (see the following section) are due just to the omission
of the above mentioned fact and to the replacement of the ini-
tial realistic elasto-plastic model ﬁith another simplified
rigid-plastic one.

9. The real mechanical meaning and uéefulness of the

various kinds of the multiplicative decomposition of F, intro-
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duced by Sidoroff (1973), Dafalias (1983a, 1985a), Levitas
(1983) and of the various derivatives associated with these
decompositions in order to formulate correctly the matérial
laws are not clear, if we take into account the remarks (1)-
(8). |
This remark is made since we consider that the employ-

‘ment of the set of the 1l,c.r. isoclinic configurations is
unvoidable when we wish to formulate the constitutive laws

in the framework of the model analysed here.

At the same time we claim that the using of another
alternative procedures are relevant for certain particular
cases 6nly.

We consider that these special cases can be correct-
ly described if and only if the set of l.c.r. isoclinic

configurations is taken into account,

3.2, The plastic spin;and the anisq;yopic harde—

ning of a structural isotropic material

As a first answer to the question left open by Mandel
(1982), concerning "the quantitative effects of the plasti-
‘cally induced rotation on the response of the plastically

deformed structural isotropic solids with anisotropic harde-

nin g was given independently by Loret (1983, 1985) and Da=
falias (1983, 1985) .
Subsequently we present and disquss according to our

point of view their modéls and principal results.
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As internal variables we -consider a} =% and 2 =AU,
. 5, O‘Kt

where I is the back stress tensor of Piola;Kirchhdff type

‘with reépect to l.cir:i . KteIK + and u is the equivalent
o

pléstic strainl) with respect to Kt; Z is a traceless and

Symmetric tensor.

As Dafalias and Loret have done we suppose that the

material is rate independent, the thermal effects are neglec-

ted and only isothermal Processes are considered. We also

assume the temporal invariance condition (which is tacitly

assumed by the mentioned authors ), According to our axioms

we assume the following constitutive relations:

n=h, (c=,5.0) .
(o]

Bpl=cn, (n,%,%)h (F ) |
- o o (17)
iN=che (n,Z,u)h(F, ) :
MKO i K_

i=<x>mK (n,z,u)h(FK )
(o] (0]

The 'yield surface is given by

S(t)={anK (nt,Z,u)=0}, the plastic factor A being de-
o .
fined by

léanFKo(n,E,u).ﬁ on S(t)

-with h(F)=1 for F=0 and h(F)=0 for F<0.

e

U is not aﬁ7iﬁternal state variable in Kroner'’s sense. -
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We recall that IK represonts the set of 1. eir. i,
o -
configurations corresponding to Ko which is arbitrary, but

fixed,

L

We alsc have F=EP, c®=E B, E=y°R® (where R® is the

elastic rotation and V€ is the pure elastic strain). We pass

to the Lee’s choice and we introduce the local current re-
laxed configurations f("t=ReKt (with Bt=Re) and the "plastic"
deformation B=R®P, Therefore we get F=V"B. Using the Piola-
Kirchhoff tensors m,Z, the rate of "plastic" deformation

ggé_l with respect to the Lee’s type configuration Kt and

—

the pure elastic strain Ee=(Ve)2, we have
p

w=r®n(r®)T, T=r®:z(r%)7T, T@=r%c®(r®)T, (18)

De §-l=Re ﬁP_l(Re)T,'Where =22 =(F - wP), with w=§e(Re)T
Dt Dt

and

D = = . =

Dt =E=-0WE + 2w

The laws of the material expressed with material functions

relative to Kt take the following form (see §2,3):

i

2R '13_1=<3\:>B—K _ (E,E,%,Re)hw—ﬁ )

t o (19)
=<A>M= (E,E,%,Re)h(F§ )

Dt Kt K¢
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w=<Tom (%,5,%,R%)h(Fz )
t 't

where we have assumgg that the two scalar measures of the

equivalent plastic strain: u with respecto to K_ and % with

t
respect to Kt’ are equal, i.e,
n=u (20)
: From (17)=(20) it follows that the materiél functions

involved in (19) are defined by the relations

hﬁ(ae,E,I,Re)=RehK (%)% (r)T, (r®)T5R =l
L
e\ T=

ME (7, I, %,R%)=RE MK (B=) TR, (R ) TR %) (RS ) . (21)

-mf (EIEI;IRG)=mK ((R ) TiR® ,(R ) fRe,Z),
t

o

Fr, (T/E0LR%) =R ((R%)ThRS, (%) T5R%, ),
o

Dit- Dn

=TT + T
2DEL - Bt

= ==

A=BEFKt(n,Z,u,R )
From (21) it follows that if the constitutive rela-

tions (17), considered by Loret (1983) (which are in agree-

ment w1th our ax1omat1c system) are acoeoted then the cons-

titutlve relations considered by Dafalias (1985) , Egs.(11),
(12)) are false,

We consider that our starting point is correct since
it takes into account the real significance of elastic defor-

- mation (i.e. the reversible deformation of the crystalline
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lattice) and of the plastic deformation (i.e. the irreversi-
ble, permanent deformation produéed by'thé motion of the
deffects); (see also Kratochvil (1971, 1972), Mandel (1971,
1972, 1973, 1974), Teodosiu (1970) and Loret (1983)).
Following the procedure initiated by Lee, Liu (1967),
(1968) and continuéted by Dafalias (1983 a,b,1985a) the defi-
‘nitions of two types of deformations are mixed up. For this
reson the Dafalias starting point is éenerally unaccepted, as
being not physically motivated.

If we introduce the additiona%ﬁhypotbesis that the ma-

terial is structurally isotropic (see Mandel (1971¢c,d,1973,

1974), Loret (1983)) we obtain a considerable simplification

of the constitutive relations. Hence (19) and (21) become:

- T=h, @, 5,0
- (@]

DP=-1_ 7 - -
TP =<A>By (W,E,Wh(Fy )
(o) (@)

DE _ = - = =
= —<A>MKo(n,z,u)h(FKo_)
: (22)
w=<I>mg (W, T, %)h(Fg )
(o] (o]

The constitutive functions in (22) are obviously iso-
tropic. The relations (22) are the starting point in the ca-
se considered as a general framework by Dafalias (1985a egs.

(11),(12)). After stipulating these equations (which are ac-

ceptable only in the structural isotropic case, as we have

already mentioned), Dafalias wrote: "Based on the transfor-
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mation law under superposed rigid body rétation/reflexion,
the corresponding invariance reqdirements“render the mate-
,rial functions isotropic functions of their arguments", Si-
miiar Statements are also given in the papers of Dafalias
(1983a, 1985b).

From the above considerations it reéults clearly that
Dafalias assumes from the very beginning the facts he wants
and claim to prove. |
: Dafalias (1983a) writes:"The principale objective of
this work is to provide the missing link for the macrosco-
pic application of Mandel’s theory, to extend and generali-
Zze certain aspects of it and illustrate it by examples.. Our
focus will be the macroscopic formulaﬁion of constitutive
relations for the plastic spin which becomes the key to our
initial objective. This is achived by using representation
theorems for isotropic functions"

It is obvious that these theorems can be used only if
the structural isotropy is assumed from the Véry beginning,
since 1t can not be provided anyway. Conéequently, the Dafa-
lias’s reproches to the Mandel’s approaches is completely
groundless.

‘The valuable contribution of Dafalias and Loret pa-
pers consists, however, in the fact that they show how the
material symmetry assumptions combined with the Wang (1970)
and Liu (1981) type of representationbtheorems can theoreti-
cally deliver the essential information concerning the struc-

ture of the material functions which describe both the plas-
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tictfatg_of;strain and thewplastic spin.
Before proéeeding, we mention that the connection bet-
‘ween T, T on the one hand, and of (T,S) on the other hand,
where S is a back stress tensor of Cauchy type, is given by
the relations T=detv™vS 1T (v®)™!, T=det v&(v®) ls(v®)~! as it
follows from (3) and (18). . | ‘

Without any other additional hypotheses the laws of
themaﬂaialtxﬁlnotin simplified. A considerable simplifica-
tion can be obtained if we suppose that the pure elastic_de-
formation tensor &€= %(Ve-I) is small, in the sense that we .

¢ canneglect iniaili relations_ge with respect to the identi-

ty and (ee)2 with respect to €%, In this case =L, 0S|
Consequently, all variables involved in (22) can be
lather related to the actual configuration, if we assume al-
so that the measure of the equivalent plastic strain u re-
mains unchanged. With the usual elastic law, we obtain from

(22)

TEAS(ereS ) mnou®es, (A%, 1" = Lame's constants)
- DP ==1 _ =
5t P —<A>BKO(T,S,u)h(FKO)

DS_ = - '
E-E—<A>MKO(T,:>,,u)h(FKO) |

;2=<'>C>mK (T,'S,n)h(FK )

o o
‘where A=3..F (T sy D with
T KO =l S DE

DI e DS | wen e Gl
3E—T wT+Tw, 5T =S-wS+Sw, w=R (R ) .
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‘isotropie fune

-
All material functions involved (23) are obviously

of their arguments.

«"1'

ien

L))

We associate to the constitutive system the kinematic

relation
2 =] D€e P ==1 De e e, e
TElLE e F == B - AT e :
FF L 5T 5t P 4, 5 E =WE +E W (24)'

whieh held when the elastic deformatlons are small but the

tempeoral rate @f elastic deformation jis not neglected in the

presence of the temporal rate of plastic deformation.
Finally the hardening scalar variable u and % are de-

fined by

u(t)éuo+{3¢/§Dp(f).Dp(t)dr, i(t)=ﬁo+{f%$Qr).BP(r>dr (25)
where
pP=(pp™*} ¢, Epgigt 5711 S_r°pP (r%) T

Thus, if we suppose that no=ﬁol'ﬁﬁen % (t)=n(t) holds for all t;
therefore the hypothesis (20) is satisfied.
The system of eguations (23)-(25) can be written in:

the folleowing eguivalent form:

e
DgE e e pe® e De
T=0T T@+A Er T I+21 e

. ; (26)
S=0S=SW+<A>M(T,S,u) h (F)

= (dpP.5P) /2



en

= :
5 =D-B%  o=w-WP
=D DT
=3 st e = Ve
by 3pF (T,S,n) . BT B L-0T+Te

BP=<X> (B (T,S,%)}5h (F), WP=<X> {B(T,S, )} 2h(F).

Using the isotropy of material functions and taking
into account the fact that an orthogonal tensor field ﬁ
exists such that §§T=W(§(O)=I), the relations (26) can be

written as a differential system in terms of rotated varia-

bles
T=RTTR, E=%TsK, B5-rTp%,
Vi v v /
T=<A> (- (B(T,8, 1)1 20+F B (¥, &, 1)1 2-2%¢rn (F, %, 1) I
-2u® (B(T,$,1)15)h (F) +A%trD1+21°8,
LT ey v v v v Vv : v
§=<> (- (B(T,8,%) 125+ B(T, 8, ) 1 2 (%, 0 )1 (F)
. v v Vv v v v
=<d> (2(B(T,8,0)15. 8(T,5,11%5) /2 (F) (27)
v v Vv :
= <A>m(T,S, n).
with

vV Vv v v oy’ v v v
F(T,S,u)=F(T,S,n), A=3§F(T,S,u).T

For the integration of the above differential equations (27)

we require the values of the plastic factor A; A depends on
v

the current value of T, which in its turn can be determined

2 v
only if the value of A is given at the considered moment.
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Hence the system given in the form (27) can not in

principle be solved even if the history of F is prescribed.

" This deadlock can be overcame (see Cleja—?igoiu (1983)) by

the introducing the complementary plastic factor B, which

.depends directly on the history of F and consequently A can

be eliminated,

from P,

Indeed, in the framework of the accepted approximation

4 (§3.3) via the formulae (12) for B and Y we obtain

the following relations:

where

Y (see

v v T i v v o
B=B (£,T,5,%)=42°% (tr BEF)(tr5)+2uea¥F.D . (28)
v Y v vV v v
Yav (F,§,m) =200 F.m+oxF.M1-40A%tr (3 5,

FiouCart 81
.traT +2n 3T h .

v V

: v
n=n(t,$,0nf), M=u(t,3,0nF),
g

;Using also the existing relationship between A,B and

P.4.b) we can put the system (27) in the form:

v ’ v ~
T=A% (trD) T+2pCD+Y " 1<B> [ (B} 2T+7 (B 3-2° (trB)1-

' ;‘ane{ﬁ}S]h(¥) : (29)
v

S=<f>y lr- (83 25+3 B3 2+MIn (F)
VelV

x=<p>y~t [% BIEET () E§§>y m.



- which principially can be solved if the history of F is pres-

cribed.

dering the particular case of a rigid-plastic, rate-indepen-

. g0

In their applications to the general theory, by consi-

dent modei;Dafalias and Loret have neglected completely the

pure elastic deformations and the temporal rate of the pure

elastic deformation with respect to the plastic deformation.

the particular case of rigid-plastic rate-independent mate-

In order to obtain from the general system (26), (27)

rials (that is the case analysed by Dafalias and Loret) we

have to consider that the elastic constants Ae,ue*+w. In

this case from (26)l follows €°=0 and (26), (27) are reduced

to

D=DP=<X> {B(T,S,n)} °h (F)

w=W-WP=W-<X> {B (T, S, n)} (F)
S=wS-Sw+<A>M(T,S,n)h (F)

,{¢=(-§D.D)1/2
—; DT DT_+t_
A—BTF(T,S,M). ~5E ¢ Dt~T WT+Tw

(30)

Dafalias and Loret consider the following particular form

for the material functions

F(T,S,W)= =55 (T'=8) . (T'=8)-1, T'=T- Z(tr DI,

2k

B(T,S,%)= —(T’=S)+n (ST'-T'S)
k

M(T,S,%)=c(T’'~-S)=-6S
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where k,v,n,c and & are scalar isotropic material functions

" - which depend on the fundamental set of scélar.invariantsofims,

% JHere the symmetric part of B is just the one used in the clas-
sical theory of plasticity while the antisymmetric part was
obtaiﬁed independently by Loret (1983) and Dafalias (1983a,
1985a) using the simplest form of the representation theorems
for the isotropic functions. ’

‘ The consistency conduction (11) becomes

5 ; -
+ ;ﬁ(T -S) .5=0 (32)

%

1-2¢c- é% ;%

. k

We observe that if c,v,k and & are depending on x only, then
the consistency condition is satiéfied 1f and oenly 4f 6=0.

If we take into account the term containing 6 and if
we maintain the hypothesis (see Loret (1983)) that c,v,k and
& are functions of u alone, then it is necessary to multipli-
cate A by the factor‘l/h,,where h,is dependent eon the inva-‘
riants of (T,S) and %, and hphas to be pesitive,

Thus we replace (30)5 by the modified plastic factor.

(see Halphen (1975), Loret (1983), Dafalias (1983a, 1985a)):

v 1 DT
bar ' Dt
and therefore the following consistency condition
. . a5 '
h=2c+ 73 ’]:2— o ']:2‘(T S).5 ‘ (34)

yields.
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If we suppose that c,v,k and I are non-negative wva-
lued functions and S(0)=0 then tHere exists a certain time
interval on which obviously h>0. However it is not yet clear
if the relation h»0 generally holds.

3.3, Kinematic hardening and simple shear

Let us analyse first the following particular cases
considered by Loret (1983) and Dafalias (1983a, 1985a).
In this case evolution equations (30), :(31) and (33)

take the following particular form:

=pP=<1> L%(T'-S)h(r), T/=T- %ﬂzﬂ)r,
k

(]
WP=<X>n (ST’-T’S)h (F) (35)
%%séfms+8w=<x>c(T'—S)h(F).

h=(§D.D)l/2,

|-

F(T,s)=

(T’-S).(T’=-S)-1
ke
o
o=W~WP
—--= l i, PE’ 4 2:_1:’= o'_ Y ;
A ;7(T S).Dt with B T'-0T'+T'w,
- .

The consistency condition leads to c=1/2. The material
fundtion v can be determined from uniaxial tensile text. In
this case we assume that all the stress components but a sin-

C.

gle one are zere, say Ti1=

=T33=-.iT' , and from the symmetry

2
Thus T/
2 ll

i1 3

14
Loo
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. : 1 : ; e
considerations 822=S33= = fsll‘ jhe yleld'condltlon becomes
2

o= e : i M
TJ.; Sl_l_ \/3ko’ if we consider Tn>511‘

Sinece the pure elastic deformations was neglected
and Re=I, by considering also the incompressibility condi=-

tion we obtain that F and P are equal to

F =P = diag {p,l/vp, J/Vp}'

Therefore

1 1

PR =‘ T D= p: i C —. el
L=EE =PP  =D=D: =diag {p/p, P/zp' p/zp} (37)
Is straightforward that‘W=Wp=O, that (35)2 are iden-

tically satisfied and that w=0. Consequently,

DSy o DR

———y o — T2 ’

5 S and 5t =T - From (35{land (36) we get

e T ‘ ; § -
p/Pf 73 E;~<A> and from (35)7 with (35)l we obtain

0_ .—Y - ° =l
u—2/v§ kd<k>' Thus p/p % and

® = lnp (38)

Finally the first evolution equation (35)5 is reduced

® _l-—. ! o o
to 5,,= 5<A>(T{18);) or to 5=k
5

’dsll "ko .
obtain $.— = 7y ¢ Combining this equation with the yield

condition we obtain that T, =0 satisfies the differential equa-

K. As we suppose u>0 we

oN
<la

tion
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3D
=T

=1a

Hence the factor l/v characterizes the hardening of fhe mate-
rial. In the particular case of linear hardening when o=v§g;

. 3k2

+El,u;v becomes equal to Eﬁg . Under the above hypotheses all
’ 1

the material coefficients presented in (35) can be determi-
ned, but n.

Further, with the same assumed restricted conditions
and following Dafalias (1985a) we study the behaviour of the
material subjected to a pure shearing due to a continuous loa-
" ding process.

| We suppose that:

1) only one component of F is non zero, i.e. F12=Y(t)
with y (t)>0 for any t;

2) the hydrostatic pressure is zero,'i.e. T/ =T;

3) the initial data To and So are: Ti3(0)=s}3(0)=0,
iem. |

It follows from 1) that the noﬁ—zero component of L is
b _

‘Consequently, the non-zero components of D and W are

D] =< e

D12=Y/2=D21 and W12=-W21=

o 3 - - '
It followsiufrom (353 that 5 <A> ;i"(le 812) and for
o}

all the other components Tij=sij'

From the hardening condition yields

=k , if T, -S..>0
(@]

. ot

120212



Thus

Using 2) we get Tzz(t)=-Tll(t), Szz(t)=—sll(t). There-
fore with the notation X=Sll’ y=812 the evolution equations,
which are not identically satisfied, take the following sim-

plified form:

- 8% o '
a5 =y-axy, e x+ax“ +b (39)
2k2n - ea
where a= >0, b= T = §—=>O, with x(0)=xo, y(0)=yo o AE

(35)4,8 are also used.

In order to study the béhaviour of the material cor-
responding to the simplified model employed here we have Eo
analyse the solution of the system (39) for y=0.0Obviously
the uniqueness and existence conditions for the system (39)
with given initial data (xo,yo) are fulfilled.

The critical points of the sYstem are determined from

the algebraic system:
= 2
y-axy=0, -x+ax +b=0 (40)

The solutions are real if and only if 1-4ab20. In this

case the solutions are (x_= f%(l-¢1f4ab, 0) and x+¥ f%(l+

+/1-4ab,0) and Osx_s<x . It is obvious that the integral cur-
ves of the system (39) are symmetric with respect to 0Ox. On

the other hand these curves can be explicitly obtained by
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integration of the system

—x+ax’+b

'gX = - = for x # -
- ax y (1-ax) a'’

and thus

‘%(X2+y2)=-‘gznll—axy+const. (41)

A particular solution of the differential equation is
the straight line x= %. The global sqlutions (41) of the sys-
tem are defined if the integration constant is determined
from the initial condition.

. The analysis shows that the critical point (x_,0) is a
center, but (x+, 0) is a saddle point. The existence of two
curves Ul and U2 follows. They tend asymptotically towards
(x+, 0) when y-+«, and ﬁlUUzu{x+,O)} is a continuoqs curve (see
Fig.4). On the other hand two syrrmetri.c curves (see Fig,4) Vv, and Vz
exists, which tend assymptotically towards (x,, 0) when
Y= UngVZU{(x+,O)} generate a closed curve,_and (x_,0) with
x >0iis én inner point of the domain bounded by this curve.
(0,0) is an interior point of the above mentioned domain if and
only if '

(x+)2- Eglnif7%:ﬂ§->0.~
The last condition can be satisfied for small n.

Fig.4
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From the physical point of view, all the subsequently
analysed cases lead to unacceptable solutions.

1 the initial value (xo,yo) belongs to the interior
of the mentioned domain, then the stresses are periedical

) lies on the curves U2 then T. -0

.functions of Y. If (x 12

o'¥o
but T3 has a finite limit when y-w,

If-(xo,yo) lies outside of this domain then we obtain
again an unaceptable behavour, since there are cases when
le descreeases when y increases and in all cases T,, asympto-

tically tends to a finite limit.

1
31
is descreasing, too, when Y tends to <« and Tll asymptotical-

Finally, for the initial value (xo,yo) with x >

ly tends towards a finite value.
In the particular case when 1-4ab=0 (i.e. x_=x_) the
behaviour of the solution (see Fig.5) is also unacceptable.
If 1-4ab<0 (see Fig.6) thefe is no periodical solu- -

tion, while le grows unlimited with y and T asymptotical-

11
ly tends towards a finite limit which is independent on the
initial condition.

After this brief presentation of the principal re-
sults due to Dafalias, we can conclude that the model obtai-
~ned as a consequence of the simplications pointed out above
can not be accepted from the mechanical point of view.

Bigas | Ede.6
Following Dafalias (1985b) (see also Loret (1985)) we

subsequently analyse the second example in which the material

hardens kinematically but &6#0. In this case, in order to sa-



& gos
tisfy the compatibility condition (32) it is necessary to
introduce a new material function h, depenaingfon the scalar

invariants of (T’,S). We also assume that the material func-

o C N 5
tions have the following simple form c= q_, V= Q,6= O
n Hg K; hO
r|=tg, where co,vo,éo are material constants, with h expres-
0
sed by
60
h=2e = ==(T'=S) .S ' (42)
ko

according to (32).

In this case the system of equations (35) becomes:

vV
D-B-F ~39(T'-s)h(r)
kZh,

oo
wP=<%> HQ(ST’—T’S)h(F)
0 ; (433
s - cO 6O
- = e (A 5
S=wS+Sw=<A> { ho(T S) E;S}h(F)

F(T,S)= —ig(T'-s).<T'—S)~1

2kO

o=W-WP, T= 5 (T7-S). (T'-0T'+T’w)

%o

The relations (36), (37) remain unchanged but

ik 26
A= ZVZQJ with hs2c - E;aslz (44)

Following a similar approach as used above the dif-

ferential evolution equations can be reduced to




dx _ ] Edy 2 =
37-@x+(lﬁqx)y, 3%7—6 oyt (1- ox)x (45)
with
2k 2 k & k2
2o L fomo B= o
v Nor @ 2vo / 2V

Analysing the system (45) Dafalias (1985b) comes to
the conclusion;

a) there are values of the material constants for
which the system admits only one equilibrium point;

b) depending on a certain relation between the mate-
rial constants this point can be a stable nodus or a focus;

c) in the first case there are no oscillations for T,
and le, but in the second case there are stress oscillations.

Consequently this model is a more realistic approach.
The stress response presents an assymptotic convergence tb-
wards an equilibrium point (a stable épiral in stress space,
for some numerical values) and the induced stress oscillations
fade away as the equilibrium point is approaéhea with increa-
sing Y. 5 .

Dafalias does not analyse the constenecy condition (32)
and it is not clear if the relation h>0 holds or not.

Subsequently we deal also with a simple shear problem
for kinematic hardening but for elasto-plastic material with
small pure elastic deformation and the case when the elastic

rate of strain are also taken into account in the presence of
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the p;éstic rate Qf strain (see Cleja—?igoiu (19880 ).
Therefore the system (26) replaces'(35) with the mate-
rial functions given by (31) with :6=0, k=k_(const.), c=1/2
(from the consistency condition (32)). Therefore, if we know
the history of homogeneous deformation t-F(t) the stress sta-
te T and the back stress S can be determined, for anyAfixed X,

by solving the following differential equations:

%'=mT’-T'w+2ueD-2u?<X> —%(T’-S)h(F)

k
. : (0]
S=mS—Sw+<'X>%-(T'—S)h(F)
W=W-<A>n(ST’'-T’S)h (F) (46)
1
Fle,S) . (mi g (Ti-S)1,
2k
(@]

T/!=T- %(trT)I, trT=9KtrD

in which X is replaced by the complementary plastic: factor

B (see formulae (12)1)

e
G- ueh B E%W(T’-S).D, r=1+ 4§ev (47)
' k k

(o) O

where D= {E"F_l} = W= {f:‘F—l} a‘,and K is the elastic bulk modulus.

’
We add also the initial conditions T(0)=TO,S(O)=SO.
In the siméle shear problem, i.e. for F(t)=y(t)elxe2+
~+I, with Yy(0)=0, the orthogonal transformation § introduced
by (27) corresponds to a rotation of angle 0=y/2 around e,
T v

vV v v v
and we get for the rotated variables T=R T’R,S=RTS§ the fol-

I)We replace y by I' in order to keep y for shear strain.
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- lowing equivalent system:
v oY v
P=2uSD- 3—5~B->- n {(ST-1S) T3 5h (F) - "2‘12 (r-1) (T-S)h(F)  (48)
\; s Vv
§=-2 B2 ((ST-1$)$15n(F)+ B2 F-E)n(p)
T o
e
with p= 212‘ (T-§).D, r=1+ 41;\’ , for D=R'DE.
k K
(@) O

The simple shear problem requires the determination
of T and of the back stress tensor 5 which must sétisfy the
system (48) when the simple shear deformation process and
some initial values of T and é are given (for instance
T(0)=0, S(0)=0).

With the models in which the plastic factor B is also
involved is possible to take into account any homogeneous
deformation process,.hence any simple shear process, unlike
the rigid-plastic models considered by Dafalias énd Loret
in which shear rate must be assumed to be constant.

If follows that the simple shear problem has an uni-
~gue loéal solution.

Some numerical examples are analysed in order to il-
lustrate the effect of the plastically induced rotation (des;

cribed by the depéndence on the material parameter n) on the

material response subjected to simple shear (see Fig.7 and 8).

Big.7 BEig.6
The differences between the curves corresponding to

different values of I', become significant at large strains

T P R R R T
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only. In the case n=0 we obtain the analytical solution which
reveals also the exact nature of'the oSciilating stress res-
ponse for large simplebshear even when G (the elastic modu-
lus =u) is also taken into account. The Dafalias’s solution
(1985a) is obtained for G+=. It has been shown that in the ca-
se of the elasto-plastic simple shear the Oscillations may be
induced or not also depending on the value of Tle Taking intd
account the plastic rotations the osciilations have been su-
presed even for kinematic hardening rule,

It is important to point out that the solutions obtai-
ned by solving the elasto-plastic simple shear problem are
consistent with the physical fundations of the model or with
the limits of its applicability - (see §1.1), enly, 1f the range
of variation of the shear strain Y leads to deformations which
remain moderatly large (30%).

We also mention that the solutions are obtained under
the hypothesis of small elastic deformations, consequently
T12/2G must be small. Since, in fhe elastic —élastic kinema-
e hardening model, for sufficiently large values of the ma-
terial parameter n the elastic deformations may become unres-
tricted large, in order to have small elastic deformations
~we must restrict the fange of variation of n, as well as the

rande of variation of y.
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Chap.4. Materials with elastic range

The models of the materials with elastic range were
formulated by Pipkin, Rivlin (1965), Owen (1968, 197C, 1974,
Silhayve (1997), Lucchesi, Podieo-cuidugli’ (1986).

| Subsequently, we shall present shortly the approach
by Lucchesi, Podio-Guidugli (1986)to the rate-independent ma-

terials with elastic range.

dade Eate sulependent naterigle we th clagklia mange

Here we use the same specific concepts of the &heory
of materials with elastic range and the same symbols as in the
~pPaper by Lucchesi, Podio-Guidugli.'Thgir theory relies on con-
cepts which are sometimes only slight modifications of those
already introduced in the above mentioned papers concerning
the material with elastic range,

A history is a continuous mapping ﬁ:[O,l]»L+ and is
interpreted as a one parameter family of deformation gradients
at a material point fixed once and for all, with respect to a'
fixed reference configuration. g(O) and g(l) are its Hmbtial
and final value, respectively. A history is constant if it has

a constant value. We denote by at

the history with the cons=
tant value a and the history Q is rigid if it takes its values
in: 0L En partieular shas iy rigid history with value T dnter-

preted as permanent occupancy of the reference configuration

and will be called the nggrgépe‘histqry.

Let H denotes the collection of all histories and
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DCH the set of all historiesssuch-that F(0)e0.

A : . “ A
For Fefl and for se[0,1] the s-section of F is the his-

A A
tory F_ such that Fs(s’)=%(ss’) for all sf:[0,1];

A A
A history G is said to be a continuation of F if there

A A A
exists a s-section GS such that GS=F.

. + : : 25 :
Given Ael , a continuation up to A of F is a continua-

A 5 A
tion G of F with final value equal to A.

A subset ECL+ will be called an 2§m4§sible set for

Bt
i) E is the closure of an open set; ii) E is arcwise

connected; iii) §(l)eE, iv) if'ﬁ(l)eaf then there exist two

<s,<l, such that E(s)s%l) for Se(Sl,S

numbers SN 0<s

o U5yt 2)

and E(s)eaE for sels,,11. =

In particular the final wvalue of a histery may lie
either in the interior part or on the bounda;y of E: dnuithe
later case the boundary has to be reached from the interior.

For E an admissible set of §, the collection of all
continuation of F which remains in E will be denoted by
C(F,E).

Lucchesi, Podio-Guidugli’s approach is.developed wi -
thin the framework of the history type theories. The material
. respoense to a given history of deformation is described by the

constitutive functional:

¥:0-3, T=H(F), | (49)

—
1Y E denotes the interior of E.
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where T is the Cauchy stress at the end of the history p,
The choice of the constitutive funétional % is restric-
ted by the requirements which will be listed below,

. A b
A set E is an elastic set_for'F“qprregponding to ¥ if

i) E is an admissible set for F, id) Qs path independent

A ; NCOA A, A A A :
on C(F,E) i.e., T(G)=T(H) whenever both ¢ and i belong to

A A A
C(E,E) and G(1)=H(1l).

E.1. (Existence of the maximal elastic set). For any
A A
F fixed in D there exists an elastic set E(F) such that if E
A
is another elastic set for B, Ehen Ec:E(f). E(f)is calred the

elastic range_ of thorrespondingvto %Lilikewiig an element of

A A
CLlE, E(f)) is called an elastic continuation of B,

A.2. (Invariance of the elastic range under the elas-

A A
tic continuation). For F fixed in D, E(§)=E(§) for aeC(F,E(ff).
A .
Let FeD and Acl? be given, For & any elastic continua-

A
tion of F up to A we set

™ (a

<o

F) =% (&) - (50)

As a direct consequence of path independence of T on

C(%,E(ﬁ)), (50) makes sense and defines a mapping Tx(.,ﬁ):E(ﬁ)»

-S called therelasyipw;esponqe mapping corresponding to %.
. A o= A N ; ~
In particular for A=F(l) we have T (F(1),F)=1(F).

By using i we get

A

%(,,F) =1%(.,8) (51)
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: A N
for any elastic continuation G of 1055

ny : ,
As usually, we say that T is frame-indifferent if

@(6§)=6(1)%(§)6(1)T for all FeD and for all rigid histories
0.

The following propositions hold (see Lucchesi, Podio-
Guidugli (1986)):
E;i; The constitutive functional % is ffame—indifferent
1Ef for all ﬁsD, E(ﬁ) and Tx(.,ﬁ) have the following properties:

1) B = @00

T (0a,F)=01* (8, F)0" for all AcE(§) and Qe "

3040 E(éf)=E(f) for all rigid histories a and

In what follows, the following axiom will be assumed:

K.3, The constitutive functional T is frame-indiffe-

renkt.,
The set E(I*) will be called the initial elastic-ran-
ge.
| The meaning of this set will be pointed out by the
proposition:

- ; e
D.2, Eor all @e0 1) E(0°)=E(T ), ii) O:E(Q )

_ < .
Therefore the'initial value F(0) belongs to E(It) for

A
all FeD,
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A + A
Also, we must have F(s)eE(I') for all FeD and for suf-
A
ficiently small values of s, since F(O)eE(It) and ﬁkis conti-
A

nuous. Moreover, if the image of [0,1] through F is not enti-
rely contained in the closed set E(It)

» then there exist

sos(O,l) and €>0 such that
s 4
F(s)AE(I') for s€(so,so+s) (52)

A
We say that during the history F the first vielding

occurs at the smallest value Sq satisfying (52) for a certain
€. ‘ P

A ~
For a given FeD we say that the history SF is an un-

A

- loading history corresponding to ﬁ if SF satisfies the follo-

wing conditions for all se[0,1]:
8 A o wa D 2

i) SF(s)eE(FS), a1 )T (SF(s),FS)=O.

Let S(ﬁ) be the collection of all unloading histories
corresponding to F, It can be shown that:
P.3. If it is not empty, the set S(F)mMust contain at least
one history with. positive-definite values.
3;54 (Structure of the collections of unloading his-
tories). For each geD, the set S(F) contains exactly one po-
sitive-definite history. Let é; be this positive-definite un-
loading history.

As a consequence of A.4. and §f3; we obtain that S;

is unaffected by the elastic continuation since the following
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proposition holds:

E;f; et §eD and let 6 be an elastic continuation
of ﬁ. Then the constant continuation of é; is the positive-
definite unloading history corresponding to 6.

It follows that S(ﬁ) is invariant under a com@osi—

tion with a rigid history, as stated in:

] A

B.5. For all FeD and for all rigid histories Q, the

/\+ _/\.t._

SQF“SF
A

For any Fel the set

relations or equivalently S(6§)=S(§)nhold.

A + A A
B, (F)={(acl |AS;EE<F)},

called the reduced elastic range and the mapping

T°(.,§):ER(§)»3, T°(A:§>=T*(A§;(1),ﬁ),'

called the structural mapping associated with the history ﬁ
can be defined.

To(.,ﬁ) may be interpreted "as the mapping delivering
the stress in purely "elastic"‘deformation processes starting’

from the stress-free configuration reached after unloading
+
F 14
: A

si, Podio-Guidugli (1986)), since the stress T*(a,F) attained

A
along S taken as the reference configuration" (Lucche-

A A
in any elastic continuation up to A of F is equal to TO(As;(l)

A
F).

~e
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On the other hand, for any ﬁeD and for all se[0,1]

- . v
fiiox o o =] 2

¥(F )=t (F(s)iF ) =1°(F ()55 (s)"LiF )

P.6. The reduced elastic range and the structural

mapping associated with F have the follow1ng properties:
13 2 ke
1) ¢*c E(F)=a®E, (F)sua) 12 Qe0, 1900, B)=0;

2 5 A - 4 A

1ii) for any AeER(F) and for any Qe(, TO(QA,F)=QTO(A,
A
F)Q' holds identically,

The material model defined by the above:axioms have

a solid-like behaviour since the following property holds.

P.7. If Ael, is such that T°(Ba,1%)=1°(8,1t) for all
BeER(I*) such that BAeE, (1Y), then aco0.

Let us define now, the global structural mapping.

Let N be the setUE (F) for all FeD,

For NeN fixed, the structural mappings TO(.,ﬁ), asso-
ciated with the histories F such that NeER(ﬁ), are considered.
If all therse mappings yield the same stres at N, we denote

their cammon value by " (N). Therefore

TH:N»S, TH(N)=TO(N,§) for any §eD such that-

NsER(F).

A.5. (Existence of the structural Mapping). The struc-
3 A
tural mapping associated with all histories FeD define one

global structural mapping,
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As a direct consequence of A.5 we obtain that

A A = : : . A
"i'(fys‘)=Tu(F(s)S;(s) 1) for all histories FeD and for
all se[0,1]. Consequently, the positive-definite unloading
history plays the role of a "permanent deformation history "

in the theory of Owen (1968, 1974) and gilhavf (1977) .

Efi: The global structural mapping has the follo-
wing properties:

i) 0clN =08 d4) 1f 0=0 then TE(Q)=0, iil) for any
NeN and any Qe0, TH(QN)=QTH(N)QT holds identically.

Qel defines a symmetry transformation for the mate=

v
rial described by the constitutive functional T if
%(%Q+)=%(ﬁ) takes place for all st;

P.9 0 is a symmetry transformation iff, for all his-

tories ﬁsD and for all AeE(ﬁ) the following relations hold:

i) EEat)=e(Fo, i1)T¥(a,F)=1%(ag,fot).

P.10. Let Q be a symmetry transformation. Then:

A A
T S;Q+ and S(FQ*)=S(§)Q hold for all

e
i) SFQ—(Q )
A
FeD, , :
A
1) ER(QQ*)=ER(F)QJ‘ and T°(a0,Ft)=1°(a,) takes pla-
ce for all %eD and AeER(ﬁ).

Finally, the material. symmetry transformations are

not detectable by Tu} in the sense given by the following pro-

position:
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'E;il; If Q is a symmetry transformation then
NQ=N,for all NeN‘, TH(NQ)=TH(N).
‘ A-material"isotropic when the collection of its syrme-

try transformations is equal to 0,

2 P,12, For isotropic materials
A
i) the values of SI are scalar multiples of I;
A ~ A -—
i1) for all Fed, F(F)=T"(F(1) (5,(1))7) yields for
. :
all S_eS(F);
Rh A H A : 2 A foe :
iii) ¥(F)=T (VF(l)) is satisfied for VF(l)eS which is
A A
the left product decomposition of F(l) under the form F(l)=

_A A A+
—VF(l)RF(l)SF(l).

s

Finally we present the next two propositions (given

- by Luchhesi, Podio-Guidugli (1986)) which are listing suffi-

: s Ay X
cient conditionsion«E(F), 5 . and T

P in order to insure that

¥ is frame-indiferent and Qe(0 is a symmetry transformation

for %:

— A A
P.l3. Bor all FcD and for all rigid histery O,
we suppose that I

1)E(F)=0E(F), E(OF)=E(F)

oA Ay
11)SQF—SF,

and moreover, for all Qe0, NeN, we suppose that

i1i) TMON)=0T (N)Q" ;.

then, the constitutive functional T is frame-indifferent.
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Elii; Let Qe0, We assume'that
1) E(Fot)=£(f)q
18) §F < (ol Hge
take place for all FeD and
iii) T (ng)=1" ()
holds for all NeN,

Then, Q is a material symmetry transformation.

4.2 Conpgptipn between the materials with elastic

range and Fhe4matgria}s havipgwlocal relaxed

configu:ations

Concerning the theory tﬁey have presented Lucchesi and
Podio-Guidugli (1986) observe that: ;whithin the framework of
Axioms K;l-K.S, assigning the constitutive functional % islequi-
valent to assigning, as is done in applications, the elastic
range E(ﬁ) and the positive-definite unloading history g; cor-
responding to each history ﬁeD,'together with the structural
e

mapping

Starting from this remark, we searched (Cleja-?igoiu,
Sodés (1988)) the connection of our axiomatic model with the
‘model of the materials with élastic range. This comparison is
entirely motivated by the fact that (P,a) can be described as
solutions of some differential equations which depend on the

/

A
history of the deformation gradient F and on the temperature
.

Consequently, the elastic deformation E=FP_1, as well
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as o, introduces the dependence on the hiétory of (F,0) in the
material response, via admissible.thermOeléstic processes (see_
formulae (4) in §2,2), Here, we restrict ourselves to isother-

mic processes and to rate-independent materials, i.e. the evo=

lution equations (10) in §2.2 do not contain the viscous terms,
A=0, ¢=0, .

From the axioms A.l—A.9, the definitions and the prdfﬂ‘
perties given inchap.3, can be proved the validity of the fol-
lgwing consequences: .

From P4 (§2.2) we obtain

C.l. The complementary plastic factor B is defined by

=T o+ P

l N
E(E)pe C=F'F

B=p = 3
Ce

and the hardening modulus y is given by

y=23% e;(z).{cea(g)}s + 1,
C

We recall that17

P e v : e
F(C)=F(h(c ,a),a) with T=(C ,d).
/
C.2. (see Cleja—?igoiu (1988)). From the material law,

with C.1, we obtain the strain formulation of the evolution
1

equations for the function Y=(P™~,d):

1) We denote by tilda (’Q) superposed on the symbol of the considered
function, the function obtained by the procedure indicated here.
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T=<p>B(C(t), V), Y(0)=Y_ with . (53)

E(C,Y)={~7-l

Ble.3), v Ble, V)] detineg on i
yleld surface F(c,¥)=0, with 4 Fle v tic,y)--1. o by a
dush (~) superposed on the symbol of the considered function
we denote the function Obtained by the procedure indicated

below:
- Y - -
B(c,v)=B (" Tcp™1 g

€.3. T¢ f,B,f are éuch that the right hand side of
the system (53) safisfies the Peano—Lipschitz conditions on
the set {(t,Y)IF(c(t),y)=0, B(t,Y)>0} then tﬂe Cauchy problem
allows an unique local solution.

Let D be the set of all histories of deformations for

which C. 3. holds.

From C.2,., C.3, for all FeD it follows

C.4. The set E@)=wel’|F(C,v))20, c=Tr) is an admissible
A : '
setefor 7. _
: A + : A N A A
C.5. E(E)={CeS IF(C,Y(£))<0} ard moreover QE (F)=E (QF)=E (F) for
A
Qed, O an orthogonal histeny,
From C.5 and C.3 it results:
C.6. 1) There exists a stress constitutive functional
¥:D*S which gives the current value of Cauchy stress T corres-

: N
ponding to the history F and it is defined by

v =7 Ehpin 5
T(F)=det P det F 1rp "he"Tep l,a)P o
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where Y=(P_l,a) is the current value of the solution for the
A A :
system (53) corresponding to F and F=F(t).
2) ¥ is frame independent, 3) % is path independent
: A A

From C.4-C.6, it follows:

A
C.7. The set E(F) introduced in E. 4. s a(max}mal'

elastic set, invariant under elastic continuation.

C.8, There exists a globa;istrﬁqtgpglhmappigg

™ :E-3, where E=VE, (F), FeD, with
Ep(F)=(EeL, IER (£)cE(F)}, and defined by

TE(E)=fK (E,a) having the properties: 1)QeE=QE
(o]

for any Qe0, 2) T"(a)=0 iff ac0, T%(0E)=0r™ (£)0T,

Concerning the material Symmetry we state:

€.9. Por all Qegy 1) the elastic range E and the
o

global structuralﬂpgppigg X have the properties : EQ=E,

T (Bg)=0 (=),
: ! - -
2) the equality ¥(FQ)=1(F) holds for all FeD,
As a consequence, in the sense of our definition D.2,
(see §2.3), any symmetry transformation is a symmetry trans-
formation in the sense given in §4.1.
We also mention that from: A,4, the continuity of

Esh (E,a) in E=I, €.3, -and C.4-C.6 follows:
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C.10. The set of unloading histories corresponding
A
to FeD is a non-empty set, since the history of plastic de-

" i e
formation P, corresponding to FeD, is an unloading history

(in the sense given in §4,1),
Moreover: for any rigid deformation Q+,Q*§ is it-

self an unloadinghhistgry. Consequently for FeD there exists

exactly one positive-definite unloading history 9p—the pure
plastic strain history corresponding to 5.

We observe that Qfﬁ is a"permanent history "accor-
dint to Owen (1968, 1974) and an "unelastic history" accor-
dint to §ilhav§ (1977),but i is not a plastic deformation
history in the sense of our definition (see §2.2),

On the basis of C.10, but taking into account the
observation which was just made, we can say (see Owen (1974))
that in an elasto-plastic material the larger the symmetry
group the larger the posibilities for "plastic" deformation .
histories, and that the elastiec rotation is arbitrary for a

given history F.

Concluding remarks: From the above nropositions

follows that our model represents a realisation of the theo-
ry of materials with elastic range and that the axioms assu-
med in §2.2 and §2.3 allow us to determine the stress consti=-
tutive functional.

In this sense the results presented for the rate-

independent materials justify.the Kratochvil’s conjecture

(Kratochvil (1972a)): "The finite strain theory of elasto-
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plastic materials suggested by Lee, Liu, may be regarded as
a special case ovawen’svtheory".

On the other hand, we consider that the behaviour
of elasto—zigggplasticvmaterials can'ggz be modeled within
the framework of materials with elastic range, but it can be
modeled using c.l.r.i.c. and i.s.v. (sée Soés (1983),'Cleja—
?igoiu (1983, 1988), in spite of the statement made by Lee and

Germain (1974).
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Chap.5. Recent results

5.1. Some theofies devéiopéd bétween 1985 and

19188

In this section, we present briefly some results ob-
tained in the interval 1985-1988 and Which are-related to mo-
dels based on the local current relaxed configurations. We
mention that all considered references were published in the
International Journal of Plastic;ty. We limite ourselves to
this journal since we consider that its content reflects well
enough the recent work done in the field discussed and analy-
sed in OUYX paper.

Reed and Atluri (1985) remark that the results
obtained independently by Lehmann (1972), Dienes (1979),
Nagtegal and Jong (1984) concerning the prediction of stress
oscillations in simple shear problem, "served to emphasize
the need for a more rigorous method of arriving at réte type
constitutive equations describing kinématic hardening then in
vogue: a mere replacement of the inobjective material stress
rate by an objective rate".

Concerning this problem; Reed and Atluri observed:
"we do not believe the present search for an "ideal" stress
rate for these problems to be Qell founded. Our dissatisfac-
tion with.the model based on the new stress rate stems from
the fact they cénnot be bhreught into agreement with any rea-
listic idealization of material behaviour, much less with ex-

perimental data. None guarantees stable material behaviour
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in rectilinear shearing. Normal stresses and normal strains
- predicted by the models are generally one or two orders of
magnitude larger then have been reported in the exéerimental
literature".- '

By using experimental data and hypoelastic consti-
tutive equations Reed and Atluri proposed a new material law
for the back stress S, in which the Jaumann rate of S depends
linearly on the plastic rate of strain, but‘is a non-linear
function of S.

The model is a rigid plastic one and a Mises type
description of the loading surface and associated flow rule
are adopted.

For the normal strain predicted by the model in pu-
re torsion and monotonic loading there is an excellent agree-
ment with Swift’s (1947) data. The predictions of the rigid
plastic model concerning the shear-stress and the average
shear strain and the Swift’s data are also in good agreement,

We consider that the model proposed by Reed and
Atluri represents one possible choice, but the same agree-
ment can be obtgined by using other kind of objective rates,
for instance, the one based on plastic spin (Cleja—?igoiu
(1988)).

In such a way, the problem concerning the descrip-
tion of various kinds of hardening and, of course that of re-
covéry, remains open. |

One possible struc%ural app?oach to this problem

is presented by Tokuda, Kratochvil, Ohno (1985)., The macros-
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copic inelastic response is treated as an average of some
elementary plastic events, The elements in the slip model
considered by the authors are sup?osed to be single crystal
grains in which the inelastic aeformations are carried out
by crystallographic slips,

The model incorporates interactions among grains in
the polycrystal (internal stress) and interactions among the
slip systems in a single crystal grain (laten£ hardening) .

The equation for the slip strain in a slip systemn
is based on the theory of thermoactivated motions‘of dislo-
cations, ‘

The>model takes into account the fact that when the
pochrystal undergoes a deformation process, a slip starts
first in a favourable orriented slip system in a favourably
orriented grain, Consequently, thé plastic deformation in a
polycrystal is generélly non-uniform and differs from grain
to grain, The single Crystal component can not déform freely
owing to the interaction of surrounding grains, and the in-
teraction among grains is considered by the authors assuming
-that the strain state is uniform in the polyérystal, but the
plastic and elastic part, respectively, are not uniform.

The numerical computed results are in good agreement
with the experimenfal data in the case bf the selected FCC

type crystal at elevated temperature and multiaxial strain
éonditions. In the paper of Tokuda and Yamada (1988) the model
was expanded to the large strain range and later we shall com-

.ment upon this work.



=101 -

In contrast with the approach of the above mentio—
ned paper, Anand (1985) deals with a macroscopic approach and
‘developes a set of phenomenological internal variable type
constitutive equations describing the elevated temperature de-
formation of metals. In the paper, a number of typical concepts
concerning the formulation of constituﬁive equaﬁions of elas-
tic-plastic materials at finite deformations are tackled: the
transformatibn rules under a change of frame for E and P in-
volved in the decomposition F=EP, the proper choice of frame-
indiferent rates, the role of plastic spin, a proper specifi-
cation of the evolution equations for tensorial internal varia=-
bles.

All these problems are heatedly debated in the lite-
rature and Anand (1985) provides a coherent, physically moti-
vated, mathematically clearly formulated model, which is in
accordance with our point of view regarding a theory based on '
the relaxed configurations.

For the development of the constitutive equations,
Anand assumes that with each particle a director triad is as-
sociated (assumption steeming from Mandel’s) which determi-
ﬁég the orrientation of the neighbourhood of the particle.

The author employs a conceptual local configuration which

is reached by unloading a smali material neighbourhood, by
reducing £he stress to zero and by bringing the temperature
back to its initial value. it is important to mention the’
following Anand’s observation: "the unloading process is again

conceptual in nature in that we assume: i) that it is possi-
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ble to fix the current arrangements 6f material neighborhoods
on the microscale so as not to allow any rearrangemenfs by
slip diffusion and the like while we reduce thé pair.(T,e)
for.each element to (O,@O);andA — .
ii) that it is possible to orient the unloaded element such
that the director triad {éi} in this configuration has the sa-
e orientation with respect to an orthogonal basis {ei} ini
space, as it did in the reference configuration'Bo". Follo-
wing Mandel (and of course Teodosiu and Kratochvil) such an
unigque current relaxed configuration is called by Anand as
Ysoclinie”. EXactly as in our axiomatic system the deforma-
tion associated with this specially oriented relaxed confi-
guration is called the plastic deformation, P.Consequently,
Anand defines the elastic deformation by E=FP-1. The trans-
formation rules for P and E under a change of frame are the
same as those presented by us, in particular-P remains unaf-
fected by a change of frame. As an interesting feature of the
model, and quite distinct from the usual theories, Anand does
not assume the existence of the yield condition as well as of
a loading criterion,

These assumptions reflects the expérimental feature
that at elevated températureé, the plastic flow may occur at
any value of stress and there is no instantaneous plasticity,
Also} we observe that Anand tacitly considers a time inva-
riance axiom of the kind used by us,.because the dependence
or invariance of the material functions on the l.c.r. i.c. is

not mentioned anywhere. Consequently, it is not clear the
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e s
reason for which Anand considers the symmetry group as being
"instantaneous", i,e. depending on time, |

In accordance with Anand we consider that his paper
constitutes a possible answer to the problem posed by Rice
(1975) : "Giyen an initially isotropic material in which the
plastic state is assumed to be characterized by a scalér Field
and by a second order tensor field, what is the most general
possible class of flow rule and evolution equations.

Also we think that Anand is right when he writes
"it is clear that even for the highly idealized class of cons-
titutive equations which use the scalar and symmetric secdnd order
tensor as internal hardening variables, much work based on the
- experiments and considerations of physical mechanism of vis-

copiastic deformation at elevated temperature needs to be do-
ne in order to specify particular forms for material functions
which may be suitable for practical applications".

The point of view presented by Haupt (1985) is in
complete disagreement with the basic assumptions adopted by
Anand. Indeed, starting from ideas developed by Holsapple
-(1973) within the framework of the models based on history-
type constitutive functionals, Haupt considers that the oplas-
tic rotation is not related to the history of the mechanical
process via a constitutive functional. Inother words, he be-
lives that the multiplicative decomposition of the deformation
gradient in an elastic‘and plastic park, respéctively, can
be assumed on a purely kinematical basis, i.e. without any

constitutive assumptions. On this basis, which is wrong from
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our point of view, Haupt considers that the plastic rotation
can be arbitrarly changed by using an additional orthogonal
tensor, arbitrarly choosen, Consequently, Haupt assumes that
in any process the plastic rotation can be taken as being .
identically equal with the unit tensor I. As a consequence,
he states that: “ail constitutive assumptions must be expres-
sed by equations which are frame-indifferent as well as inva-
riant with respect to a superimposed blastic rotatien®. This
statement is in a full agreement with the considerations made
by Sidoroff (1971), Casey, Naghdi (1980,1981), but in comple-
te disagreement with our point of view. We consider that the
assumptions made by Haupt are completely erroneous because the
physical and microscopical basis of plastic deformation shows
that, generally thé variable plastic rotation exists. Also,
from pure phenomenological point of view and in a correctly
stated constitutive frame it results that Haupt’s assumptions
are acceptable only in the particular case of structural iso-
tropic materials, when only scalar type internal variables are
taken into account. (See, for instance Dafalias (1988, 1985)
and Leret (1983, 1985) . Moreover, if
we assume that the material considered by Haupt is not plasti-
: cally deformed, accofding to his model it must be inevitably
elastiéally isotropic, For us, it is clear that, in reality,
this feature is not acceptable,

Similar but unacceptable iaeas and results, are pre-
sented by Haupt and Tsakmakis (1986) in a subsequent paper de-

voted to the kinematic hardening at large plastic deformations.
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In a paper devoted to "the ?hysical of plastic de-
Aformations" Aifantis (1987) deals with the formulation of theo-
‘ries of plasticity at large déformations, based upon an assump-
tion concerning the existence of a set of continuously distri-
buted straight edge dislocations, the carriers of plastic de-
formation, moving along their slip planes The author consi-
ders that his results provides the microscopic substantiation
of various phenomenological proposals for the plastic spin,
recently and independently advanced by Dafalias (1983a,b,
1985), Loret (1983) and others.

In order to elaborate a model of elasto-plastic
deformation at finite strain, the author begins with certain
relationships for the large elasto-plastic deformations. He
admits the multiplicative decomposition of the total gradient
deformation F, but as the author says, in a slightly diffe-
rent version F=RUer‘(44), "where R denotes the rotation of
the lattice slip system or the material rotation as épposed
to the rotation of the continuum; uC is the elastic stretch
and FP represents the purely plastic part of the deformation
gradlent In usual theories of elasto- plast1c1ty the first
two terms of the right hand side of (44) are lumped together
and denoting by I , the elastlc deformation gradient. As this-
practice may rise some questioﬁs concerning the uniqueness
of the inﬁermediate relaxed.configuration, that is the confi-
guration of thevcontinuum after the removal of.Fe we retain
the adopted decomposition as our starting point. Assigning R

to certain characteristic direction of the material in this
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case the lattice or slip directiens, it removés the above am-
biguity and allows for a clear presentation of the main ideas".
"Physically R arises from the geometric contraints imposed by
the boundary'conditions on the slip direction, U® arises from
the usually reversible lattice displacements of elaskie natu-
re and FP arises from permanent or irreversible slipping of
crystal portions with respect tb each other due to disloca-
’tion motien”.

Apparently, Aifantis is in good agreement with the
point of view addopted by Mandel, Tebdosiu, Kratochvil concer-
ning the physical basis of the considered decomposition, though,
for us, it is not clear the moﬁivation concerning the meaning
of the rotation R. We can not understand the reason for which
the term ﬁRT is not included by Aifantis in the elastic spin.
Consequently, we consider that the model given by Aifantis
is not in agreement with our model as being physically non- .
motivated.

Also, it -is not clear to us the reason fbr which
the kinematic slip system can be treated in a dualistic man—.
‘ner, considering at the same time the components of the slip
system as being connected with the crystal lattice and on
- the other hand as being material elements (see for instance
the relations (49) versus (46)).

We also observe that the principal microstructural
relations considered by Aifantis for the rate of plastic v
deformation are in total diéé@reement'with the: resulks given

by Tokuda, Yamada (1988).
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According to us: a) many of the basic kinématic're~
lations can be accepted only in the cases in which the elastic
stretch is equal to I;b) the proof of the final results given
.by Aifantis (relation (63)) which, according to his opinion,
provides a microscopic derivation of a constitutive equation
for plastic spin (proposed by Dafalias and Loret) is accepta-
ble within the framework given by the author only when Ue=I{
c) in order to prove the mentioned résult, Aifantis assumes
that only one and the same slip system is acctivated in the
whole body. However, in this case the material can not be
structurally isotropic, although the phenomenological consti-
tutive equations finally obtained by Aifantis have such ma-
terial symmetry. 5

The formulation of objective rate-type constitutive
relations in finite deformations is considered by Paulum and
Pecherski (1987) in a purely phenomenologicél may.

The authors observe that the theories discussed in
most of the papers, related to the problem, lead to an inade-
quate prediction of material behaviour in the problem of sim-
ple shear and single sheas traction. In their paper,the plas-
tic spin concept and the related constitutive equations are
discussed for rigid-plastic materials with combined isotropic
kinematic hardening. Paulum and Pecherski correctly observe
that "it is necessary for adequate description of anisotropic
hardening and large plastic deformations to ‘account properly
for the material structure and its evolution in the deforma-

tion process. The structure deseription is achieved by intro-—

)

!
S
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ducing the relatiqn between stress, strain and their rates a
set of internal structure variables... . These variables re-
‘present macroscopically the effects of microstructural rearan-
gements. They are defined, however, directly at the macrolevel
and are determined in macroscopic experiments... It was recog-
nized by Mandel (1971, 1972, 1973) and.Dafaliég (1983b, 1985)
that the structure variables are attached to the substructure
of the medium and not to the continuum itself., Similarly, the
stress is "carried by the structure" of the material. Therefo-
re it seems quite natﬁral and reasonable to define the obejec-
tive rates appearing in the constitutive equations by means
of rétes corotational with the material substructure. Such
corotational rates require the definition of the spin tensor
which reflects the rate of the rotation of substructure, The
thought spin is the difference of the plastic spin from the
total spin".

In our opinion, the last sentence,-can-be.accepted
only when the elastic deformation is émall, the correct for—
mulation of all constitutive and evolution equations requires
Vthe Usedof el i.c. ‘

- The theory discussed by>Paulun and Pecherski is ba-
sed on a new constitutive relation for plastic spin, and on
the use of the spin m=W—Wp, inlorder to obtain an objective
time rateAfor stress and for the béck stress, as donne by
Dafalias and Léret.

The authors compare the theoretical results obtai-

ned within the framework of the models elaborated by Lee,
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Mallet and Weithaimer (1983), Onat (1987) . Dafalize (1983a,b,
1985 a,b), Loret (1983, 1985) and Paulun,Pécherski (1985) for
.the case of the problem of simple shear traction, with the
experiments of Swift (1947). On the baéis of the results pre-
sented by Paulun and Pekerski we consider, in accordance with -
these authors, that "further studied should be relatea to the
search for the non-linear specification of the constitutive
equation for the plastic spin. Solving this problem could
shed more light on the general description of anisotropic har=
dening in finite deformation plasticity”.

Klso, we consider as being importéﬁt the following
conclusion given by Paulun and Pecherski "although the fore-
going discussion follows Read and Alturi (1985) in the appli-
cations of the Swift’s test for veriffing in the theory, the
results depicted in Fig.4.contradict their arguments against
"the models based on the new stress-rate", which, according
to them, predict normal strains one or two 6rders of magﬁitu—
de larger than have been reported inAthe experimental lite-
rature".

Finally, we observe that the model‘given by Paulun
and Pecherski posesses the same érincipal difficulty commun
to almost all of theories concerning elasto-plastic deforma-
tions: If the history of stress is given, in order to obtain
the evolution Qf the plastic strain, we must know a priori
‘its evolution.

In a recent paper given by Metzger, Dubey (98 7) a

new hypoelastic model is associated with an isotropic flow
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.rule to form an elastic-plastic constitutive equation. The
use of the principal axes technique ensures thaf the stress
‘tensor is coaxial with the elastic stretch tensor and that
the solution does not depend on the choice of the objective
stress rate. Finally, by using the flow rule of von Mises
and the parabolic hardening law, a solﬁtion is ébtainéd for
the prescribed deformation of simples shear. The authors as-
sume the following decomposition F=VR=VeVpR, where V is the
total symmetric stretch, R is the total rotation, v€ is the
elastic symmetric stretch and vP is the plastic, generally
not symmetric stretch,

Although Metzger and Dubey write that the deriva-
tion of this decomposition was directed by some notion of the
physical process of elastic-plastic deformation we consider
that a physical basis leading to the decomposition adopted by
Metzer and Dubey does not exist. From our point of view the
starting point of the authors can not be accepted. |

In a recent interesting and‘important paper, Tokuda
and Yamada (1988) derive a set of inelastic constitutive equa-
HFiqns for polycrystalline metals by combining a.finite defor-
mation kinematics of single crystal components with a shear
stress-shear strain relation of slip system based on the ther-
moactivated motion: of dislocations. Interactions among grains
are taken into account assuming thebdeformation gradient in
the grain as being constant. By using the thus obtained equa-
tions, the effects of grain rotation on the inelastic beha-

viour of metals are studied theoretically. The results are com-
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pared with the available experimental data,

According to us for a phenomenological formulatioh
of a model, by comparing experimental and com?ﬁtational re-
sults, the following conclutions due to Tokuda and Yamada
(1988) are important: significant differences appear between
the stress values when these values are obtained either wit-
hout taking into account the grain rotation or are obtained
by incorporating grain rotation. However, according to our
opinion it is very important that such differenées mutually
cancel out, and the effects of rotation on the macroscopic
response are not larger than 50%.

At the same time, Tokuda and Yamada consideffthe
problem of plastic spin discussed by Dafalias (1983 a,b,1985).
 For Dafalias the missing link between the Mandel's theoreti-
cali appreach (1971, 1972, 1973) and 1ts practical application
is: the procedure to construct concrete constitutive equations
for plastic spin oP, The missing: link is also due to the exié—
ting missing link between macroscopic (phenomenological) theo-
ries and microstructural theories of inelastic behaviour of
‘materials. As it is known Dafalias and Loret have: obtained
phenomenological equations for QP by using the representation
theory for isotropic functions. However, as it is shown in
the study of Tokuda and Yamada, the spin tensor is different
from one grain to another and macroscopic spin can not be ob-
tained by any usual averanging.,.

We are in perfect agreement with the opinions for-

mulated by Tokuda and Yamada concerning the connection bet-
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ween macroscopic and microscopic theories: "Through the ma-
croscopic spin tensor can be in principle, expressed in a ge-
neral form by using the representation theory, for example,
it may be very difficult to obtain any realistic and concret
expression of Qp,

Simultaneously, this discussion reveals the diffi-
culty in obtaining a resonable form of temsor rate, i.e. phe-
nomenological inelastic constitutive equations of polycrysta-
line metals".

Let us observe that there exists a clear contradic-
tion between the realistic results obtained by Tokuda and Ya-
mada and the results given by Adfantis (L987).

We hope that our short review of some papers, dea-
iing with the model presented by us and published in the jour=
nal devoted to "plasticity", reveals the unsatisfactory and
total confused situation existing in the theory of elasto-

plastic deformation today.
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