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THE L PROBLEM OF MOMENTS IN TWO DIMENSIONS

MIHAI PUTINAR

1. Introduction

The L problem of moments consists in characterizing the sequence of mo-

ments

(1) 8 = thf(t)dt, new,
: R

of a measurable function f (with pfescribed support in R) which satisfies
0€f<1L a.e..This problem was formulated and completely solved by Akhiezer
and Krein in the thirties,[2] and [3].Moreover,the$e authors analyzed in
detail several ramifications of the problem,as for instance the localiza-
tion of the support of the function f in terms of the sequence (1),the
generalization to functions with unbounded support,the description of the
extremal cases,and so on.A part of thesec results were independently ob-
tained later by Verblunsky [16],see [3) for full details.

In a previous paper [15] we have characterized the moments

(2) a . = (f%%ﬂwdk(zh .m,neMN,
C

of a compactly supported function g defined on C,whieh satisfies 0<g< L
F,-a.e.,where f+ stands for the planar Lebesgue measurc,

The aim of the present paper is to continue the study of the two-dimen-
sional L-problem of moments begun in [15),by giving analogues of some of
the classical results of Akhiezer and Krein.As a matter of fact we unify
the apparently different approaches used in solving the above mentioned
moment problems,

The ingredient which lies at the heart of the two methods is the phase

shift of M.G.Krein,This well-understood object,coming from the perturba-



byl

‘tion theory of self-adjoint operators,pro?ides some illuminating geometri-
cal interpretations of the sequences (i) and (2).To be more precise,after
the inessential normalization L=1,the following bijections can be esta-

blished,see Section 2:

aiﬁ;‘“fﬁnétioné operators " moments
1 ]
f€_Lcomp(9R) A,A*é L(H)
1 0<T< AT=A an i (n+1)—1Tr((A')n+1—An+1)
A'=A+ §®£ -
H:VAk§ k> 0
= ' r 1 ]
ge:Lcomp(¢) A.A*f L(H)
X _ a0 S sy -
2 0<ggt e a =T 1(m«M) 1(n+1) e
21[a,41] =%} m+1 n+‘g
° =3 ¢ [}
H=VAkA'1§,k%$ rr{(a-1a9)™", (a41a)
Z

Here H denotes a fixed separable complex Hilbert space,and V E stands
for the closed linear span of the subset ECH,

In the above table f is the phase shift of the perturbation problem
A~~A' and g 1is the principal function of the pair of self-adjoint opera-
tors (A,A'),cf, Section 2.After some exponential transformations of the
moments (formulae (10) and (12) in this text),the above dictionary between
operators,functions and their moments becomes_effecfive.

This is,we believe,a proper way of solving the two L problems of mo-
ments and to read on the moments sequences properties of the respective
functions.0f course,finally one can drop the operatorial picture without
affecting the results.

Among the two-dimensional counterparts of the results of Akhiezer and
Krein presented in this paper we mention: the localization of the support
of the function g in terms of its moments (Theorem 4.1); the rigidity of
those functions g with extremal (degenerate) kernels of moments (Theorem
5.1); & necessary condition for a double sequence like (2) to represent
the moménts of a function g as above without restrictions on the support

(Theorem 4.6).



The paper is organized as follows.Section 2 is mainly descripti&e and
~recalls,for the convenience of the nonexpert: reader,the required basic
properties of the phase shift and its two dimensional analogue,the princi-
-pal function.Though not new,the results discussed in Section 3 are inter-
pretations of Akhiezer and Krein's theorems within the framework of per-
turbation theory. .

Section 4 contains the main two-dimensional results and Section § is
devoted to an analysis of the extremal L—problems.

The paper ends with some comments and open questions.

The author wishes to thank his colleagues from Xrakéw for stimulating
discussions on this subject.This work was started during a short visit at

the Jagiellonian University of Krakéw,during the Spring of 1988,

2, Preliminaries from perturbation theory

This paragraph is intended to guide the non-familiarized reader through
the basic theory of the phase shift and some of its applications.

Let A be a self—adjoint operator acting on a finite dimensional Hilbert
space H,and let .A (A) £ A.(A 5 ln(A) denote its cigenvalues counted
with multiplicitieo.An application of Courant's minimax principle shows
that the eigenvalues of a rank-one perturbation A'=A+ §®; of the operator

A separate the points KJ(A).In other terms one has the inequalities:

A (h)< A G <A ()= }Ln(A)\< A ()

Thus the characteristic function ? = ;z;'XFKA v)L(Agﬂ contaln?
complete spectral information about the perturbation A—>A',Then it is im-

mediate to derive the following identity:

(3) Tr(p(A')-p(A)) = gp'(t)?(t)dt,
R

for an arbitrary polynomial p< C{t]



When A and A' are self-ddjoint operators acting on an infinite dimen-
sional Hilbert space H,and A'-A= %QD? is.a rank-one operator;a remarkable
theorem of M.G.Xrein f12] asserts that there exists a function ?’éLlomp(ﬂ)
Oé(fé 1,called the phase shift and denoted cfz?(A—bA'),such that rela-
tion (3) holds.In fact only the assumption Tr|A'-A[<s is necessary for
the validity of this result,see [12],{10] and {17] for proofs and rela-
ted questions.It is worth mentioning that throughout this paper all ope=
rators are supposed to be bounded.

If A'=A+§Qa§ is a perturbation as above,a power expansion of the re-

solvent functions near infinity shows that (3) is equivalent with:

(45 det((A'~z)(A-z)“1) = exp( ScP(t)(t-z)-1dt), zejw\\ﬁ.
R

Here the determinant is extended to infinite matices of the form I+C,
tricl < oo ,see [10].
In fact ; 4

1

1 det (I+(§®§)(A-z)— )

det ((At=z)(A-2) )

]

i oduel'n T

]

i g (t-2)"1d Y (1),
m =

where dV (') = <d2(-)? ,{7>,and B denotes the spectral measune of the ope-
rator A,
By well known results,contained for instance in [47],

'1dt)

(5) F(z) =1 + g (_‘C—Z)"1dv(t) = exp( gcp(t)(f—Z)
R R

are the additive and respectively the multiplicative representations of an

analytic function F belonging to the Nevanlinna class N= {F:C+~—+ € ; P
+

analytic, F(eo ):18 ,where C+={ze s Imz> O} 5



The preceding representations realize a bijection between the following

"sets

1
y -Borel measure q>e Lcomp(m)
V70 =
o£Pp< 1 | =
supp (Y )& R ; :

In conclusion we can state the next.

PROPOSITION'2.1 Let A be a bounded self-adjoint operator with cyclic

vector g .The pair (4,% ) is uniquely determined up to unitary equivalenceo

by the phase shift of the perturbation A— A+ T@3 .

1
\< \< .S 1€ 3 S -
compaﬁ)'o @< 1 is the phase shift of a one di

mensional perturbation A-— p4 rer .

Every function ? € L

The idea of the proof is to exploit in both senses formula (4) and the
representation (5).Indeed,the couple (A,} ),or equivalently (A,A'),is de-
termined by the measure dv =<dE§ ,7) ,and the measure d¥ is determined

by the function ¢ appearing in (5).
1
comp
means of relation (5),and this measure uniguely defines a self-adjoint ope-

Conversely,any function < € L (R) ,0<¢«1,produces a measure dv by

rator A with distinguished cyclic vector § .

Let us note from the refined dictionary-between d¥Y and @ contained
in [4],that the self-adjoint operator A with cyclic vector ¥ is purely
singular if and only if the function ? is equivalent in L1(m) with the
.characteristic function of a Borel set.In particular,as we have already saw,
the phase shift of a perturbation problem of finite dimensional operators
is integer valued. :

The 1ist of the properties of the perturbation A-—>A' and their effect -
on the associated phase shift may continue,see [4],[12],[10] and [8].

In the remaining part of this section we shall discuss some aspccts re-
lated to the two dimensional analogue of the phase shift,namely of the
principal function.There exists an extensive literature devoted to this
subject,cf. [14],[7],(8'1,,[18}.The essential properties of the principal
function nceded for our purposes are summarized in [15],and we shall not

repeat them.



o

Let A,A' be a pair of self-adjoint operators with one dimensional com-

mutator.After a possible change of A with A' we may assume that
210wl Sof

for a nonzero vector EEEH.With these assumptions,the (hyponormal) operator
T=A+iA' satis{ies [7%,1] = $@F ,

An important result of Carey-Pincus [7] and Helton-Howe,see [8],gives
the analogue of the trace formula (3):

(6) Tr[pw.T*).q(T.T*)] = n“f(ﬁpaq-ﬁq%)gwd;b :
€

valid for any polynomials p,qe C[z,i].The function gy it measurable,

with compact support and satisfies 0« g < 1 f-a.e..
i

In analogy with identity (4),relation (6) implies:

(@ et i ) e n"‘fq -0) 7T ) gy (5 1ap(s)).
' C

for large values of |z| and |w|.Moreover,

det((T-w) "' (1*-7) ™" (1-w) (1% 7))

1l

det (14 (T-w)~ (1 -z)" " [1, 24])

]

4 oE

" whence one obtains the identity:

) a =qulayls AT ED = exp(- g7 g(%w)"1 (E—E)"1gT(5 Jdp(3)).
€

This relation was exploited in [15]for solving the two-dimensional I

problem of moments,

A classical by now theorem of Pincus [14) asserts that there exists a

bijective correspondence between ‘irreducible hyponormal operators T with



'rank one sélf-COmmutator and their principal function & .This bijection
was originally found with the aid of the theory of the phase shift.We
shall briefly recall this construction.,

Let T=A+iA' be as above an irreducible hyponormal operator with one
dimensional self-commutator: (T*,TJ gébf «An inequality of Kato see f8],
asserts that under these assumptions the self-adjoint operators A and A'
are absolutely continuous with respect to the linear Lebesgue measure,Ac-
cordingly,the space H decomposes into a direct integral which diagonalizes

the operator A:
A%
H. = S HEt)ot, A=M
R

t.

As an easy consequence of the hyponormality of the operator T,one ob-
tains the existence of the following abstract symbols:

* + 2 =
S;(A') = so-1im eitAA'e itA.

+
t—+ -co

These are self-adjoint opcrators which commute with Ayhence they are also
diagonalized by the direct integral decomposition of H:

+ ‘i

SA(A') =M e, s (t): H(t) — HiE), b€,

Moreover S (t) is a non-negative rank -one perturbatlon of the operator
s(t)f:*au te R,

The main result of [12] can be formulated as follows:

O il - Bl i), xelyel, ps.e.

In particular this equality shows that the principal function gT is inte-
ger valued whenever the self-adjoint operator A=ReT has finite multiplicity
in almost every point of the real axis.A possibly new application of this

observation is contained in the next.




LEMMA 2.2 Let T be a hyponormel operator with [1%,1] - ¥®¥ .1f there
“exists a polynomial p(z,Z) such that p(T,T*)f = O,then the principal fun-

ction gT is integer valued,almost everywhere,

Proof. If T=A+iA' is the Cartesian decomposition of the operator T,then a
rearrangment of the terms in the polynomial p yields a new polynomial,say‘
q,with the property q(A,A')% = 0,

‘We may assume without loss of generality that the operator T is irredu-

e k1
cible,that means that H = \/ A"A' § .
k,1=0

S ke )
Let us denote Hl = NV A A

} yfor every fixed integer 1> O;therefore
k=0

the operator AIIIl is cyeclic.

Let m be the degree of the polynomial q in the second variable.The hypo-
thesis q(A,A')g = 0 insures the existence of an ogd?r n? Oﬁsuch that ApAFmg

= k

is a linear combination of elements of the space \V’Hl + \V/ A A'mg ,Wwhen-
ever pnsSn,

The commutator identity

p-1 ? :
AUAEIET . ST v e el et
5=0

combined with A’q(A,A')gz O shows that there exists an ordered polynomial
9,.q ©F degree m+1 in the second variable and such that qm+1(A,A')§ = 0.
Then by arguing as above the elements ApA'm+1§ belong to the subspace

m T

\/1H 4*\v’ AkA'm+E; »for a suitable r and py r,
1=0 k=0

""" 'By inductively repeating this procedure one finds integers n(l),with the

property that the subspaces

—~

=

-1 J on@y) e :
Kj= Byt NZ AR, don,
O l:m

=
1
3
i
(@)

are invariant under A,increasing and H = A4 Kj'
' Jzm

This decomposition shows that the multiplicity function of the self-




adjoint operator A is bounded by m,except for a countable subset of [R.
In virtue of the above mentioned criterium of integral ity of the prin-

cipal function,the proof is finished.

Notice that Lemma 2,2 remains true,with minor modifications in the proof,

in the case of hyponormal operators with finite rank self-commutator,

%, The one-dimensional I, problem

Though very close to the original mecthod of Akhiezer and Krein for solving
the L problem of moments on the line,the reference to the phase shift
theory brings into the field the geometry of Hilbert spaces,.This a poste-
riori interpretation has certain advantages,a part of which we shall brie-
fly discuss below,

In order to state the main result,we shall associate to a sequence of

real numbers (a )'C
n’n=

o its exponential transform (bm)w »as follows:

m=0

oo

oo
(10) exp(-Z anx””) = bmxm+1 :
e n=0 m=0

For further use,let us also denote

«0 o0 %
exp( Z anx"+1) =1 + Zcmxm+1 A
‘n=0 m=0

The above computations are carried out in the formal series ringlRf[X]].we

shall denote by (Sb)mzbm the shift of the sequence (bm).

+1

00 .
THEOREM %.1 (Akhiezer and Krein fZl,[3}) Let (a )n o be a sequence of
n =

real numbers,

(1) There exists a measurable function £,0€ £< 1,with compact support

contained in the finite interval {«, B]C IR,and with moments a ,n%0,if




10

and only if the Hankel matrices (bm+n),((S- o()b)m+n and ((p ~S)c)m+n, m,n»0,

are positive semi-~definite.

(11) Under the assumptions of (i), det(b )N = 0dfitend only i

. m+n’'m,n=0
is the characteristic function of at most N+1 intervals, N<oo

o

(1ii) There exists a measurable function f on R,0£f<£1,with the mo-
oo

ments a yn20,if and only if the Hankel matrix (b ) is positive
g m+n‘m,n=0

semi~definite.

The main points of a proof of this theorem,resorting to the theory of
the phase shift,are the following. ‘

Let f be a function which fulfills the conditions imposed by (i).In
virtue of Proposition 2.1 there exists a self-adjoint operator A with
cyclic vector § ,such that f is the phaqe shift of the perturbation
A— A'=A+ E@% ,In this case supp(f) C [o( (5] ywhere « = inf {(3171 '7}

[Mlll = 1} and p= sup {(A' ,477 ﬂ"rﬂ-— 1}

Tn view of the identities (4),(5) and (10),it follows that,denoting by

(an) the moments (1) of the function f,

() b € B s e

Then it is a standard matter to check that ~<A P ic s posts
tive semidefinite kernel.Moreover,the fact that 0< is a lower bound for
the spectrum of A is equivalent to the positive semi-definiteness of the
kernel ((s- )b) ,and analogously for A',

Conversely,assume trat (bm) is a sequence of recal numbers,such that theo
three positivity conditions in (i) are fulfilled.Then by the classical so-
lution to the Hamburger moment problem,see {1],we infer that there exists

a positive measure Y onlR,such that

m :
bm = g't<iV(t).
IR

The last two positivity assumptions imply the boundedness of the support
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of V .Therefore there exists a bounded self-adjoint operator A with a
éyclic veétor % ,and spectral measure 1,such that dw’:(dng ,§>.

According to Proposition 2.1,the moments an of the phase shift f=
q>(A-ﬂ>A+‘gqu ) are related7to the moments of the measure Y by relation

' (10).Moreover,the identifications (11) show that supp(f) C [, B] .This
finishes the proof of assertion (i),

Assume,under the previqus notational conventions,that det(bm+n)g i
vanishes for an 1nteger N.Then det(A f A §:>m n—o = O,whence the vec-
tors g Ag voiwieig g are llnearly dependent But ;’ is a cyclic vector for
the operator A,so that the underlying Hilbert space H is finite dimensional,
As we have remarked in Section 2,in that case the functian f:ﬂ:(A—a'A+§Cb§)
is integer valued,with at most 41 connected components in its support,

Conversely,if f is the characteristic function of at most N+1 bounded
intervals,then there exists a one-dimensional perturbation AY of a self-
eadjoint operator A acting on a Hilbert space H of dimension equal to N+1,
with the property f:cp(A—a'A').Thus assertion (ii) is proved.

Next we shall prove only the necessity implication in (1i1),the suffi-
clency requiring a deeper analysis of the extremal problem (ii),see 3] for
details.

Let f:R— [0,1] be a measurable function,with the property that the mo-

ments (1) are finite.Denote by fn.n2»1,the truncations of the function f:

filx) . lx&n
fn(X) =
0] N b d D gle il

oo
Notice that the moments (a?)j_o of the functions fn tend by the Lebesgue

o0
dominated convergence theorem to the moments (ag)g-o of fe

If (bJ) denotes the exoonential transform (10) of the sequence (a ),then
1im bJ = b, for every j3» 0, because bj is a polynomial in aE <.

J oo

Since every matrix (bJ k)g o is positive semi-definite by point (i)
9

oo
it follows that the matrix (bj+ij,k=O

]

has this »nroperty,too.

The main disadvantage of the method presented in the preceding proof is

that it is not suitable for the analysis of the truncated moment problem,



that is for characterizing only the first N moments of a bounded,non-nega-
~tive function f.However,this method seems to be more appropriate for gene-

ralizations to higher dimansions,

=

4. The two-dimensional T, problem

In complete analogy with Section %,the moments (2) of a measurable func—
tion g:€ —» [0,1] ,with compact support,were characterized in the preceding
paper [15] by certain positivity conditions imposed to an exponential trans-
form of the moments.lLet us briefly recall this construction,

o9

Let (a9 be a double sequence of complex numbers which satisfies
mn‘m,n=0

a =-a— m,nz 0,
mn nm toc il

The formal exponential transform of the sequence (a_ ) is the sequence

mn
(bmn) defined by the identity: :
s oo
-1. m+1 n+1 m+1_n+1
(12 exp (- Jr E o ) =1 - z bmnx ¥ ‘

m,n=0 m,n=0

Let L =(1,0) and q =(0,1) denote the generators of the semigrouplNz,and
put & =(0,0) for its neutral element,
instead of the Hankel matrix from the one dimensional case,we shall define

8 more involved kernel K,according to the following rules:
) K(e,d)zzmmq,nq)=lﬁd) fm'«=mnﬂem2,
(ii) K(d,f}) =K(P90()r
00
(13 2
ii) K(« +L,P)-K(0f : B+n-1) = K(o ,I‘L)b(P—-(I‘-H)L), O(,FG N,
. r=0

where b( yzbmn for & =(m,n) or (X )=0 if at least one of the entries of

& is negative.

We define the shift S and its formal adjoint S*’acting on a function



S

‘B o lNleN2——> € by
(SEN(y ) = ECwwr, B), (5%, p) = (o, s, o Peli’,

Theorem 2 of [15] asserts that (2)'are the moments of a meésurable func-
tion g:t—{0,1] ,with compact support,if and only if the kernels X and
(r —SS¥)K are positive semi-definite for a suitable positive constant r.In
that case it was shown that supp(g)C B(o,r),

Our first aim is to localize more accurately the support of the function
lg in terms of its moments,SLmllarly to Theorem: 3.4, (11),

Let us remark that any compact subset & of the complex plane can be de-

fined as

(13) o =fsec syl @iz, te1se )

-

where li'lj are linear functions over C,and the sets I and J are at most
countable,In other terms the compact O is represented as an intersection

of discs and complementaries of discs.

o
THEOREME4 0 - aleti(a ) be a sequence of complex numbers whilch sa=
S mn’‘m,n=0
tisfies amn:anm’ m,nz O0,and let O be a compact subset of ¢ y,2written as in
(13). ond el g

e W«ﬂ_

There exists & measurable function g:¢ —» @1 with supp(g) C.o:\/if and

onlve if the kernels K,(1—1i(b) i("))K‘ and (1 j(b)lj(S) ~-1)¥X are positive
semi-definite for ieT ,3€ J.

Proof. Taxe a measurable function g:€—[0,1] with supp(g) C o and consider
an irreducible kypeorerrsl eperater T€7{"),with {T Lol «gcag and principal
function equal to g.

In virtue of relation (8),the exponential transform (12) of the moments

(amn) of the function g,has the coefficients

b(m,n) = m*nf 2 e,

Moreover,the kernel K was constructed so that



=14

KL f) =020 0PRSS in,n), B =(p,0)e

In particular X is a positive semi-definite kernel,see [ for details,.
: Let F denote the space of finitely supported functions h:m%~+ C,endo-

wed with the hermitian scalar product:

G- ) i BIR(« )T ().
d,p .

The map

F —» H, h —> ZEZIKnun)Tmen
m,n

is an isometry which identifies the Hilbert space completion of F with H.
In this correspondence the operator T is unitarily equivalent to the shift
h(< -v), °(~Le£N2.

(el ) =
0 . o(~L¢IN2.

See again [15] for details.
By (13) the functions li and 131,iéil,j€ J{are ana}ytic in neighbourhoods
of G =G6(T),whence the operators li(T) and 13 (T) are bounded.Furthermore,
a simple computation shows that these operdtors are still hyponormal,cf [8).
Sinc¢e the spectral radius of a hyponormal operator is equal with its -
norm, (8] ,one finds 1]]1(T)H~é1 and || 1J.('I‘)_1H < 1,1€1,j€J.0n the Hilbert

space associated to the kernel K one obtains

(14) z(k)z K(< 8 )0(<)E(P) 2 a(mZmo(, B) (1, (T )nle ) (1, (T )n(p )

o p . %p
= £ @, ¥ Ry, PIn(«C)R(p),
7]

where h€ F,k €I and g£(k)=1 or ke J and £ (k)=-1.
This proves that the kernels g(k)(1~1k(s)1k(s)*)x, k €1UJ,are posi-

tive semi-definite,as desired,



Conversely,assume that the kernels K and E(k)(1-—1k(s)1k(s)*)l{, kee e
associated to the sequence (amn) and the comphct‘set G are positive semi-
definite,

In this case relations (14) are equivalent to

“li('t)hI(Ké “h”K, e

and »

lllj(f)ﬁllKZ HhHK e

-

for every function hep,

If I£ ¢,then the shift T turns out to be boundegd with respect to the
semi-norm II~HK.Othefwise there exists a point ce €C,such that ('z'—c)-1
extends to a bounded operator on the Hilbert Space completion of F in the
semi-norm n-HK.Then the above inequalities and the spectral mapping theo-
rem imply 6‘((1‘—c)~1) C:(O'-c)“1,ﬁhence it follows that & «is 5 boundod
operator with respect to the semi-norm }I-HK.

In conclusion,always T is a bounded operator on F.In virtue of Theoren
240 (i3],there exists a measurable function with‘compact Support g:€ —»
[0,1],with the prescribed moments (amn).

The first part of the proof shows then that supp(g) C & ,This finishes
the proof of Theorem 4.1, :

The previous result may be interpreted as a higher dimensional nnalogue

of a recent theorem of Berg and WMaserick [6] .

e

COROLLARY 4.2 1In the conditions of Theorem 4.,1,if a linear function 1

satisfies [1€1 or [1)71 on o ,then the kernel (1~1(s)l(s)*)x,respectively
@slat e semi~definite, ‘

The proof of this corollary follows from the observation,that the state.
ment of Theorem 4.1 is independent from the choice of the representation
(13)- for 0,




=16=

'

COROLIARY 4.3 1Tn the conditions of Thoerem 4.9 4f aoosz(O’),theQ g

coincides with the characteristic function of. 0}

2 = -
Indeed,g £ o and 80 = g.g(z)de(z),whence aOO_/L(c-) if an@ only if
&= 'X*Qy ¢ C

DEFINITION 4.4 From now on,we shall say that a sequence (amn);inzo is
admissible if it is the sequence of moments (2) of a measurable function
g:C—» [O,ﬂ,with compact support, :

For an admissible sequence (amn) we denote by KnN2mN2———+ € the kernel
associated to its exponential transform (129,

The moments of the characteristis function of a disc can be described
by an additional positivity property.later we shall give a second and com-

pletely independent condition.

PROPOSITION 4.5 An admissible sequence (amn) represents the moments of

the characteristic function of a dise: D, if and only il the zernel

M:LN3>< 1N3—--» (9 Mk, 3B ) = S]‘s*kK(oc ,[5) :

is positive semi-definite,
p

1
In that case the disc D has centrum K(L,6 )K(6,8) : and radius K(G,@)é

Proof, TLet g be the funcbion with moments (amn) and let T € L(H) be the ir-
red;ﬁcible hyponormal operator with rank one self-commutator, [T*,legeﬁg ;
and principal function equsl to g.

A theorem of Morrel [13] states that the operator T is subnormal if and
only if T:aU++b,a>-O,b£ €,where U+ is the unilateral shift of mulipldcity A
Then and only then g is the characteristic function of a disc of centrum b
and radius a,

According to the celebrated Halmos and Bram criterion of subnormality,

the positive semi-definiteness of the kernel

G =g !




il

is equivalent to the subnormality of T.

Written on a dense subspace of H,this condition turns out to be equi-

valent with

4 Wk 1.an . xn 2:: Pk q
Z<chmn'r Teiiet e e % §> Zo,

Kol om,n : p,q

for every function ci:No—» € with finite support,

The last condition is equivalent to the positive semi-definiteness of
the kernel M in the statement.This proves the first assertion of Proposi--
tion 4.5,

If g is the characteristic function of the disc D and T:aU++b,then

a® = TT[T*qT] = 7!—1(8% = ’{rq/M(D) = Jr”aoo.

€

‘ hy ¥ /
whence D has radius a= Tl >aoo»=x(9—'9) -

Further,
) ~1
b :((au++b)§ '57 H}H = KL, 8 (g 6)
is the center of the disc D,
To complete the analysis of the general -1 problem of moments in two di-

mensions,we give a necessary.condition for a double sequence to be the se-

quence of moments of a function with arbitrary support,

H'THEOHEM 4,6 The sequence (amn)m o coincides with the moments (2)
,N=
of a measurable function g:li—» [0, 1,0n)y i amnzahm,m,nk-o,and the kernel

K its positive semi-definite,
v

Proof. Assume that (amn) are the moments of a measurable funetion g as
in the statement.Then obviously amnzagm for m,nz 0.

Let gN denote the truncation of the function g:

Ao 2¥827
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elz), |zi<N, -

N
g (z) =
O 2,
: N .00
and consider its moments (a ) .
mn’m,n=0 N
The Lebesgue dominated convergence theorem implies lﬁm amn = amn for m,

ny O0.5ince by its very construction the kernel KN associated to the se-~
quence (aﬂé) has polynomial entries in the variables (aﬁn),it follows that
l&m KN(M ,p ) = K(x‘,p ) for any pair (a’,@ )€IN2X[N2.

In virtue of Theorem 4.1 above,the kernels KN are positive semi-definite,

therefore K has this property,too.The proof of Theorem 4.6 is complete,

Let O be a compact subset of € and L> 0.0ne might ask whether the ma-

jorization

cannot be obtained directly from the condition

(16) g(L)%_—gﬂ;?:jcmnszn'2dr,(2;)T} 0, supplc) finite,
¢ m,n

{
impLosed on its moments.,
Indeed, by Weierstrass approximation theorem,relation (16) is equivalent

with

i (flzdfu > g[f(2drv i)
a
which certainly implies (15).%hus (16) is a solution of the I problem of
mom?ents for functions with prescribed compact support,
Rn explanation,which is valid for the one dimensional éase too,0f the
fact that the solutions presented in Theorems 4.1 and 3.1 are preferred,is
that condition (16) heavily depends on the set & .0n the contrary,the ker-

nels constructed by the exponential transforms of the moments are universal,
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the support o being determined by additional restrictions on them.This has
immediate advantages when trying to solve the corresponding problems with

no necessary compact support,

5. The extrecmal I problem

This section is devoted to the study of the measurable functions g:€—»
[O, ﬂ with compact support,whose associated kernels K (see Section 4) are
degenerated, :

: ILet us try to isolate first the core of the concept of degeneracy in

two dimensions,

The kernel (by+l)k 1 associated to the one-dimensional L problem was de-
x 1

-

~generated (sce Section 3) if

N

3 A
det (b e

) :Ov

k+1
for an integer N> 1.The solution presented 1o Theorem %.1.011) shows that

in that case

dot <bk+1)k,lé =

whejnever Jeilisia subset’ofln of cardinality [+1.

Since the second vanishing condition is not automatically sniisfied in
- the two dimensionel case needed for our analyisisywe are led te cosidop L=
veral degreces of degeneracy, \

For a kernel ¥ :1N2X1N2 —> € we introduce the following conditions:

(D1) There exists an integer N,such that det K(e P%N =0

pd,W;:O =

;
. _ N

| (ists a o > 1€ et K(m# =03

(D2) There exists an integer N,such that det K(mm ,nm b =%

(D3) For every countable subsct JCINQ,thcre exists a finite subset J

- : - K i
w1t;h the property dct-K(d ,?)d'PGJO =0,



L o0-

Notice that even the kernel associated to the classical two-dimensional
Hamburger problem of moments distinguighes between the above three condi-
tions. :

Not very far from Theorem 3.1.(11) we can state the next,

THEOREM 5.1 Let g:€-—{0,1] be & measurable function with compact sup-

)00
mn’m,n=0

ort,moments (a and associated kernel K,
7

(1) Tf K satisfies (D1),then g is integer valued,

(i) T8 R satigiics (D2),then g is the characteristic function of a boun-

ded open subset of € with real algebraic boundary,

- (1ii) If X satisfies (D%),then £=0.

Proof. Let T+€ L(H) denote an irreducible hyponormal operator with rank-one
self~-commutator (T*,le §Qb§ and principal function equal to g.As we have

already remarked in the proof of Theorem 450
m. %*n %
(17) K(x,P)=<TT §»TDT‘1;> ,

for o =(m,n), B=(p,a)e lNZ.

Condition (D1) is equivalent to the linecar dependence of the vectors
TmT*n§ sm+n< N.In virtue of Lemma 2.2 we infer in that case that g is dnte
ger valued,hence g coincides with the characteristic function of a compact
set 6°C C.This proves point (i),

Assume that the kernel K satisfies condition (D%).Then the sequence
(T*ng'fzzo contains linearly dependent elements.In other terms tlicre exisis
an integer N' with the property that the vectors },T*§ ,...,T*N. are
linearly dependent.By applying the same device to the sequences (TnT%k§_):io

one finds an integer N,so that
o

e \ N
H= NAalitle Nz glisty

m,n=0 m,n=0

that is dim H < o0 ,




ok e

But any finite dimensional hyponormal operator is zero,whence g=0.This
completes the proof of assertion it ye

In order to prove point (ii),let us remark that condition (D2) is equi-
valent,in viow of (17),to the linear dependence of the system of vectors

f ,Txg ol E -Consider a polynomial p of degree N,such that p(T zg =0,
and denote

q(z,w) = (p(z)-p(w)){z-w)"

Of course q is a polynomial in z and w.Then
e es i = = -1 =
P(Z)Z-17)7F = (p(2)-p(1¥))(7-1%)7"% = q(z,7%)F

is a polynomial in Z, for large values of |z|,with coefficients in I,

If condition (D2) holds,then point (1) of the proof shows that the funce
tion g is the characteristic function of a compact set o (C €.NForeover,the
exponential representation (8) and the preceding arcuments ptlovie that the

function

exp(—- ﬂ-1gl'$ —Zl-ed}/\-(} J)= 1 *<(7~'1‘*)_.15 , (7=77) g>
(0]

is rational in z and Z,in a ncighbourhood of infinity.
Thus the proof of Theorem 5.1 will be finished provided we have proved

the next.

BMMA 5.2 Tet 6 be a compact subset of C.IT ile Tunctinn

=ity

expl- a0t S\§ —z[~2dru(§ )) is rational in z and Z,for L | taree then o
(e}

coincldes,up to .a set of Lebesgue measure zero,with the closure of an open

subset of C,with real slgcbraic boundary,

Proof. et f(z,Z) denote the function of the statement.We shall work out-
side a ball B(0,R) which contains G compactly, '
From our assumption it follows that the function f“19 fods still ra-

tional,so that there exists a polynomial (2,%) 2 c, g ,such that
k,1=0




Q(z,zj (5 -z) 7"-7)<1/u 5

6

is a8 polynomial,too."he corresponding convergent series is,after an arrah-

gment of the summation:

Zz:j (m 1)z m+k~22~n+l~1 ;xn; nd/&(; )

,:Om,n:O
G
—p«1--q-1 p+k q+l
( Jap- (g )
p,zq_:,N éo ; 955 : e
S
Dizioiois m apns gt et
: p,q ;

The condition for the last series to be & polynomial in z and Z is equi-

valent to the vanishing of the following coefficients:

(5°8%(5.30dp(5) =0,- pazo.
(43

In terms of distributions,this is equivalent to Q'BXG:O,this time on the
wvhole complex plane,

Let Z denote the real algebraic set of zeroes of Q.Since Q#O,/L(Z):O.

I1f Ae €\Z,then 971 vanishes in a connected neighbourhood V of A .lience
the function 7(€ coincides in L (V) with the class of an antianalytic
function h.But the function 716 akes only twb values,therefore h:?{v or
h=0,in virtue of the uniqueness principle for antianalytic functions.

Denote by CO a connected component of €\Z.The preceding argument shows

that either {?Qsl::{jécl or []L&X:O in LlOC(C
0

In conclusion we have proved that there exists a finite union C of con-

v, G of €N such that
r .

O)'
nected components C

g

il wid .

The wunion is finite because the algebraic curve Z has finite degree.
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The proof of Lemma 5.2 is thus complete.

It is worth mentioning that the assertions (i) and (ii) .give only necépu
'Sary conditions.However,in both cases the function g is determined by its
support,and definitively by the geémetry of 1its support.An enumeration of
all supports appearing in (i) and (ii) seems not to be at hand.

To give a simple example,let o = B(a,r) be a disc of center ae € and
radzius r?fo.The operator with principal function Xo-is in that case T=
rU +a,cf, the proof of Proposition 4.5.If {Ui,UJ =% of ,then [T%,T]=
r’7ef , [5l=1,ana

(z-T"")"’r; = (:_a_ru*)“‘rg = zay

rg s

for fz[ large.By taking into account relation (8),one obtains

(18)  exp(- nf1 g[; —Zl_2d}L(§ )) =1 - r2(z*a(~2, |z-al>
B(a,r)

This is another possible condensed expression of the moments of the cha-
raciteristic function of a disc (compare with Proposition 4.5).

The same computation shows also that the converse of Jemma 5.2 is not
true.

Indeed,let us denote D+ = {ze G dalet 2 Rezz,d} ,and D=D+LJD_.Suppose

that the function

R(z) = exp(- o ﬁg ~z{*2df4.<; ))
D
+

is rational in z and Z,for {z| large.Then

R(z) = exp(-7"" f’rg ~z|"2d}»(§ o
D

so that



{r(2)1? = exp(- a7 Sl% 2]7%a 3 ) = 1 - 12]7%, Igwo,
D

. because of the identity (18),

Since the function R(z) is resl analytic by its very definition for 1z\2 1,
an application of the identity principle for real analytic functions shows
that R is rational for |z[$»1 and

Gl oGl e . o

In view of the last equality,the function R can be analytically extended
across “9D,whence,in virtue of the same identity principle,identity (19)
holds for a point A€ D.This evidently contradicts the inequalityl)i-e el

In conclusion,the function R is not rational,though its boundary is resl

algebraic,

6. Yinal remarks

The above prescntation of the L problem of moments in two dimensions is
far from being complete.For instance,we conjecture that the reciprocal: to
Theorem 4.6 is also true.An answer to this question would gd beyond the
methods developed in the present paper,This problem could be related to the
solution of the truncated 1L problem of moments,i.e. for sequences (amn) with
(m,n) ranging over suitable (finite) subsets of W2.Tn connection with this,
"a characterization of the compact subsets o cC ¢,with the pronerty that the
function appearing in Lemma 5.2 is rational ,would be interesting.

In spite of the different nature and additional difficulties related to
higher dimensional moment problems (cf. [9]),there are some striking simi-
larities between the two I problemé of moments presented in our paper.These
facts suggest a common explanation,which would extend in higher dimensions,
too.The multidimensional trace formulae could be the main tool in answering

this question.
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