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Introdugtion

Several years ago we have started a program aiming at a classifi-
cation of embedded smooth projective varieties (over €) Fdl]owing the
values of their numerical invariants, assumed to be small enough (see
[81, [9j, E103, [111, C121), Although we were primarily ‘interested in
the classification according to the degree d, consideration of other
invariants (namely the sectional genus g and the A-genus A) became ne-
cessary. The basic tool of our investigation was the adjunction mapping,
whose properties were recently understood completely (cf.-[24], [251],
[14]), We gradually found out the folléwing limitations, inherent to
the method employed: d<8 (cf, [13]) g<7, A<5 (cf.[14]1). On the other
hand, the classification problem naturally splits into two parts. The
first task is to obtain a maximal list: secondly, each case has to be
investigated in order to decide whether or not it really occurs. Thus,
for d<6 the list was effective, cf.[8]; (9. For d=7 (see 101, F1 70
the existence of four typés was left open, while for d=8 the undecided
cases were more numerous (cf.[12]1)., This paper, which is the last in
this series, settles the existence problem in all these situationrs.
Thuis, the list given in [11] for d=7 turns ocut to be efificctive, while
from the list given in [12] for d=8 three types have to be excluded
(see the table below). We have thus completed the classifiication &t
smooth projective varieties up to degree 8. In contrast to [111 whe-
re we used mainly ad hoc methcds, this time we took the opportunity
to present syétematical]y the few generél methods available for pro-

“ ving the existence of embedded manifolds,

’ Fipally, let us pointiout those cases which, in.the meantime, were
settled by other authors, namely: A.Buium (cf,L23) First proved the
existence of a certain surface of degre 3 in PS; Lo Okonek ([201,

5

[21]) proved the existence of a certain 2-fold of degree 7 in - and
of two types of surfaces of degree 8 in Ph; finally, as we can judge
from [15], recently J. Alexander showed the existence of a rational

surface with d=8, g=5 inP', a seemingly subtle case.
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~Conventions, Basically we employ the same definitions and nota-

tieons as in the flrst two 'parts [11] and (121, Let us recall from [12]
that the term " linear fibration " uséd in [11] was replaced by "scroll!;
thus, the term "“scroll' frem [11]l  became "scroll over a‘carve''. Eor
convenience we recall some of the notations:

N e ;
-XCPc is a smooth, connected, linearly normal and non-degenerate clo-

sed subvariety; dim X=r, codim X=s, degree of X=d.

]

H is a (smooth) hyperplane section of X.

= — g . is the sectional genus of X,

A:is the A-genus of X
o
qfh (OX) 2

B denotes - the dual of a vector bundle E.

- TX(Q;Y is.the tangent (cotangent) bundle of X.
@, or OX(K) is the canonical bundle of X,
= = po

Pq ho (o)

D

=2

(resp.D]EDz) denotes linear equivalence (resp.numerical equi-

valence) of divisors,

“If YCX is a subvariety, DIY denotes restrictlon of a divisor (cliass).

=
Y
A smooth projective variety is also called a manifeld.

denotes the sheaf of ideals of Y,

¢

The following table presents the list of (linearly normal, non-
degenerate)_submanifo]dsXC?Pg of degree 8. Notation-oZ:X»Y means that
X fs the blowing-up of ¥ with center Z; E denotes the exceptional

locus of Gy Eolsia  linesin Pz.



double covering, Z-a hy-
perplane section of

P]xP3

P(E), E rank-2 vector bundle

on PZ, given by

'tautological

T Abstract structure of X H or OX(H)
1 P 0(8)
2-8 scroll over WJ
1 g=1 :
] ]
-P x P 0(2,2)
2
-0, 1 X—>P o*(3L)-E
3 P’ 0(2)
1 g=2
2
= . * - ‘e =
OPO,'_.,PA‘X*P o (4L)'2E0 Ey= v.ouE)
2 - scroll over an elliptic ezl HECo#’F
curve e=2 H3c0+5p
o .X<IP]x Q3 as a hyperplane
section, Q3cP* the hyperquadric ;
4 P! x Q Segre embedding
] g=3
Z < X * EL
cpl""'Ps'X E. =2 o*(H )-E;-...-Eg
H =2C +(b+e)F
- % (bL) - E
2 -0 X-P o E -
PioseesPy 1 :
~f:¥>P .double covering H=-2K
- scroll over an elliptic
curve :
= P?XPBO Q6, Q6C’P7 a
hyperquadric
3 -f:x-zcp' x picp’

i (e e
Pz {P],COQ’P8}
f:X—'>P1xP3 double covering, FROCT 1)
discriminant divisor Del(0(2,2)!
-~ scroll, . e= -2, g=2 HECO+3F

Ciix P], CcP

curve of degree 4

2

geometrically ruled
elliptic surface, e=-1

Segre embedding

H=2C +F
0

g=4




Abstract structure of ¥

I Hor OX(H)
-0 2x=0lc P o*(3H ) -E - -E
Brpiui; P g = i
it 10 ‘
. o 3
- P S X C - - -
OP],...,PI* X S IP O*(ZHS) E] .-‘- EL§
'2 S cubic surface
-Ob P.,:X~>Fe, e<h o*(He)-E.-,..-E
g EAT O O 12‘ ) - S A 12
’ : H=2C _+(5+e)F
3 P(E), E rank-2 vector bundle :
on the quadric Q, given by toutslogical
-0 E-1 , 33
Q { ]’...’P]O} -
1 g=5
2 K3 surface
>3 complete intersection (2,2,2)
1 g=5
2 o, %p? % (TL)=E ~2c.-, . .~2F
P seessP ol
o 10
] g=6
2 —OP:X*S, SK3 surface -
: 2
Oy o tKop G*(6L)—E]—...-E]2—
1216 DE L o
13—t g
] g=7
5 f .:X-’P], X minimal,elliptic,
Kl
q=0
Jas .
.-3 le+KI’X*P with fibres complete
Intersections (2,2)
>] complete intersections (2,L4)




1. The Mumford-Fujita criterion

. The following result due to Mumford [18] and Fujita [3] genera-
lizes the familiar fact that on a curve of genus g, a divisor of de-

gree >2g+1 is very ample,

Theorem A (Mumford-Fujita). Let H be an ample divisor on a smooth,

projective variety X. Assume that |H| has finitely many base-points,

A<g and d>2A+1. Then H is very ample (and A=g).

(1.1) Corollary. If q(X)=0, IHIl is ample with finitely many ba-

se-points and d>2g+1, then H is very ample,

Indeed, one may find a reduced, irreducible curve C got by ‘inter=
secting dim X-1 generic members of [Hl. We have A(X,H)=A(C, HIC)Sg=
=g(C),.so the Theorem applies. '

(1.2) Let f'X*P]xP3 be a double covering ramified along a smooth

member of |0 ’ (2 2.)i  and let Helf *0 .
P XP P XP

ple and d=8, g=A= 3. Note that the analogous case of a double covering

(1,1)[. Then H is very am-

of P]X?Z, having d=6, g=A=2 was treated in 11, Rroep ..

(1.3) Proposition. Let ¢y, be two integers such that clzh,

€

cf/h<c S3(c1-1) and hc2¢c?+4. Then there exists a 3-dimensional scroll

over P~ with invariants d=c]~c2 and g=%(cl-1)(CT_2).

Proof. There is an ample and spanned stable rank-2 vector bundle

E: on P? with Chern numbers c;, Cy. This Ffollows from [1/] Prop.].6

and Prop.6.5. If X=P(E) and Helefl)l, we find d=b?-c2, g=1/2(c -1) (cy-

~2). The result follows from (1.1) since d>2g+1. In particular, taking
154, 92c >6, we find g=3, 7£d<10,

We need a modification of the Mumford-Fujita criterion to cover also

the case d=2g. It is given by the following.

(1.4) Propesition, Let JIHI be an amp]e linear system without ba-

se-points on a smooth projective varlety X. |n particulgs there is o

Sheoth cunve . got:by Fntersecting dim X-1 generic members in AR

Assume that: : i
i) qlx)=0, d=2q;

i) IHIc I—ﬁ; 45 we shall see, this conditiop ensures that HIC

is very ample, embeddlnq C into a certain projective space, sgi_?a;

iii) the restriction map HO(0 a(2))-»HO(OC(2))is onto. Then H is very

P
ample. :

Proof. A result due to litaka [7] shows that HIC is indeed very




ample. On the other hand, by [3] Prop;l}lo, the map H°(OC(H))®H°«k(ﬂH)»‘
'»HO(OC((t+1)H)) is onto for t>2, Condition iii) ensures it is onto also
for t=1, so the proof of the Mumford-Fujita criterion applies.

_Now we are going to use (1.,4) fof'proving the existence of a
3-fold in P° having invariants d=8, g=4, which is a scroll ever the

quadric Q (see [12]), First we need the following:

(1.5) Lemma. A smooth curve in Ph having d=8 and g=b4 is either

arithmetically normal, or hyperelliptic,

Proof. By [31, Prop,1,10,- it Is arithmetically normal if the map
HO (0 4(2))»H°(OC(2)) is onto, Assuming the contrary, using the sequen-

ce:
0 > 16(2) = 0 (2)=0 (2)=0

we find that there are three hyperquadrlcs Q],QZ,Q3 (w:th linearly
independent equations) containing C, _ >

The intersection Q]n Q2 must be reducible, since otherwise C
would be the complete intersection of Q],QZ,Q3.

As C is non-degenerate, it must be contained in a (non-degenera-
te) surface of degree 3 in Pu. Such "a surface s either-a cone ovel
P], which is easily seen to be impossible (cf. Lemma (6.3) below), or
3 scroll over P]. In this last case, using the notations of 61 Ch.V,

we get Ce|2C0+6fl, so C is hyperelliptic and we are done.

(1.6) Proposition. There is a rank-2 vector bundle E on the qua-

dric Q such that, if we let X=P(E) ¥ Q and H correspondsto the tauto-

logical bundle of X, the following hold:
i) e (E)el0,(3,3)1, c,(E)=10; _
i) E restricte@ to each line from lOQ(]’0)|2£ lOQ(O,I)l is of the
form 0(1) ®0(2); |H| is ample and base-points free;

1ii) HO(E(-1,-1)=0,

(1..7) Assumlng for the moment the truth of (1.6), let us see how

it applies to give the desired example,. Indeed, from i) it follows that
d(H)=8, g(H)=L4. On X we have two linear systems [Ul and |V| correspon-
ding to the pull-backs by m of the two systems of generators on Q. We
have K=-2H+U+V, or -K-H=H-U-V, Since we have HI(OX(-U—V))=O, we find
easily that (1.6) iii) implies:that {1.4) i1} holds. By the first part
in (1.6) ii), a curve got by intersecting two generic members in I HI

is mapped Isomorphically by m to a curve of the linear system IOQ(3.3)I:
thus it is non-hyperellliptic! Now the result follows combining Gy
and (1.4). - ‘

Ve divide the proof of (1.6) in three steps.



Step |. Consider P;,...,P pqints "in general position'" on Q (as
the reader will notice, the ''general position' assumptions concern the
linear systems IOQ(a,b)l, with a,b<2). Consider rank-2 vector bundles
E constructed by Serre’s method from extensions of type
(+) 0 - oQ(l,l)—:-E»'i (2,2)-0,

. {P ,.',P} 3

1 L
We@get;c](E)eIOQ(B,B)l, cz(E)=10 and E restricted to any line from
10 (1,00 0r OQ(O 1)) is 0(1) ®0(2) (by the assumption of ''general

p051t|on” such a kine passes through at most one point P, ). One also

gets h®(E(-1,-1))=1, (E) 0 and H]( (0,-1))=0., Now, for any Vetn*OQ(O

0, OV(H) is spanned by global sections. By the exact sequence
O»OX(H—V)»OX(H)»OV(H)»O,

we find that 0*(H) is spanned, We shall prove that OX(H) is ample by
using a criterion due to Gieseker ([5], Prop.2.1). Since OX(H) is span-
ned, it will be ehough to show that for any irreducible . curve C-on Q,
Elc has no quotient isomorphic to OC (or that the dual gﬁ; has no
non-zero global sections)., Moreover, we need a convenient presenta-
tion for E, obtalned as follows. Since the restriction of E(-1,-1) to
the lines of IOQ(J,O)I and |0Q(o,1)| is 0@0I1), we find that E(-1,-1)
is a quotient of two bundles of the form O(a],OXEO(az,O)@O(aB,O) and
0(0,b,)@0(0,b,))@0(0,b,), respectively. Recalling that h®(E(-1,-1))=1
and computing the Chern classes we find out the following two pairs

of possible types of presentations of E:

(£) 0-0,(-4,0)+0,(-2,1}© 0, (0 sl OQ(l,l)—'E-r_U,
(%) O»OQ(O,-M)»OQ(I,-Z)C) A1, 0@ 0, (1,3 ) =E=0,
(%) 'o»oQ(-h,o)»OQ(—y,])@ 0

Q
,1Y® 0 (1 )—»E-»o_,
(x%’) 0+04 (0,-4)+0,(1,-1) ® Q( 1@ OQ( e

Q
Q
Q
0
Let CelOQ(a,b)l be an irreducible, reduced curve. We may assume
thait a>0, b>0 (if, for Enstance, a=0, it follows b=1, se E|. Is ample
by ii)). There are four cases to consider, according to the possible

combinations of the presentations above. Suppose that EIC is not ample

and take a surjection EIC-»OC

(1) Assume that (*) and (*’) occur. Then Oc(l,l) s mopped fto Ze-
Eo in OC : . :

OC(O,l) is either mapped to zero,.or trivia} (in which case a=0).

Thus we may assume that OC(-2,1)=OC, giving a=2b. Working similar-
ly with (x*) it follows b=2a, so a=b=0, which is absurd.



o

(2). Assume the presentations are (%) and (#%°), From (*)'we deduce
as before that a=2b. From (*x’) it-follows that OC(-1,I) has a non-ze-

ro global section. The exact sequence:
0-0 (-J-2b,1-b)»OQ(él,1)»OC(-1,1)»0

gives b=1. Thus CelO (2,1)1. But now recall that E was given by ()
. We have Cl( C) =9 and by assumption of “genera] position', C contains
at most 5_of the points Pi' Moreover C—P , 50 we have the exact se-

quence:
0»00(3+a)*ElC»0C(6 -a)—=0

with 0<as<5, shoWing that Elc is ample.
(3) The case (**), (%) is completely similar.

(4) Finally, suppose the presentations to be (x%), (%*’), As above
Oc(l,-]) and OC( ,1) must have non-zero global sections. Lt follows

that a=b=1, CﬂP], c](EIC)=6. Again by the assumption of generalnty c
may contain at most three of the points Pi' The exact sequence
O»OC(2+a)+ElC»OC(h-a)»0,

with 0<a<3 shows that El is ample.

Up to now we have constructed bundles E satisfytng i) agdiii) of (056
But, as already remarked, el -1))=1, se iii) cledelipails. Rar
the moment, observe that the restriction of E(0,-2) to the members

of IOQ(l 0)| is 0@0(-1). Therefore E(D,-2) has a seb-lipe bundle of
type OQ(a,O). Thus E is an extension of line bundles and computing

Chern classes we find:

(++) O*OQ(‘“,Z)"E"OQ

Step !l. Now consider bundles given by extensionsof the form

(75 L)=0,

o-»o (0,1)~E’~1 (3,2)=0,

{Pl,.'-|P7}

where P],..., e points '"in general position'. It follows that
hC (E* (-1 ))=0 Moreover, the restriction of E’ to any member of
IOQ( )l 0(1) ®0(2), So, by the precednng argument, E’ too may
be written as an extensnon of line bundles, as in (+9. 3

Step 111, As remarked in [191, the (|ndecomposab]e) rank=2 bund-

les which may be given by an extension as in (++) are parametrnzed

by a projectlve'space P]9 Snd there is also a !versalls bundle on

QXP]S, inducing on various fibres all bundles which may be given as

Y




in (++). It is easy to see that from c](E)d00(3,3)|, cZ(E)=10 and
h°(E)=7 iit follows that & Is indecomposable.-Now, by Step I, since
h](E)=O, there is an open, non-empty set of Plg corresponding to ample
bundles E such that the tautological bundle on P(E) is spanned. By
Step Il and semicontinuity there.is an open, ndn—empty set of bundles
with h®(E(-1,-1))=0, Thus we may find bundles satisfying all condi-
tions of ClEab) Finally we remark that, cénversely, if X isascroll
over Q with d=8, g=4, X is isomorphic to P(E), where E is a bundle
fiulfllling ell conditions of (1,.6),

(1.8) Inspired by [4] we shall prove here the existence of a hy-
' perquadric fibration of dimension 4 with d=7, g=3 {cf. (1), Llet

Y=P (E), where E=0 , @0 ,®0 () @o 1(])@015’1(1)'
' e P P P

Let HEIOY(I)! and denote by F a fibre of the projection my-p !,
Let S=P(0P|()0P1)C Y be the embedding corresponding to the surjec-
tion E-0 . (@0 « MWe have HI_cl0 (0,1)| and (2H+FE)| - et0 @1 2)1. Since
P] P] S S S S
the linear system |2H+F| is base-points free, we may chcose a smooth

member Xel2H+F| such that XN S is irreducible, Now we claim that
HlX is ample, If not, since |H| is base-points free, we may find a
curve CC X such that (H,C)=0, But C has to be a section for m and it
Boll lows that Ces, so E=%A S, Thic is absurd . simee (H.C) 0 o)
=(HIS.X!S)S=1. We get (Hlx-)l‘=7, g(HIX)=3, gfX)=0, so (1.1.) applies
and (X, HIX) has the desired properties. ' : :

Next we want to investigate projections of a manifold from one of
its points. lLet X* be o manifeld in PN with hyperplane section H’
and invariants d’=d(H’), g’=g(H’). A line of X’ is a curve CeX’ such

that (H2.C)l=1. IF P ic 3 point on X] let o:X-X? denote the blewing-up at
B, E——-o-*]-(P), H=o* (H’)-E. We haye -d=d(H)=d’-1, g=g(Hl=g®,AGE HI=ABE ),

(1.9) Proposition. Assume that q(X’)=0 and P is not contained in

* any-Line of X2, ‘Then )
' iemhfemd®o2g7 12 . H i5 very ample on X

ii) Af di=2g2%] and (X' H') [s not a hypepdiadric fiohatcion, H s

very ample if and only if [-K-(r-2)HI=§, where r=dim X.

Proof. The proposition is a . consequence of (1.,1) and (1.4), but
the followlng "elementary'" argument may also be given. We present de-
tails for ii), i) being similar and simpler. We have to show .that [|HI

separates points and tangent vectors, Once we identify elements of |[H]



with hyperplane sections of X’ through P, the problem is reduced to
proving the same property for OD(H), for some smooth member DelHI.
This is seen by using Bertini’s theorem (here it is important that the-

re are no lines through P), the exact quuehce
| 0 -0, »OX(H)—>0D(H)-»O,

anid the fact thatg(X)=0, :
Inductively we are reduced to showing the very ampleness of HIC, for
a smooth curve C got by intersecting r-1 members of |Hl. The theory of
‘the adjunction mapping (see [11], Section 1) gives ‘that IK’+(r-1)H"|
is base-points free (otherwise there is a line through each point of
iX’) and either K’+(r-1)H’=0, or the adjunction mapping has at least
a two-dimensional image. As O*(K’+(r-1)H’)%K+(r-I)H, it follows
H](OX(-K-(r-])H))=0 by the vanishing theorem, Combining with I-K;
-(r-2)Hi=§, we find inductively that IHlC-KC|=ﬂ, so we may apply

LY

iitaka’s result quoted in (1.4),
' Let us see -some applicationé:

1. 10) Bake X’=P2, Brel0(a)l, a=2, Let p be the maximal numberiof
H

projections from generic points of X, allowed by (1.9). We find p=3a-2

for a>l, One knows classically that for a=2, p=1 and for a=3, p=6.

(I r)Take X2=0, ‘the quadric,H’elOQ(3)l. We- have d’=18, g’=h,
We can project from a generic points, where a<l0, For a=10, remark that
dim |-K’|=8, so we get |-K|=0§ by choosing the ten points generically.
In.particular the surface thus obtained has d=8, g=l,

@12} Take X to.be s eubic In P> Hoel@2)l, It felliews that We
may project from four generic points, the resulting surface having
d=8, g=4. Here the maximal number of projections allowed is five,

®cfo[11] Prop,8.1,

(1.13)‘Let X’ be the Del Pezzo surface of [11] Th,b4.1 iv), H =
© =-2K’ and PeX’ -any point. Then, keeping the notations above, H is ve-

ry ample on X. Indeed, d’=8, g’=3, q=0 and there are no lines on X
(1.14) Now take X’ to be the Del Pezzo surface having H=-3K’, d’=
=9, g’'=4, This surface cannot be projected from any of its points.  lm=

deed, we have dim [-K*[=1, so |-K|## for any position of the point P.

(1.15) Take X'=P>, H'c10(2)1, PeX’. Then we may project one time.



2, A Bertini-type theorem for vector bundles

Theorem B (Kleiman [16]),Let Y be a smooth, projective variety

and E a vector bundle of rank a on Y spanned by global sections, Take

~an integer b<a such that dim Y<2(a-b+2), Then the dependency locus of

bigeneric global sections of £ Qs ejther empty or smooth, ©of pure co=

dimension a-b+1 in Y,
Remark. Actually, the proof of the above is simpler and some-
what different from that of [16]1 (where one has to.assume that E(-1) is

spanned) since we are in characteristic 0 and generic smoothness holds.

(2.1) Take vpt

neric sections of E must be non-empty, since otherwise we find an exact

: E=Qi(2), b=3, The dependency locus of three ge-
sequence of the form

® 1
0 oY Qy(z)»oy(3)»0

This is absurd since HO(Q$(1))=0. Thus, by Theorem B, there is a

smooth surface X (which must be connected since Y=Ph) suich- that its

ideal sheaf lx has a resolution:

| @3 1
(5) _ o*oY »QY(Z)*IX(3)*0.

Dualising we get:

3

0~0y (+3)-Ty (-2)=07=0, (2)~0. -

Now it is easy to see that X must be the Veronese surface of de-

gree 4 in Ph.

(2.2) (G 0konek [2GA). Talke y=p°, E=Qi(2), bl

~ The above procedure yields the existence (left open in [11]1)of
a 3-fold of degree ] in PS which is a scroll over the cubic surface of

p3, i -

3. The results of Peskine-Szpiro for the case of codimension two

Recall that an arithmetically Cohen-Macaulay submanifold of co-

e . o 0 : . . s .
dimension two in P ' is a complete intersection if n=6. For n<5 one fas:

Theorem C (Peskine-Szpiro [22]), Let m>2, ai(i=1,...,m—1), b (=

=1,...,m) be given positive integers such that




)34 a.=_§ b, an ai>bj‘for‘anx i,jj liﬂnSS, there is some submanifold

- 0f codimension two, sich that IX has the resolution:

m-1 m
0~ ®0(-a.)=® 0(-b,)>1,~0,
iz e i X
Next, starting with some given submanifold Y of codimension two
in Pn, one can try to find a new one, say X, such that the union of X
~and Y is the complete intersection of two hypersurfaces., One says that
X and Y are "linked", We have: ‘

Theorem D (Peskine-Szpiro [22]),

i) Assume that X and Y are linked by the complete intersection of

two hypersurfaces of degree a and b,

0-» - >
E E 'IY

1
- 0
is a locally free resolution for Iy, a resolution for 'X is given by:

0+F(=a-b)~E(-a-b)E0 (-a)@0 (-b)~1,~0,

B L Fnsb - 8 boe are integers such that a,b>e and IY(e) is span-

ned by global sections, there are generic forms ueHO(IY(a)), vsH?(lY(b))

and a smoothisubvariety-XcﬁJ‘such that X and Y are linked by the com-

plete intersection of the hypersurfaces given by u and v.

(3.1) Combining Theorem C and Theorem D i) we treated in [11]
and [12] the following codimension two cases: d=5, g=2; d=6, g=3;
d=7, g=5,6 and d=8, g=7,

- (3.2) C, Okonek (see [21]) used Theorem D ii) for proving the

. existence of the two types of surfaces in Ph having d=8, g=6 and pg=0

oF l.. For convenience we give here a simplified version ef his argument,
Start with the Veronese surface in Ph, denoted by Y, From (5) we see

that lY(3) is spanned, By Theorem D we may link Y to a (smooth) surface X,

by two forms of degree 3 and L respectively, such that IX] has the resolution:

(6) 0»T(-6)»d§h(-b)Cﬂ(-3)élX -0; in parficu]ar Ix () is spanned.
' 1 1
Twisting (6) by 0(4) and dualising, we get:

020 (-8)~02"0 (- 1)~ (2)~w, (1)~0.



Now It is easy to see that X; has invariants d=8, g=6, pg=0. Similarly
we find an X, which fis linked to X, by two forms of degree 4, From (6)

we get: |
0" C)c)(el)*n](z)(fo?;xx (4)=0 and duaiising
2 : : :
0»0(-4)+T(-Z)Cﬂcn»dgﬂsﬂ(])»wx (1)-0. It follows that X, hais ln=

2
variants d=8, ig=6, pg=].

L, Reider’s theorem on surfaces

P

" The following remarkable result gives an efficient way of pro-

ving the very ampleness of a linear system on a surface.

Theorem E (I1,Reider [23]). Let X be é smooith, projective surfa=-
ce aﬁd H a3 divisor on X such that:

i) H=K is nef;

i1) (H-K) 229;

iil) there js no effective divisor E on X such that either
(H-K.E}=0, (E2)=-1,-2 or '
(H-K.E}=1, (E%)=0,-1 or
(H-K.E)=2, (E®)=0  or
H-Ké3E, (F) -1

Then H is very ample.

(4L,1) Let X be a geometrically ruled elliptic surface with inva-
riant e=-1 and let H=2C +F (notations as in [6]1 Ch.V). Then H is very
ample. Indeed we have H-K=iC , so it is ample {cr. 161 loe ejt): The re-
maining conditions in Theorem E are obvious. The exisitenceof thisaty=

pe of surfaces of degree 8 was first proved by Buium in [21].

(4,.2) Let X be a geometrically ruled surface over a curve of ge-
- nus 2 with lnvariant e=-2 and let HECO+3F. Then H is wvery ample. lndeed,
H-K=3C -F is ample and condition 1{ii) in Theorem E is easily verified.
We also remark that, conversely, any surface of degree 8 which is a

scroll over a curve of genus 2 is necessarily of this type.

5. Secrolls owen a curve of ‘genus <]

The following is classical and easy, It was included only for

_perspective.

(5.1) Proposition, A scroll of dimension r and degree d over p!

has A=g=0; the existence of such a scroll with given invariants d,r

te apmtivalent to the numerical condition d>r. They are all obtained



d-1 2d-1

as linear sections of the Segre embedding of P1xP P

.
|
—

(5.2) Proposition., A scroll of dimension r and degree d over an

elliptic curve C has g=1, A=ry ithe existence of such 3'seroll with gi-

ven Invariants d,r is equivalent to the numerical condition d>2r,

ﬁiggi. The equality A=r was proved in [11] Prop,3.11, Assume
that X exists in P", with n=h°(OX(H))—J. Since A=r it follows d=n+1.
| f d<2r, we would get r-fn-r)>1 and Barth’s Theorem (cf [11) gives
g =0, This s 3 contradiction, so necessarily d>2r. Conversely,
. assume this last condition holds, First we show that for any integers
a, b>0, there exists an ample vector bundle E on € having rank b and
:'c](E)=a. If b=1 this is obvious. Assume we have already found an am-
ple rank(b-1 ) bundle F on C with c](F)=a. By Riemann-Roch there is

some non-split exact sequence of the form

0+0 ~E~F~0,

By a result due to Gieseker (see [5]1, Th,2.2), E is ample and, obvious-
., c](E)=a, rk(E)=b. The above argument shows that we may find an am-
ple vector bundle E; on C with rk(E])=r, c](E])=d-2r and an exact se-
quence

9»0C»E]*F»0.

Take some LePic(C) with c,(L)=2. Let E=E, ®L, X=P(E) ¥ C. Since we ha-
ve c;(E)=d it will be enough to prove that 0, () s very ample on X.
Eor any. twe points P,0eC we let L]éL(g OC(—P-Q)EPiEO(C). We get H](E(D

: v : :
3] OC(-P—Q))=H](E]C) L])=HO(E]() fg)=0 since E, is ample and L, has det

*
gree 0., Thus we have H](OX(1)QDR Oc(—P-Q))=0 and the result is a con-

sequence of the following simple lemma,

(5.3) Lemma (cf.[2] Lemma 3.%). Let X be a manifold and m:X=C a

morphism onto some smooth curve;jLet XP=H_](P) for PeC.-lFE M-ls ap in-

vertible sheaf on X such that Mlx is very ample and H](MQQOX(-XP—Xh))=
: P v i

=0 for any P,QeC, thien M s very ample.

6. The effective list of manifolds of degree 7 and 8

(6.1) Theorem, The list of manifolds of degree 7 given in Gl

is effective,
For a proof, apply @B.2), (1.3), (1.8) and (2.2) te show the exis=

= i e o 9
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(6.2.) Consider now the case when (X, H) is a hyperquadric
fibration over P] having tnvariants d=8, g=A=hk (cf.,[12]1). Examples
with-dim X=2 are got by taking divisors of type (4,2) on W]XPZ, embed-

ded Segre Into PS

; Nextwwe provie ‘that the cases dig X=>3 ake not poscis
ble, We start with a useful remark valid for hyperquadric fibrations
©:X~C. of dimension r, over any base curve C, Let us first introduce
the following notations: Q for a fibre of @, E=@*(OX(H)), v=p(£) ¥ ¢,
F for a fibre of mw and 0,(L)=:0,(1). Then we claim that 0y (L) is span-
ned by global sections, Indeed, consider the exact sequence

S 0-0y (H-0)~0y ()0 (1)~0..

~Since Q is a hyperquadric in P", the restriction map'Ho(Ox(H))»HO(OQ(H))
s surjettive, so we get
h® (0, (H-0))=h® (0, (H))-r=1. It follows that

hO(OY(L-F))=ho(0Y(L))-r-1 and the exact sequence
O*OY(L—F)+0Y(L)*OF(L)*O shows that OY(L) is . spanned;, sinece OF(L) iis 50

for any fibre F,

Now return to our case when dim X=3, d=2g=8, C=P].

We find H](OX(H))=O and, wusing: (7), H](OX(H-Q))=0. Thus we must have
L L

E= C)O(ai), wlth aEZO. Moreover, we get Xel2L+2F| and c1(E)= 3 ai=3.

ci=1 : : ; i=1
Since at least one a, is zere, the map WILI:Y»P6 maps Y onto a cone: of
degree 3.Thus X is contalned in such a cone. Passing to hyperplane
sections and using Bertini’s theorem we find that some smooth sectio-
nal curve of X lies on a two-dimensional cone of degree 3. This con-
tradicts the following lemma,

(6.3) Lemma. Let C be a smooth curve of degree d contained in a

surface of degree b which is a cone with vertex P over some smooth

curve., Then:
i) L RdC, b divides d,
Pi)l LE PeC, b divides d-i,

For a proof, blow-uyp Piand compute intersection numbers on the resul-

ting geometrically ruled surface,

(6,4) Consider now surfaces in Ph of degree 8 with g=5 and g=! A
which are hyperquadric fibrations (cf[121). :
We show that they cannot exist. Using the notations introduced

in (6.2) we find (L3)=Q,XSI2L+R*Bl for some degree-zero divisor on the



L

elliptic curve C. As remarked in (6.2) we have a morphism WlLI:Y*P :

Since (L3)=4, either WILI maps Y birationally onto a hypersurface of
degree 4, say Z, or X is contained in a hyperquadric.This last possi-
bility is absurd since otherwise X wouﬂd be a complete intersection.
Next we show that Z is a cone. Indeed, since'thé fibres F are mapped

‘to planes, it is enough to find a curve contracted by ¥ If there

LE:
~are no such curves, L is ample and it follows HI(E)=H](OX(H))=0. But

we find h](Ox(H))=]. Now, ‘if T is a ciurve such. that (L.F)=0, we have
TN X=§ (because le=H is very ample we cannot have fCZX). :

As a consequence, no divisor on Y is contracted by w Indeed, -if.

511

\say D=al +BF Is contracted, it follows:
0=(D.L?%)=ba + P

and, sirce DNX=#, (D.X.F)=2a=0, so a=B=0 which is absurd. Thus we pro-
ved that if Selll is a generic member, the map induceduby restricting

wlL] is a finite, birational morphism between S and a certain surface

of degree 4 in P3. Since S s 3 geometrically.ruled e]liptic.surface.
Uisitng the notations of [61 Ch.V, we have LISECo+bf, b=2b-e and b-e=
=(C b, C )=0.
o o
Homeovier,; e>-1 implites thait necessarily e=0, "bh=2  “ceiih-e=2" qnd

Co is mapped two to one onto some line, From this we deduce that there

are infinitely many pairs of fibres F mapped to pairs of planes inter-
secting in a line. If we take a hynerplane of P containing such a pair
of planes, its intersection with Z containes a certaln aiuiatdicic i bies =

des the two planes. Taking its pullback by WILI’ we find a geometrical-

ly ruled elliptic surface mapped birationally to a quadric, which is
cliearly absurd,., ‘It shoeuld be pointed out that this class of surfaces

~was first excluded by Okonek in [21] by a completely different argument.

*(6.5)‘Consider now the rational surfaces of Ph having d=8, g=5
~(cfl121). As we understood from [15], recently J. Alexander proved the
existence of this type of surfaces. This seems to be a rather subtle
case, since none of the methods described éo tiair.scan be applied,

: Now, looking over the maximal list proposed in [12] for degree 8
aind isiinig, (5.2 ), 613 (a2 b ) (F by (), e (67

(6.4), (6.5) and (3.2) we see that the following result was proved.

(6.6) Theorem, The effective list of manifolds of degree 8 is as

: ' : : -
given in the table following the introduction,

-




152,
13.
14,
155
16,

7

S

g 19,

240,¢

23
22,

23.
24,

25.
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