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A Formal Reprecsentation of Flowchart Schemes IT

Virgilemil Cazanescu and Gheorghe.Stefénescw
e ;
Abstract.‘w§0?epresent‘a flowchart scheme by\a pair (x,f), where x and f
.givé the statements and the arrows in the scheme, respectively,
The representation is not unique and a flowchart scheme appears
as a class of isomorphic pairs. This way we get a syntactic mo-
del for flowchart schemes, ‘
- The algebra of pairs was deve;oped in the first part of this

work, which appeared‘in An, Univ, Bueuresti, Ma®,-Inf, XXAVII,

2(1988), 33-51, Here we develop the algebra of flowchart schemes
(= isomorphic pairs). We introduce an algebraic structure, called
biflow, which completely characterizes flowchart schemes from

the algebraic point of view. Another feature of this paper is

the use of gbstract flowchart schemes, that is (statement abstrec—
tion;) the concrete statements are replaced by variables and

(arrow abstraction:) the set of arrows which connect the state-

ments is replaced by an element from an adequate algebraie

structure.

Motto: "It is not too much to hope that a class of these
identities may be isolated as axioms of an algebraic

«.« theory analogous (say) to rings or vector spaces.,

Robin Milner

It is an increasing need to find some basic algebraic structures for

theoretical computer science, The motto is taken from Iilner [‘MiBBJ and
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L
refers torthe algebrization of a recent and important fiéld of computer
science, i.e. "concurrency"; here importaht‘results have been obtained
by Milner's group (seé [_MiBSJ), by the group of Bergstra and Kloop (see
I'BKBQ}) ete. Buf we think this motto may equally irell be applied to
other fields of computer science.

The algebrization of the classical field of automaté and language
theory was made in the setting of Kleene's operations IjK156], i.e, constanmts
union, product and repetition (star), To this end an algebraic structure,
called "regular algebra" has been introduced by Comvay I.COTG 5 (A complete‘
axiomatization for regular algebra is still unknown, by authors!' knowledgea

. (the : :

The algebrization of Ybehaviour of Yanov deterministic program schemes
vwas made in thé setting of Blgot's operations [ EL75], i.e. constants,
composition, tupling and iterat_ionc In this context an algebraic structure
~called "iterﬁtion theory" has been §ingle out in I: EWBO].‘Perhaps the most
inportant result is Isik's Theoren [.ESSOJ which give a complete set of
equations for iteration theories,

The ﬁresent paper deals with the algebrization 6f flowchart schenmes.,

Our convinetion is the most adequate algebraic structure to study acyclic

flowchart schemes is a gymmetric strict monoidal category, presented for
examnple in [ﬁL71,Ma76]. To study (cyclic) flowchart schemes we introduce

an algebraic structure, called biflow, which is a symmetric strict monoidal

category endowed wifh s looping operation, called feedbackation, axioma-
tized by a few simple equations. The feedback operation was introduced in
[St86,86aj. This operation is more adeguate to study cyclic flowchart
schemes than iteration [StBGa]; see also [CSBS] for a detalied compapyation

s ~

of feedbackation, iteration and repetition.
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This paper is included in a sé@uenée of papers where we intend to give

a new foundation of the algebraic theory of multi—input/multi—exit flowchart
schemeg., The main new feature of thig approach is the'usq of the feedbackation
as the looping operation. The motivation and the framework of this theory
are given in (CSB7], The present paper together with [C387a] and [CS8983
cover the results presented in Sections 1 and 4 in [CS87].

In the last years we have observed a tendency to find an algebraiec
formalism fdr graphs, digraphs or nets emerging from different fields:

communication systens [Pa87], graph grammars IBCSE], flowchart schemeg

td

[CU82 & CE84L S REEh, TS186, Ca8T & 87&]. It seems for us that all these
algebraic approacﬁes lead to a common, and consequently basic, algebraic
structure., For example, there is a characterization of biflow using only .
identities, summation and (an extended) feedbackation. Summation and this
extended feedbackation are similar to parallel and linking operaotors in
[PaSTj, respectively and the resulted axioms for biflow are essentially
the axioms in Pa87], without ¢ and completed with some axioms for

identities !!,
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1. Flows and Biflows

The objects of the categories B we work with form a monoid denoted by

(0b(B),+,e). The operations we use are:

Composition (in diagramatic order) wy~;B(a,b)x\B(bbc)—$ZB(a,c);
 Identity Iaé-B(a,a);

Summation _+_ :B(a,b)X B(c,d) —> B(a+c,b+d);

Block Transposition VA,b;B(a+b,b+a);

(Right) Feedbackation ;Ta:B(b+a,c+a)—%-B(b,c).

The composition sign "e" is usually omitted. :
Some axioms for these” operations are given in Table 1.

A symmetric strict monocidal category (ssmec, for short) cf.EﬂL71;Ma76]
-is a category endowed with summation and block transpositions and fulfilling
the axioms B1-10 of Table 1. A Q;g;gﬂ.is an ssmc endowed with a (right)
feedbackation and fulfilling the axioms B1-16 of Table 1, A flow is a
structure which fulfills all the axioms in {B1~163 \{B6,B10,B13}, the
axioms B6,B10 whenever é or w is a block transposition and B13 whenever g
is a block transposition. As we shall see below the only differenée k
between a flow and a biflow is B0, dses biflow — fiow fulfilline B0,
Ve say two morphisms u and g ermute, and write u Ppoiis they fulfiid
_the eqﬁality in: B10O, It is ‘easy to see that in a flow if wu P g then :
fut+gv = (&+g) (u+v) holds for arbitrary f and v, hence a flow fulfilling‘

B10 also fulfills B6.

1.1 Proposition, Suppose. B is a flow and f&B(c+a,d+b), g€ Blu+b,v+a)
_are such that £ P g. Then

r

((1u»l~f)('\(‘u,d+lb)(Id+g))’f‘a = Ah’cx(lc+g)(\/“c'v-l-la)(lv-u))’T i Qi

?



TABLE 1. These axioms define a biflow (B1-10 define an ssmc).

B (fg)h = f(gh) B2 Iaf :"?‘é fIb
B3 (f+g)+h = f+(g+h) B5 Ia-i-Ib = Ia+b>
B4 Io+f = f+L B6 (f+g)(u+v) = futgv
T \(Va b va o a+ r B9 \(\(a,be-c = (Vva,bi'lc)(lb'kvé,c)
B8 Yé,e =1 : B10 (u+g)VB q= Va,c(g+u)
: for uta—>b, ' gic—>d

B11 f(g4™M)n = ((f+Ia)g(h+Ia))’?‘a B4 £ - +a+b
B12 f+gh? = (£+g)4” BiS 1 A
B3 (2T, +2) M = ((T_+g) )P e 4
' il e : Vé,a ‘a

for f:c+a->d+b, g:b->a

Proof. ((Iu+f)(\(“u,d+1b)(1d-i-g)M‘a
o e
= )(\(”u’ iy )(Idm),l _ by Bo
= i +(f+I pd Oy g+ V5 5] ) [T +2)+1, )4 by B11,12

il

( (Iu+ \Mc-ka, b) [( Iu—;b'kf) (Iu+ Vs : d-l—b) (\Fu e b : b) ( Va ,u+b+Ib) (g'*“I<i+b):s

a+b
(\Nv+a, d+1b) Ji : ; by Bo, 1»Oflow

((I

il

X = g b ;
e ST +Ia)[(1u+b+f)(8f1d+b)] (Iv+\ré’d+1b))'1‘a+ i B1-10 'fo;c'\[‘f

3 ' bta -
((Iu-x-\(c,bﬁa) L(b‘i_IC+a>v(IV+a+f)] (IV+\?\':JL,d+b)))f '\!Vv,d by Bq’iflow’ s

1

1l

YV ((\C wsb'a )(gﬂ cta. HIV'*'V:a,CJra)(Ivi'fJ’Ia)M\a«\b'Vvv,d by BT7-11

flow
S - e a ol
5 Y{I,C Ickb)\Nc,va-a(Ier\Na,c)(Iv-kc* Yva,a'r >(Iv-+f))' V‘lv,d by 0. 12:CZLow
S b ] S -
= V/u’c((Ic+g)(\rc,v+1a)(1v+f))-’(‘ i - by B16. B

Appl-ying this proposition for u = v = e we find that dm a flow Bl3

holds whenever g P f.

N

1.2 Corollary, (i) A biflow is a flow over an ssmc.

(ii) B is a biflow iff B is a flow and all morphisms in B permute. i



H:B =-»B! is an ssméﬁresp. flow, biflow) morphism if H is a functor
N %

which is a monoid morphism on objects and fulfills
1. H(f4g) = H(L)+H(g) for f,g morphisms in B and
o h<Vﬁ,b) = vﬁ(a),H(b) for a,b objects in B
(resp. 1, 2 and
Ces SoilliGads Eanitiia : : :
% H(FA") = (H(£) )M for £ morphism in B and a object in B).
Let M be a monoid and gﬁggg(gissmc, flow, biflow%. Ve say B is an
M-struc if B is a strﬁc and its monoid of objects is M. Moreover, H:B —>B!

is an M-struc morphism if H is a struc morphism and H(a) = a for every a €M,

Note that the M—-struc structures form a variety in the sense of many-sorted
niversal algebra, hence there exists an initial HM-struc structure.
A composite of an arbitrary number of morphisms of the type I +{ 4T
= : = o kb e g

is called an a#-—-base morphism. Fote that in a flow 1if for g is an

ax-base morphism then f P g, therefore the subcategory of all the ak-base

~

morphisms of a flow form an ssmc (in fact, a biflow) in which all

morphisms are isomorphisms,

1.% Proposition, et S be a set and Bi., the piflow of the S-sorted
: 5 _
bijections, If B is a flow and n:S®—> 0b(B) 2 monoid morphism, then there

> . ) s s : e R
is a unique flow morphism IH: 1S~%>B such that H(a) = hl(a) for every aes .

Proof. The subcategory of all the aK-base morphisms in B form an ssmc,

hence by Theorem . in [cS89] there is a unique ssme morphism ﬂ:lBiS~éiB
! X ; T
such that H(a) = h(a), for every a€ S*, The proof that H(f¢a) = H(f)¢L(a)

is the same as the proof of the similar fact in Theorem 1,16 in [CSST&], 2]

: : e : St ey

Sometimes we prefer to work with the left feedbackation 4~ :B(a+b,atc)
-—>B(b,c). Consequently, we recall the passing from one feedbackation to
the other one:

¢af =y )Ta, for fe&Bla+b,a+c) and
byailasc 3

1) A definition of Biy may be found in Section 4.
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A =4 (\{Va,bfvc,a)’ fox ‘feb(b{»a,wa),

In the case the monoid of objects is a free‘mondid Sx, feedbackation
is completly determinated by its restriction to letters, i.e. by'fs, for.

s€S, We give here an equivalent axiom system based on this scalar feedbackation

1,4 Proposition. Suppose B is a category with 0b(B) = S® and fulfillé
21l the axioms in §B1-10J\¢B6,B10y and B6,B10 whenever g or u is a block

transposition, If moreover, a scalar (right) feedbackation
o
A7 :B(a+s,b+s)—> B(a,b), for a,bed and s€3

is given such that

st g(£45)n ='((g+Is)f(h+Is))4~S, for s€S

SI2 IJG»H?'!--S = (It+f)+s, for s, €5

= _ s b Vs . it
T3 (£(Tyr\y (NEE = (T 4 )P4, for s,5€8
SF4 Iﬁ¢$ - IX’ where A is the empty word

Rley S s
SP

hold in B, then B becomesa flow using the feedbackation defined by

At and A 8 e ay

Proof. The axioms of flow may be proved by induction on the lenght of
the word a used in 4%, @
Sections 2,% which follow relate our feedbackation to other well-known

looping operations, i.e. to iteration and repetition. This sections may

_ be skipped at a fifst reading and studied later,

2. Lteration and Feedbackation

A simple way to give examples of biflows is to use our knowledge about

'

iteration and the first Theprem in [CS88] . This way we get examples of



“biflows over algébraic theories,
: .

The ADJ-group has extended Lawﬁere‘s_oonceptwof algebraic theories
(axiomatized by Eigot) toithe case when the objects of the eategory form
a free monoid Skj they also has introduced somé ordered variants of §%-
algebraic theories, for instance W-continuous and rationally closed
s*.algebraic theories cf. [TWW79].

In [0889] we have éxtended the concept of algebraic theory to the  case

when the objects of the category form an arbitrary monoid M, and ealled it

M—(algebraic) theory; see also [0888]. Although in this section we use
ordered, W-continuous and rationally closed theories over an arbitrary

monoid M, the definitions and the proof are the same as in the case of
o : '
5~ algebraic theories,
i
In an M-theory!the source tupling of f& T(a,c) and ge& T(b,c) is denoted

by £f, 02,

2,1 Definition, An ordered M-theory is an M-theory T fulfilling the

following supplementary conditions:

o

~ for a,b€M the set T(a,b) is partially ordered with a least ~ele1:-1ent',.i..a b’
b4

-~ composition is increasing and left strict, i.e.__Lq bf :'La o
3 Gy, 4

- tupling is increasing.

An W—-continuous M-theory is an ordere&gﬁacory T fulfilling the following

supplenentary conditions:
- for a,b&lM the ordered set T(a,b) is w-complete;

-~ composition is w-continuous.

A rationally closed l-theory is an ordered M-theory T in which an iteration
T:7(a,a+b) = T(a,b), for a,beM

is given satisfying the following axioms:

RO (f(Ia-l—g))T = flg, for £€ T(a,a+b),ge T(b,c);
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RC2 f<f'f,1b> = £1, ' for e 1(a,a+h);

RC? -f<g,11')'> <& g implies fT < g for fET(;a,a-kb),‘ geT(a,b),

[By applying the axioms RC2 and RC3H it-is casy ﬁb pfove that iteration

in a rationally closed'theory is inoreasing{]

An M-theory with iterate is an M-theory T in which an iteration is given

fulfilling the axioms RC1, RC2 and
I1 (f(<1a’15>+1b))+ = fTT, for £& T(a,atath);

12 g(f(g+lc))T = (gf)+, fopfc o, bie), ac i) . W

2.2 Proposition, (i) Everyy-continuous M-theory is rationally closed.
(ii) Every rationally closed l~theory is an M-theory with iterate.

(iii) Bvery M-theory with iterate is 2 biflow.

Proof, (i) The proof is well-known. WYe only mention that in an W-continuous

theory the iterate of f:a~$»a+b'is_by definition the least upper bound

of the sequence defined by f(o) =R e f(n+1> = i”(f(n),lb>.

24b

(ii) A proof may be obtained using the proof given for S*Ltheories in
[CaBS],-Theorem 1.5 and Proposition B1 of Appéndix-B in [S+87] to see that
the axiomatic system used in [Ca85] is equivélent to the present one, an
easier proof may be obtain by a direct verification of the axioms I1-2 in
the context of rafionally closed thoories.

V(iii) The first proof was given in [b887a]; another proof may be found
in [cs888]. Ve recall that in.[0388] we used the following passing between

iteration and feedbackation

F%ﬂg):b<fha?, for f:a~> a+te and g:b—> a+c. A

In literature there are many examples of w—continuous theories., Using
the above proposition we get many examples of biflows., For instance, the
basic semantic models [Pfn(S) for deterministic flowchart schemes and [Rel(S)
for nondeterministic flowchart schemes are biflows. The construction of

this models may be found in [CS87].



3. Repetition and Feedbackation

N

The most adecvate frame to Sull&j repetition 1s a matrix theor&, introduced
by [El’?(v]. In [Cou‘)j we have extended this cor'lmpt to the case when the
objects in *ghe category form an.arbi'brary monoid, and called it M-matrix
theory; see also [(588].

In an M-matrix theory T the cosource tupling of f€ T(a,b) and gé Tlasc)
is denoted by [f,g] o Hote that in an M-matrix theory T one may define a
union ovperation as follows

fUg = [1,,1.J(£+8) <I,I,>, for £,5€0(a,b).
m :
In [El76] it is shown that a matrix theor;h/is completely determinated

by the semiring (T(1,1), U""H,’I

2 . o : :
,11 )» When this semiring is complete in
the gense of [lu‘irM], the resulted matrix theory has some supplementary
properties that may be axiomatized as followvs.

5,1 Definition, A complete M-matrix theory is an M-matrix theory T in

which for every a,be&ll and for every f_amily §fi§ of mezphisms in Iz h)

Aee)

a morphism UlCLf é’“(a b) is given fulfilling the following axioms:

CHT1 Uié'ii,‘-.,ﬂ}fi = fUL,U... U1, for n3o

T i ¥ i -' o o 1 and T £ s s ) ]
CHT2 Uielfi : UjeJUitefi S ujeJIj 1nd J.jﬁIk =@ for j £ k
CHT3 ’5(U1c1 ) Uielgf. s itor selile a)

T4 ( | z et
CMT4 ('uielfi)b = Uluf o, for cellbc) —

she = 5 = = e
r“J‘ For n = 0 axiom CMT1 should be read as Ui€¢fi Z"La,b'

3
et
1

In a complete M-matrix theory a repetition *:T(a,a)—> T(a,a) for aegll

- may be defined as follows

*- n "7
e UnZOf o tor saEel, vfGT(a,a).

2.2 Lemma, The following identities hold in a complete M-matrix theory.

BRI £5 - Iy ££%, for £€ T(a,a)
2) oé(rcsp..l_a) denotes the unique morphism in T(e,a) (resp. in T(a,e)); i
A H
denotes 1 ~-0.. -
a b

e L el e s s L

g



R2 (£We)" = (£%2)%£%, for f£,2cT(a,a)

R3  flgf)® = (£fg)¥f, for f&T(a,b), geT(b,a).

Proof, Since T(a,a) is a complete semiring the identities R1 and R2
hold. The proof of R3 is obwvious. #& :
in which a repetition is given) g
Let T be an M-matrix theoryffulfilling the conditions R1-3 above., The

second Theorem in LCSSB] shows that this conecept is equivalent to the

concept of biflow over an M-matrix theory. So we get the following result,

343 Proposition., Every complete lM-matrix theory is a biflow. #

£ :
In an H-matrix theory T we denote by (£ ?) vofon £Ellla c), s Tlad):

i

neE b, cliiand 1icfb,d) the mozphism  ([fz],[h, 11> (- K& h> Lo 350
Note that.every morphism form T(a+b,c+d) may be written in a unique way

as above.

We recall that in a biflow over a matriz theory the left feedbackation

is defined by

N (h f) = hf*g()l y for fia->a, g:a e, hibh—a, i:b—>c.

e % o . o :

Tiet. P be an 5 -natrix theory, If a€ S then fasli s thie lemath o 5
- :

g , :
and for iéff{a[L ai denotes the i-th letter of a, therefore a = 8y teeeta

QJ

[al

Tor f€li(a,b), dellal] and Jef|b|] Let fij = (oa'u;ai»l.oa,,):f(.Lb,»Fij-;ALD:,>,

Jold b1+.,.+b.~ and

L sk 31

’{‘o e .+8,
i+1

where a' = a, t...4a. -,
_ 1 i-1

lal’

JUEdis 2 )
~b- - bj+1‘|ooo+b£blo

We say f€T(a,b) preserves the sorts if for i € el Jellbl]

fij #,Lai,bj implies a; = Dj,

24 Proposigtions inban SXFmatrix theory T o i

the collection T
sort

* the morphisms which presevve sorts is a matrix subtheory. MHoreover, if

T is complete, : then T is elosed

gort

under répetition.

3) [n}denotes the set %1,2,...,n}; particularly [Q] = 0,
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Proof, It is easy to show that 0 ’“La’<1a’1a> and [Ia,ia] are in Tsort

for every <16k).

m

sort (a,b),

is closed under composition, Indeed, suppose fe}Tsort

g€l .(b,c), i€fial] and x€[livl] are such that (fg)iy %_Lq o + Since
S £ &0

Uje[tm] £, €5y » there is je(lo1] with £585 A4 . This
- 3 l

shiows thsbeaf . L  and g, Jj hence a. = b, =e .

d # sl b dee Sl # e i ] k
e k

i is closed under summation, Indeed, suppose féSTs (a,b) and

sort ort

fe,yd)i Sinec (fro) = fij for i€(lal] and jellcl], and

ce i3

sort
(f+g)[al+i,lCl+j = gij for i€ [|vl] and je€[|d|], we deduce that

f+g el (a+c,b+d), Hence T . is a matrix subtheory of T

sort sord

Suppose moreover T ig complete - and
fer (a,a2), 1€fla)] and je€{ja|] are such that f*i; #_19 o + Since
. i? 2
aGEREe ] I oo e _
‘1 i \Jnﬁaofnij , there is n>»0 such that £ % 43 s hence a; = aj.iﬁ

sort

A, Dxamples of Biflows

Let (S*}+,)) be the free monoid generated by the set 8, The theory

de e : : : e
IRelS of S-sorted relations is defined as follows:

Ui

Rels(a,b) = %f Dall X ﬂb[]j ) €Ff implies a;, = bj}, for a,bEFS*.

Composition: for féiﬂkels(a,b) and‘géEﬂlelS(b,c) the composite is the
usual one defined by |
£g = ¢(1,k)[ 2 5 €] such that (i,j)Ef and (3,k)e g3,

Summation: for fe&[ﬁels(a,b) and geijelS(c,d) the sum is defined by

T8 = £U  (lal+d, bl+3) | (1,3 e 8.
Constants: for a,bes”™

o { 1,d) L] TEES
\fa,b = {5, [pl+1) | 1€Tiald] U {Caled, 0| sefbil). @

4') When S has exactly one element the index S in D{el (znd in its
subtheories Ela, Ulnb ete., defined below) ig droppod

5) S e e e o o R TG i oy R A e A e s e T s e S e R e B ey
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ﬂielg is a biflow. To see this one may use different methods. (i) One may

try to prove directly that the:axioms B11-16 hold in [Rel,. To this end it is
i " 3

useful to use Proposition 1.4, In this case the following definition has to

be used.

Scalar (Right) Feedbackation: for f& Rel,(a+s,b+s) with s€3, the scalar
) Lavtlo g | :

feedback is defined by

PAE aiJ)l(iJ)éf or RiﬁbLH)Eﬁ'wﬁ HaLH)éf]ﬁ.

-

(ii) Since Rel, is an w-continuous theory one may use iteration and the

S

el

results in Section 2, (iii) Since [Rel, is a complete matrix theory one

S

4 e

may use repetition and the results in Seection 3.
From the sexteen types of relations studied in [0589] only nine of them
are closed under feedback and the partial order of their inclusions may be

represented as the Hasse diagram in Figure 1.

ESurs
)

Figure 1. Relations closed under feedbvack,

3 and Efns are the biflows of the bijections,

In this figure 3iS,'EnS, Elnq, Psur
L.
of the injections, of the partial injectiong, of the partial surjecticns and of

z and

: - ; ; v i)
the partial functions, respectively. In the same figure IIn Plur
p 9 J & @
= : e : : .
ans are the biflows of the converses of injections, of the converses of
partial surjections and of the converses of partial functions, respectively.

In [b889a} it ig shown that all these ssmc-ies become biflows in a unique way,
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B, FLOWCHART SCHEMES i
1(a)
: b
5. The Flow of Flowchart Scheme hop gsentations . ‘V

Figure 2.

Model WFl. ... Let B be.a (bi)flow, (X,+,%) a monoid and i,0:X —> 0b(B)

KD

two monoid morphisms. The algebra lFlX B of pairs over X and B is defined
: ' B

as follows (see [C387a] for motivation).
Fl, z(a,b {b;f)‘xéXamizéijd )buﬂXﬂir for a,b € 0b(B).
¥

Composition: for (x,f):a->b and (y,g):b—>c the composite is

(ny)(y’g)‘= (X+y’(f+Io(y))(Ib+V1(x),o(y))(g+1i(x))(IC+VZ(y),i(x)));

Summation: for (x,f):a—>b and (y,g):c ->d the sum is

(Xyi)+syy6) = (X+y’(Ia+VE,o(x)+Io(y))(f+g)(Ib+VZ(x),d+Io{y)));
(Left)Feedbackation: for (x,f):a+b-—> a+c the left feedback is

/1\ (“’,4 (A’)}~ f)
Constants: Ia = (E,la) and Véwb-: (E’V;,b)' 5

Tbidis known  from [C887a, Theorem 2.a.4] that DEK B is a flow, whenever
B is a flow,

(2,
Comment, A pair (x,f) i Yﬁcprcccnt a flowchart scheme with

input a and ‘output b, which may be illustrated ag in Figure 2.
{

In the .case of usutal flowchart schemes X is the monoid freely generated
by a set 2 of statements and B is [Pfn, namely we work with partial
flowchart schemes, The usual complete flowchart schemes are represented
by pairs in Fl ., but neither the Aheory of functions @n, nor L.

X, I'n X, I'n
is closed under feedback. Consequently we prefer to usec a greater set of
schemes which has better properties,

In other papers, for example in [pLu)] the authors prefer to use

functions in Fn and to add a distinguished statement 1 with one invut
D i



and without outputs. The flowchart schemes studied‘in this case is the
same as in our case, but the mathematicalvrepresentation slightly differs
from ours. This is a matter of choice: What is better, to use partial
funetions or #Qtal functions with an additional undefined element, partial
trees or total trees with an additional undefined label, etc? We think
.is technically bhetter to use partial funetions, partial trees or partial
schemes, [ A

The morphisms of a flow C form a monoid denoted by Mor(C). First,note
that.EX:XI—>I&or(FlX,B),defined by EX(X) =>(X’Vz(x),o(x)) for xc X, i
an- injective monoid morphism, llence we may identify x with EX(X). Second,
néte that EB:BvelFlX,Bi’ defined by BB(f) = (&,f) for a morphism f in B, is
an Ob(B)-flow morphism which is injective on every B(a,b). Hence we also
may identify a morphism f in B with EB(f). Finally, note that if (x,f)e&
(e, b)y then (o, 8) = (7 +x)f)?i(x).

X,B a -

2.1 Definition., An interpretation of X and B in a flow B' is a pair

(I,H), where H:B—>B' is a flow norphism, I:X—> Mor(B') is a monoid

morphism such that I(x)e€ B'(H(i(x)),H(o(x))) for x€X,and I(x) P H(£) for

~

every x in X and f morphism.in B. &

The last condition is superflous when B' ig g biflow, By the above
observations. (B,,B;) is an inberpretation of X and B in m that we
call the standard interpretation.

B2 Theorem; i (I,H) is an interpretation of X and B in a5 flow B,

then there is a unique flow morphism

fom
(I,H) 'MK,B = 3

such that EX(i,H)? = 1 and EB(I,H)f =il -

Proof, The proof is similar to that of Theorenm 5.2.b in [CS87a]. We only
mention that the extension is defined as follows (I,H)f(x,g) =

(s NEDT ) gor () em (a,0). B
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53 lLixample, In order to help the reader fo hawve a betﬁer ingight into
the role of Definition‘5,1 and Theorem 5.2 we come back to the usual cage
X :Efsand B =JPfn, Let S be the set of the statés of the computer device.
As B' we take Pfn(3), the theory of partial functions over S. (Recall that
Pfn(8) (m,n) is equal to the set of all the partial functions from S X {(nil
to SX [m), for m,né,) '

As Il we take the embedding of Pfn into Pfn(8) given by gelPrfn(m,n) jm—>
H(g)&e®in(s)(m,n), where ‘

Mg sl (selil) | for (=,1)c 5 X [,
Note that H is a biflow morphism, indeed, In fact H(g) gives the behaviour
of g, when g is thought as a program without statements. -

In order to get the semantics of flowcharf schemes over 2, we still
need to know the behaviour I(q)€ PIn(S)(i(T),o0(x)) of every atomic
statement geZ; . The monoid morphism 1:§:K4>Mor(wfn(S)) is the unique
extension of this function to a monoid morphism.

The most important faet is that the bechaviour of a flowehart scheme
represented by (x,g)e IFl PL)fn(m,n) is

2y
(1,1 (x,8) = (T +1(x))1(e) M e pen(s) (m,n),

9
Therefore: the monoid morphism I gives the behaviour of the statements,
the flow morphism H gives the behaviour of the connection morphisms (seen

i

as programs without statements, i.e. containing only gotos) and the unique

extension (I,H)f in Theorem 5.2 gives the resulted behaviour of the

flowchart schemes, represented by pairs., i

6. _Simulation by Bijections

The graph isomorphism is usualy used to define the flowchart scheme

isomorphism: two concrete flowchart schemes are isomorphic (equal) if



(y&

o
& A
it
]
;
]

they él“o given by isomorphic, laballed--grai)hs. We shall see in this section
that two pairs represent the same concrete scheme if and only if they are
Simila:r via a bijection, But every concrete flowchart scheme is represented
by at least one pair. So we may identify a concrete flowchart scheme with
the set of ali the pairs which represent it, This way we get a syntactic
model for flowchart schemes which consist of classes of Psemérphic pairs.

At the beginning of this seetion we work with usual, concre;te, nondeter-
ministic schemes,  i.e. X :;}_‘L)E and B =1Rel, the biflow of relations.

A word we 7% may be seen as a function w: Liwt] @Z which maps k %o
the k-th letter of w. Hence a morphism jéﬁ&iz(x,y) is a bijection
dell=ll=2 1yl suchithay by = x.

The monoid morphisms 1,000 ) 0T may be extended in a unique way to
ssmc morphisms i,o0: SBij::% Rel, cf. |C589]. For an je IB:i.F(::,sr), the

X,
extension i(j)eBili(x),i(y)) fulfills

(%) - i(j)(i(x1+...+xm_1)+t) = 1(yytee oty Yt

() -1
for every me [|x|] and t€ ‘fi(xm)] . We mention this may be taken as the
definition of i(j). An analogous property holds for o: L’Bizw)* Rel.
The scheme represented by (x,f) in ‘le,ﬁel(a’b) may be seen ab a graph
in the following way (see Figure 2).
(1) There are a vertices for inputs, b vertices for outputs and lxll
internal vertices labelled by xz:[|x(}—>3,.
(2) The relation f€Rel(ato(x),b+i(x)) gives all the arrows of the
scheme in the following way:
- (p,q)€ £ for pela] and q&fb] iff there is an arrow Trom input
p to output q ;
_'(p,b-f-i(x1-l-...+xm_1 J+t) € f for pelal, me(jx1] and tefi(xm)j iLfE

there is an arraw from input p to entry t of the statement which labels

vertex m ;



O8T%
S ik

= (8_'{'0(3{1+.-o-i.*xn~1)+S,Q)€f for nelx\], sé—[o(xn)] and qG.[bf] ik
-there is an arrow from exit s of the statement which labels vertex n
to output q ;
- (a+o(x1+...+xnu1)+s, b+i(x1+...+xm_1)+t)€if for nm&lix|], s Giﬂa(i;)}
and téi[i(xm)] iff there is an arrow from exit s of the statement
which labels vertex n to entry t of the statement which labels vertex m.,
Suppose we have two pairs (x,f) and (y,g) in 'Ejigmel(a’bx representing

the schemes T and G, respectively, and a bijection JeBis= ). Thia:

oL
bijection j gives a bijection between the labelled, internal vertices of I
and the labelled,internal vertices of G such that the corresponding .
Vértices have the same label,

Let see the meaning of the bijections i(g)eki (i(x),20p)) and
oile Bl (olx)s0ly)). In (%) i(x1+...+xm_1)+t represent entry t of state-
ment X whigh 1aﬁels vertex m of P %nd i(y1+...+yj(m)_1)+t represents
entry t of statement Vil (= Xm) which labels the correspondigg vertex j(m)
of G, Therefore ilj) is a bijection between all the entries SE?éiatemonts

: (the) :

from F and all the entries oflstatements from G such that two entries
correspond by i(j) iffv thej are the entries with ‘the same number of
a statement which labels two vertices that correspond by j. Analogously,

; . \they
o(j) is a bijection between all the exits onétatements from F and all the
exits of the gdatements from G such that two exits correspond by o(j) Al
they are the exits with the same number of a statement which labels
two vertices that correspond by Jo

We show that jeiB;Z(x,y) gives an isomorphism of F And G iff
f(Ib+i(j)) = (Ia+o(j))g. This equality is equivalent with the following
four conditions a,b,c and d.

a) (p,q)ef iff (p,q)€g , for pela] and g€ [b],

i.e, in I there is an arrow from input p to output q iff inm ¢ +there is



an arrow from input p to output q ;

E O

|y

D) (p,b+i(x1+.o.+xmﬁ1)+t)§if 1EE (p,b+i(y1l{,.+yj(m)m1)+t)e;g
for pe [al, mé[bﬂ]amliéﬂﬂﬁﬁl,
i,e, in I there ia an arrow from input p to entry t of the statement
which labels vertex m iff din G there is an afrow from input p to entry t
of the statement which labels the corresponding vertex j(m) ;

c) (a+o{X1+...+xﬂ~1)+S,q)€§f T (a+o(y1+.‘¢+y )_1)+S,Q)E:g

: j(n
ﬁrnéﬂxﬂ,séﬁﬁ%ﬂ]équéﬁﬂ’

i.e, in ¥ there is an arrow from exit s of the statement which labels
vertex n to output q iff in G there is an arrow from exit s of the
statement which labels the corresponding vertex j(n) to output g ;

d)idlatolT e vt

\. S "O--j— X = e o .—_X
] ot )78 DA ( {he e o

=i (a+o(§f1+,..+yj(p)_1

b+i(y1+...+yj<m)_1)+t)é§g , for n,mefix\], sG&[o(Xn)] and tGE[i(xm)},

m—1)

i.6, in F there is an arrow from exit s of the statement which labels
vertex n to entry t of the statement which labels vertex m iff in G
there is an arrow from exit s of the statement which labels vertex j(n)

to entry t of the statement which labels vertex j(m).

These facts lead to the following result,.

my

6.1 Proposition. The schemes represented by (x,f) and (y,g) in

=i (a,b) are isomorphic if and only if there is a Y-sorted bijection

3 kel :
jém%ﬁmy)ﬁmhf&M}ﬂIﬁiﬁ))=(I&0U)H& i

In this case we say that (x,f) and (y,8) are similar via the bijection j.
The .resulted concept of simulation by bijections may be lifted to the
gengral frame used in Section 5 as simulation via ax-base morphisms.

I'or a monoid M we dénote by &iﬁ the initial M-ssmc, Vhen M is a free

%

monoid S” we have a clean model forlBiM, namely the ssme of all S-sorted

bijections., We do not know such a model for an arbvitrary monoid M, For

)+8,



)

a free monoid the following result is covered by Theorem , in ‘[0889].

6.2 Proposition., If B is an ssme and h:X -2 0b(B) is a monoid norphism,
then there is a unique ssmec morphism H: ['Bj.y > B such that H(x) = h(x) for
4

every xe€X,

Proof, Let hm(B) be the X-gssme defined by:

Eh

hWE(B) (x,5) 1= Blh(x),hiy))s foi= fg i fieie fig ;
_for x,7€ % T i= Ih(x) and \Nx,y:: 'Vh(x),h(y) =
Let ghth(B) ->» B be the ssmc morphism defined by Eh(x) = hlx) for x€ X,
and 811(1?)/ = £ for f morphism in n(B), Since IBiX ig the initial X-gssme
there is g unique X-ssme morphism H':IBin~5hg(B). Hi= H‘Eh is an ssme
norphism and H(x) =.h(x) for every xe X, W

Applying this propoéition to the monoid morphisms i00 X == 0h(B) we
obtain two ssmec morphisms ib,ob:lBiX~€>B such that ib(x) = i(x) for x&X,

b( t) = olx) forxc X Now wo may say two pairs (x,f) and (y,g) in

and o

¥

D‘lX’B(a,b) are similar via an aW-base morphism jéBj.X(x,y) §f
£(1,+3°(3)) = (I_+0"(3))e.
Having in mind other examples of simulations we prefer to work even
more abstract: We replace L’Bix by an arbitrary X-ssmec Y and the ssme
morphisms i.b,ob by two arbitrary ssmec morphi‘sr‘ns 1,0:¥~> B, (ln thia cose
EE‘ZLX’B is built up using the restrictions of i and o to the objects of )
We do not give a deep study of this abstract simulation in this paper. Ve

only give the definition and some properties we need. All the hypotheses

on Y we shall use in the next Section are valid when Y =B,
Fay

T« Abgtract Simulation

Throughout this Section X is a monoid, Y is an X-ssmec, B is a biflow

and i,0:Y =B are two ssmc morphisms.



1.1 Definition., Suppose we are given two pairs (x,f) and (y,g) in

L B(a,b‘)., Ve say (‘x,f) and (y,g) are gimilar via i€ Y(x,v), and write

L g

() “’>j (&) it f(Ib;Fi(j)) = (Ia»l-o(j”g. (X,f)”‘i"Y (y,g) means
(x,f) >, (y,8) for some j€Y(x,y). The relation ~>, is called simulation
J T -

(vig Y-morphisms).

An easy computation shows that

1.2 Lemma, For every x,y€X

o e

Te3 Lemms, The simulation relation -—’?Y is a preorder, compatible to

the flow operations,

)
Progf, Gleaply (x,.7) *-)*I'
X
then (x,f) _d}jk (z,h). Hence simulation is a preorder. The compatibility

(G Ty 0 (X,f)—->j (yy2) and (y,g)“%’k {z,h),

is proved by the following easy checked facte =

SIF (x,1) _—>j' (Fyg) and (x!,.fv) "‘>1, (2l Sthen:
= (B (P et —->j+k (yy8)(y',e")
- (x,f) + (x',f') —>

4k (yy@) S (Y',G')
""i‘a(xyf) ”‘>J ‘Ta(y:g)

whenever the operations make sense, §j

.4 Lemma, If every morphism in Y is an isomorphisn, then the simulation

relation is a flow congruence relation,

Proof, Ve have to show that --’%Y is symmetric, If (X,f)——)-Y (gy2) in

-lFlX B(a,b), then there exists j€Y(x,y) such that f(Ib+i(j)) = (Ia+o(j))g.
f o : : .

Since j is an isomorphism there is j—'1 in ¥ sueh that g(Ib+i(j*1)) =
1 . :
'(Ia+o(3 ))f, hence (y,g) e (x,f). B
/

- 1.5 Lemma, Suppose Ay is a flow congruence relation in B

such that
X,B

(X+y)0(‘\{;c’y) ~N i(\{;c,y)(y-§~x) for x,y€ %, Then



£ f,{'}, :
3 /

2

(i)ens [ £ w%} (y,8) for an ax~base morphism j, then (%,£) (e2) .

(ii) The quotient of B B by o is a Biflow.
.lx.’

Eroof, The welabion x oli) or (i) v holds for every al-base morphisn
je¥(xz,y). Indeed, if § = IX-}.VE*,Z'FIV then (x+y+z+v)o(j) = x+(y+z) \{J )4V
N x+i(V& 7)(z+y)+v = 1(j) (x+z+y+v) and a simple induction Ffinishes the proof,
o

(i) Suppose (A,L)*ikj (v,8) in (a o) This shows that f =

X
(Ia+o(j))g(1b+o(j~1\). Hence (x,f) = ((Ia+X)f)¢i(X>

= (Tx0(3))e(Tyrot™ AT = (T 057 N T a0 55D

: e : ak
e (UL ol g7 Joli)yle)d (y) = (¥y8).
(ii) By ¥heorem 2.a.4 in [CS87a] Fl, . is a flow. Suppose (x,T):a—>b
. B
and (y,g):c —>d. Since
"é’a(( ,f)i“(]y )"‘j}

Xe¥
ve deduce that \ a((X flely,e)) o ((y,8)+(x,f))Vé p, + therefore the
9 C s

quotient of ElX = by o fulfils B10. By Corallary 1,2 this shows El /o
’

3 2 4D

is a bifiow., §

Ava

1.6 Proposition, If every morphism in ¥ is an at-bage Norﬁﬂl“d, then the

which

simulation relation “97{ is the least cong jruence relation on W, B
Dy

containg y) ol LEy y)(y+x)) for w,ve X,
J\.’

fiyff

Proof., As every ag-base morphism is an igomorphism we deduce from
Lemmas 7.2, 7.3 and 7.4 that the simulation relation is s congruence

relation which contains ((xz+y)o(y~ ), iy Jlyax)) for 2ove X,
A9 ¥ VX,‘Y

btollon from‘Lemma'7'5.(i) that-%by is the least one.

7.7 Lemna, Let B' be a biflow and T: ‘;li ™2 B' a flow morphism. If
% =)

‘(X,f)'—%j (y,8) for an ax-base morphism j, then Bz, 0= Bl ),
Yroof, Let ~n Dbe the congruence relation on DEK . dedined by (x,f) aly o)
g D

Al F((ny‘)) = F((:Y,E))o Since I((J\*Y) (\‘L’y )= (}?(X)°*']3‘<y)‘\’Vi‘(o(x)),l‘(o(y))



:\Y%(i(x» F(i(y))(F(y)-:-l?‘(x)) = Fti(wk;y)(y+x)), the result follows by

applying Lemma 7.5.(i). B

8. The Biflow of Flowchart Schemes

Assume X is a monoid, B is a biflow and i,0:X —»0b{(B) are two monoid
morphisms. Let ~ be the least congruence relation én T, B Uﬂlch contains
o)

W () s al)? a0y a9 fox my &%,

By Propositions 6,1 and 7.6 (and the observation that in ]Bix every morphism

is an ap-base morphism) we may identify abstract Fflowchart schemes with
elements in [F1. _/~. This quotient WIX ?ﬂw is denoted by [FS., .. By
.A g g D 315}

1

Sy Eee o S & S = ;
rop051tlogj.5.(11) it is a biflow, which we call the biflow of flowchart

schemeg with statements from X and connections from B. The factorization
morphism is denoted by P w%% 3

e

8,1 Proposition. For every flow morphism F: Il _ _—>B', vhere B! is g
Ny L

A ] : - a : PR 2
iflow, there is 2 unigue flow morphism’™ I7: B8 . - ~> Bl eueh thot h‘ R
K, B

Proof. By B10,  F((z+y \I’

V)) (\l(Y),l(y)(}4 7)) holds‘in B' for

every x,y€ X. Hence the conclusion follows.

8.2 Theorem, If (I,H) is an interpretation of X and B in a biflow B!,

then there is a unique biflow morphisn (I,H)b: ESX Bf%>BW such that
: ,B

EXIJ’(I,H)b S EBP"(I,:H)b S

Proof, Apply Theorem 5,2 and Proposition 8.,1. B

Pinal comment, This theorem is the main result of this paper. A first.
version of this result was presented in [StSGa], but there are significant
improvements here (due. to the first author): (i) bijections are axiomatized

\of the objects of B} -

(ii) the mon01df : xls‘roplaced here by an arbitrary monoid; (iii)

the free monoid of statements is replaced here by an arbitrary monoid; and



(iv) the biflow morphisms are allowed here to change the objects in g
monoid morphism manner, This theorem has many consequences. We sketch
here two of them.

1. Suppose X is the free monoid generated by %, M is a monoid and
. v‘?‘x Wy . . 1. > ne ., ; 7 s -
l,0:&->1 are two monoid morphisms,., Moreover, assume we work in the
category of M-biflows. Then an interpretation of 2 in an M-biflow B is
a function I:3 —->Hor(B) such that I(x)e B(i(x),o0(x)) for every x€ 2. An

M-biflow B is freely generated by = if there is an interpretation I« of

M

S, in B such that for every M-biflow B' and every interpretation I of ¥
in B' there is a unique biflow morphism i#:B~—>B' such that Izih =y
Ve deduce from Theorem 8.2 that:

~ if B is the initial M-biflow, then the M-biflow ngﬁﬁ is freely
generated by 2 ;

- for every M-biflow B the li-~-biflow mssz is the coproduct of B with
the M-biflow freely generated by X .

2. 1t is known in Egquational Logic that an equation e is deductible
from g set 1§ of eguations if and only if‘g is sa%isfied by every free
algebra in the variety of algebras satisfying E (see [GMB?]),SuppOse we
work in the category of S*—biflows. Ve know that the biflow of S—sorted

bijectionsy [Bi s the dndtial S*—biflow, hence [

5 s the $™-biflow

b i
Z,mLS
freely generated by X . An equation using biflow operations is satisfied
in ElX Bi for all X if and only if it is deductible from the axionms
AT
[l
i : = e . : S
of S*¥-biflows. Therefore the axioms for S"-biflows (and equational logic)

- give an axiomatization for flowchart schemes connected by S~sorted

bijections,
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