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PERTURBATIONS OF NEST-SUBALGEBRAS OF

FLORIN POP

In ([6]) E.C.Lance initiated the'perturbation
theory'of nest algebras and proved that, roughly
speaking, two nest algebras are close if and only
if their invariant nests are close and in fact they
are similar via an invertible operator close to
the identity.

In'([4]) and ([5]) F.Gilfeather and D.R.Larson
investigated a special class of reflexive algebras,
the nest-subalgebras of von Neumann algebras.

In ([2]) KeR.Davidson suggested an analogue
of Lance's results for nest-subalgebras of
approximately finite von Neumann algebras.

More precisely, let H denote a Hilbert space,
B(H) the algebra of bounded operators on H and
MC B(H) a von Neumann algebra., Let LT M be a
nest (i.e. a totally ordered strongly closed family)

of projections and define the algebras

Alg L = { xEeB(H) 3 (l-p)xp = 0O (V) peL }

(the nest algebra with respect to L) and

MO Alg L the nest-subalgebra of M with
respect to L. ' '

The natural extension of Lance's result is .that
two nests Ll and L2 in M are close (i.e. there is a
lattice isqaorphism of Ll onto L2 close to the
identity) if and only if the algebras MTWvAlg Ly
and MN Alg L, are close in the Hausdorff metric.

Unfortunately, this fails to be true if one does
not take certain precautions on M,

A first necessary condition is that M must be

a factor.
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Indeed, suppose that the center of M is not trivial.

We may consider then two nests L;C L, in the

center , Ll £ L2 « It Follows. that
MO Alg Ly = M Alg Ly = M

but however L1 and L2 éannot be close.

In. this paper we show that this is the only
obstruction and we obtain the desired perturbation
results in arbitrary factors.

The main ingredierit is that in this case nests
have a reflexivity-type property (Lemma 3).

We also prove a von Neumann algebra analogue
of W.Arveson's distance formula (Theorem 2) ,

which removes the hyperfiniteness hypothesis for M
heavily used in ([2]) and ([4])5

I would like to thank Professor Serban Stratild
for his constant support and Gabriel Nagy for

several fruitful conversations.

LEMMA 1 . Let M be a von Neumann algebra and
O # pgdggr #1 be projections in M.
If S = (1~p5Mr , then for every x in S

dist(x,qS(r=p)) = max ( {Ixpll , J(Ll=gq)x] )

Proof. Consider the operators a = qkp i B o=olleg)xp
¢ = (l=gq)x(r=p) . Since x-(a+b+c) belongs
to qS(r-p) , one has
dist(x,qS{r-p)) = dist(atb+c ,qS(r-p)) .

Note that  xp = atb and  (l=g)x = b+c .

We may clearly assume that [Ixp[¢1 and H(l«q)xﬂ,é i,
hence a¥a + b b £p and bt 4 00 L 1y
There are contractions. u, € PMp , v, € (L=gq)M(1-q) ,

u and v in M such that



1 % 1 i ;4
(a*a)§ = uQ(pub b)? and (cc*)g = VO((lnq)mbb%)ﬁ s

so- that B = u(pwﬁgb)% and

¢ = v((lmq)wbb$)% (310 « Moreover,
u = (g-p)up and v = (r=p)v(l=q) .

(p-5"6)% + b = b+ ((1-q)-bb®)*

]

Let Y
Routine computations yield
(u + (1-9))y(p +‘v*) = a+btc -ubv¥ g
futl-qli¢l , fp+v¥lIgl and yYee ptl-g
hence [llyll = 1 . Finally, since ubv¥ e gS(r-p) ,
it follows that Hs+b+cmubv*f(gl. , nence
distl e+bte. ,q8lr-p)) &£ 1
On the other side it is easy to see that
max ( lxpl ,H(l~q)x\l ) & dist (x, gS{r-p))

and the conclusion follows,

Let now L¢s M be a nest and A = M) Alg L  be the
corresponding nest-subalgebra.

THEOREM 2. For every x in M

disti{x,A) = sup H(l~p>xpﬂ
pel

Proof. By a slight variation of ({1} Lemma 1) we may

assume that
L::{O:[: plé'”épn%l} nyl .
For any ~x in M we note that
(1-py)ap, = (po-p)A(p =py) @ (1-pp)Alp-py) =
= (p2~_p1)M(pn—‘p1) ®. (1-p,)Alp ~py) hence
dist(x,A) = dist ((1~pl)xpn. (1;pl)APn) <

& dist((1-py)xp ~(l-pylalp -py) , (pompyIM(p, ~py) )

for any a in A,
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We applyltemma 1 and obtain
dist(x,A) £ max%ﬁ(lwpl)xplﬂ ; a(lwpz)xpnmClmp2)a(pnwpl)“ },
“forcecany & din A ,hencev
dist(x,A) £ m&x{ﬂ(l»pl)xpiﬁ ﬁdist((lmpg)xpn,(lan)Apn) } i
siﬁce (lwa)A(pn»pl) = (l~p2>Aph .
Suppose.now that for 'some k< n | dist(x,A)

< max%‘izikalﬂ(lmpi)xpin ,dist((lmpk)xpny(lwpk)Apn) }

Note that. (l”pk)Apn x(pk+l~pk)M(pnmpk) @B(lnpk+l)A(pﬂﬁpk>
By'taking into account Lemma 1, it follows again that
dist((l«pk)xpn,(lmpk)Apn) 5§
£ dig?((l“pk)Xpn“(l“pk+l)a(pn“pk)’(pk+l“pk)M(pnmpk)> <
S.max{[Klwpk>xpkn ,dist((l»pk+l)xpn,(1»pk+1)Apn) } ‘
At the last step one simply has
diét((lmpn)xpnp(lmpn)Apn) é,H(lmpn)xpnn ,hence
dist (x,A) & max H(1-pyxp | by induction.

p &L
Since the opposite inequality is immediate, it follows

that dist(x,A) = max ﬂ(lup)xpu ;which concludes the
pe L _ proof.
COROLLARY . For every ' x in M

dist(x,Alg L) = dist(x,A)

( A similar but -different result is Lemma 4.8 in (£41) ) .

If M =08B(H), Theorem 2 is W.Arveson's distance
formula ([1]), We note that, excepting slight variations,
the outline of the above proof is due, in the case
M =B(H) , to S.C.Power ({7]).
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For any algebra A & B(H) define

Lat Ace= { P p2 & p* Q_B(H) s (l-p)xp =0 (¥ )xeA }

LEMMA 3 . Let M be a factor and L¢C M be a nest of
projections., Then
MO Lat( MO Alg L ) = L
Proof. 1f p belongs to MM Lat(MN Alg L) ‘theﬂ'p
commutes with every projection in L. Suppose that there
are projections qg r . a%r in L such that

g-pg.= p, # 0 and p(r-q) = q, # O

z

Since M is a factor, there is a partial isometry

CRE M R O such that Xq, = X = pg% .

Clearly (l-p)xp 3 0 but (l=g)xq =0 ({Y) ge L .
- The contradiction shows that for every g &£ in L,

qé#r one has either q& P or pl e=g) =0 (1).

Suppose now that g&pgr and q#F r are
consecutive projections in'L (i.&n. r-g 1s an atom in L)
TF p £ g and r(% p , choose x £ 0 in M
such that x(p=q) = x = (r<p)x .

Again it follows that

(1-p)xp # O  but  (l-glxq = O (M) gel s
Coneequently, either p = q or 'p 22 il - (2)

(1) and (2) show that, roughly speaking, p 'has no holes'

in its decomposition with respect to L and that p is

“trivial on every atom of L. It follows that.p belongs

to L, which concludes the proof.
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Recall that for two subalgebras A and B in B(H), the
Hausdorff distance between them is ( slightly different

but equivalent to that) given by

dist(A,B) = max{ sup inf |{x-yll 3 sup inf  [[x-yl
X&A yesB ye B X €A
Bxigl L yigl :
We can state now the main result.
THEOREM 4 . Let M be a factor and Ll . L2 be nests of
projections in M. The following statements are equivalent.
i) There is & lattice isomorphism of L; onto L,

close to the identity,

and . MMWAlg L, are

ii). The algebras MM Alg Ly

close in the Hausdorff metric.

Proof. (i) =(ii) Let x belong to MM Alg L dixllg T .
7 K. g 1 S

For every projection p g L, , choose g€ Ly such that

Hp-qlig € , hence U(l;p)xpn ¢ 2¢ ., FTheorem 2 implies
“now that dist{x, MN Alg Li £ 2& . If we reverse

the roles of L, and L, we obtain (ii)e.

(ii) =(i) is esentially ([2 Thel.4d  dissd)., s0
we shall only sketch the proof,.

e

Let A be a subalgebra of M such that

; | 5
dist( MM Alg Ly o A) € £&10

For every p in Ll , one can find & unique projection
o((p) in ML) Lat A éuch that L3 :{Oﬁ(p) 5 p(:'Ll }
is a nest and I p-t ()l ¢ 408 () pely

(see ([2]) for'details).
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Now if A = MM Alg L, ,Lemma 3 implies that actually

L, is a subnest of L, , close to Ly. By the previous

a2

implication, MMN Alg Ly and MM Alg L, are close,
: R o
hence MM Alg L, and MM Alg L, are close. Since
e o
M Alg Ly MfAlg Ly

equal and one uses again Lemma 3 to obtain L2 =2k,

>

it follows thet in - fack they are

which concludes the proof,
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