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WIENER-HOPF OPERATORS ON THE POSITIVE SEMIGROUP OF A

HELSENBERG GROUP

l.Introductien The classical Wiener~Hopf operators are

obtained by compressing the left~convolution operators OH:LE(R)
to the subspace LQ(Ibﬁﬁﬁj)a One can make such a compression in
the general context ofha.locally compact group, with (o, oo)
replaced by a semigroup which is the closure of its interier,
The most often considered examples of generalized Wiener-Hopf
operators obtained in thls manner are the euclidian ones, where
the group is R™ and the" campreh31on is made to a closed convex
cone with non-void 1nter10r.

An interesting non-euclidian example is given by the
Heisenberg group HnﬁZMatn(R) of upper-triangular matrices having
1l on the diagonal and itse "positive semigroup"‘Pn, obtained by
intersection with the set of matrices with non-negative entries.
Thig is the example studied in the present paper in the cases
n=3 and n=4 (we note that n=2 gives the classical Wiener-Hopf
operators).

The suggestion of considering Wiener-Hopf operators on
the Heisenberg groups was given to us in 1985 by Dan Voiculegcug
we express him our most profound gratitude.

\

The instrument we use in our study is the groupoid theory.
The obgservation that Wiener-Hopf operators can be derived from
groupoids was made by P,Muhly and J.Renault in Cl] we shall use
here the groupoid construction made in‘[j], which is briefly
recalled in section 2 of the paper.

It is known thaé.the mealgebrﬂ generated by the classical

Wiener~Hopf operators contains the compact operators on Lz((o,cp))

and it is natural to ask under what conditions is this assertion
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true in more general situations, P.Muhly and J.Renault show in
b

[lj that this'the case wheu the sewigroup is pointed and the set
of unite of the groupoid involved is a regular compactification
of the semigroup (see section 3.1).. In proposition 3.2.1 we
present two "nice" conditions on the order relation induced by
the semigroup which imply together "regular compactification

and which are satisfied by the positive semigroup of any Hr’ itk

is noteworthy that these conditions are also satisfied in any
pointed euclidian case. Hence, in all'cases, the C -algebra of
the Wiener-Hopf operators contains the compact operators.
section 4 is devoted to Hy. Using groupoid technigues,

we find without difficulty a composition series of the U*—
-algebra of the Wiener-Hopf operators on PB’ which has easily
tractable quotients between consecutive ideals. In particular,.
this d%~algebra is found to be of type I.

Finally, in section 5, we make the same discussion for H4.
The corresponding C ~-algebra is also of type I, and this result
ig also obtained by exhibiting & composition series. The general
idea is the same as in section 4; but some new complications
occur, which indicate that the generalization to the positive

gsemigroup of an arbitrary Hn is not immediate..

2.. The groupoid construction In this section we recall

the constrution made in.[3] of a groupoid whose associasted ¢ -
~algebra is isomorphic torthe one generated by the Wiener-Hopf
operators.

Our setting is as follows: let G be a locally compact
second countable unimodular group and 1et/A.be a fixed Haar

measure on G. We shall call a subset A of G "solid" if K# &
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=A (so it is worth considering Lg(ﬂlA) Y. Tet P be & golid semi-
group-of G. For any £ ing ¢ (G) we define the Wiener~Hopf operator
with symbol f 6n P ot be.'WP(f) =pL(f)je& j’(LZQ%lP)), where L(f)&
Qf(L Qw)) 1s the left-convolution operator with s Do L (ﬂd~§L M| P)
is projection and j~p:*L“(qu)—w9L“(PQ is inclusion. The d%lsubm
algebra of X (L° (M|P))Y generated by {W (f){ feq (G)} is called
the L -algebra of Wiener-Hopf operators on P and is denoted by
.

We say that P satisefies condition (M) 4if every element of

Yo
w »cloq{;( lté?P}CZL Q%) is of the form 7(- with A a solig
tp~t

subget of G. (Remark: A is uniquely determined by ?ﬁ l.es AR
solid and }i ]C  fM-8.e. lmply A=B ~see observation 2.3.3 of Lij)
If conultlon (M) 1s satisfied, we can congtruct a groupoid i;
“having ¢ (% )2507(9) in the following manner (for details, see
section 2 of {37 ):

a) the set of units ofcg ig U:J*—clos{;Z%P~l[ tEP}gjfﬂbw}‘

b) the set of arrows of‘% is given by left %ranslations
with elements of @; that is, whenever’?iAé U and t€ G are such
thatl 7itAe U (this ie shown to be equivalent to télAml), we have
an arrow X:(t,A)ng with d(x):CKA and r(x):?‘ftAo

c) the multiplication on g% is defined by: Leyvta) ()
(st,AY; the identity at.?iA is (e, ), with e the unit of G, and
the inverse of (t,A) is (t'“l T Y.

d} the topology on g' gince gfé G)(chVW), we can take
the product between the topology of G and the w*;topology on ﬁyb%)
and reduce it to %f. We remark that the groupoid topology induced

e . * A
on U coincides with the w ~Lopology: it is compact, as we gee

from the Alaoglu theorem. U is also metrizable, because we assumed
G second countable.

e) the Haar system: for any 7iAé'U, the set of arrows
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leaving Ky s {(ﬁ,A)? téiﬁwl}, canonically is somorphic to Amlg
we take on 1t the measure obtained from/MlAn‘..In this way we .

get a right Haar system on g,,

Asg 1t ie shown in section Sk {3], any closed convex
i P - : n ois i =
cone with non-void interior in R gatisfies condition ), go

the groupoid construction is available in the euclidian case,

We consider now the positive semigroup P of H « We shall

, (n-1)n
identify Hn with R . « It is easy to see that the Lebesgue

(n=1)n
megsure on R % I both left and right invariant with respect

to the multiplication on Hn; this is the Haar measure we are

(n-1)n
e

going to work with. By our identification Pn becomes (o, o) .
It -1s clear that Hn and Pn are situated in the above considered
setting. We prove that, in addition, the condition (M) is satis-
fied, so that the groupoid consgtruction can be used to describe

Wz, )

Proposition 2.1 For Aay 0 52 Pn S@tlafleq condition ().

Lrool By corellary 3.4.5 of 131, the set
(n=1)n (=1)n
Ttw{xil fe.e) . = € wep 12 y & closed and convexj}is o
—compact. But for any t in gﬁ %§~l ie closed and convex ang
(n=1)n

-

contains [o,cﬂ) - 3 S0 w -clo {;{ = téﬁP &T. Using uni-

£ 2l t(”“,i}

is of the form :KB with B"l closed and convex with non-void

modularity we obtain that any element of waglo %36

interior (this clearly implies B solid),
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3eSufficient conditions for’uT(P}Q/}f(LZQ%[P))

3.1.The condition of "regular compactification". We shall

assume thut, in the setting of section 2y the semigroup P isg
pointed,. 1.6, Pf\P*lxié}, Then the map hiP-»U defined by h(4)=
}f

it

-7 is one-to-one, because tP“lzsP”i:9 tﬁlsGEP/WP“%@>t:s@
a2 : :

eaglly seen to be continuous, and has dense range by the

=

i

n

very definition. ef U. But U is compact, so (h,U) ig a compacti-
fication of P

Let ds denote by V the range of h. We recall that the
compactification (h,U) is called regular if V is open in U and
1f h:P—»V is a homeomorphism. It was remarked by P.Mahly and
J.Renault in cowollary 3.7.2 of Yl] that "(h,U) regular" implies
that'VTYP) contains the compact operators. As a matter of Fack
they use a groupoid coustruction different from ohrs, but in
order to make their proof work it is sufficient to show that:

a) V is an invariant set of units; indeed, for aay t 4n

P, the arrows leaving 1 are of the form (a,tP*l) with a 1n
S

sl “ -1 : S e
By, Hence ast For come s in P, and the range of (st l,tp“l)
fig. _16 V.
sP
k) the reduced groupoid i}lv is transitive and pPrincipel,
l.e, for any s,t in P there exists an unique arrow from De 1
=

S

l,sl’—'l)°

o)l _1+ this arrow is (ts”
t.P

c) (t,s)~4?(ts‘l,sP“1f'is a groupoid isomorphism between
the groupoid ‘K of the trivial equivalence relation on P and %IV,
If h:P—>V is a homeomorphism, then this igomorphism is topo-
logical. In addition, one can easily check that it transforms
the Haar system induced by p&[P on R into the Haar system
inherited from g on §lv,

We mention that‘in the proof of eorbllary 3.7.2 of [1},
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}Clc found - as the ideal of’hy(P) COflC”pODdiHV by the canonical
isomorphism L 3 )“’UjYP) to the idesal of ¢ (3‘) produced by the
open invariant subset i%f U; this fact will be used in propo-—
sitions 4.3 apnd 5.2,

We aleo nbte that as g corollary to the (strong) theorem
.l Of [2], the C*;algebra of a transitive and principal groupoid
is always isomorphic to"]{;‘so even 1f h:P—>V is not a homeo-
morphism, the fact alone that ags open ing U'implies the existence

ef an ideal of’h?(P) which is isomorphic to J,

3.2 Conditions on the order relation. The relation induced

by P oen G is defined by XS V&= x ye.P° Ve still assume that P
ig pointed, and this implies that o0 antisymmetric. The semi-
group properties of P imply that < is reflexive and transitive,
g0 that it is an order relation on G. The "strict order relation
associated to\g W ls defined by x<,y¢:>x"ly€5P. Let us record
some gimple properties of S and < which will be lisad ini the
sequel: l

e XY ez oar it ESTs 4y then X<y bhis happens

e = =g .
be cause PPSSP and PPQ}P; being open subsets of P,

&5,

are closed, being in fact XxP and xP~ -1 respectively. Similarly,

2% for any x in G we have X‘ix, becausge Pl\P"l:{e} implies
39 for any x in @ the sets {y(:&l > x} dnd{;y(_G }

Y & ! N ‘ro ""1
{yé&h ]y7-X}’2XP and {yérﬁ‘;Y< X}'=Xf are non-void open sets,
4% if for some 8,t€ G it is true that "x< s=2xg t", then
s t. Indeed, we have x<s(:=>'x€s%"l, x&t(::)xé.tP“l;, so the
i 3 ] = "'1 "l o o _--l 0-—..
hypothesis becomes gP Ctp and implies in turn: op =clog sP -

CE e lien
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Our result is the followings:

Proposition 3.2.1 Let us assume that (bes 1de@ the condi-
tions imposed above)} we have that for any x in P:
(i) the set{y@?\ygx} is compact, and
(1ii) there exists a continuous path )\:[o,ljw~%P such that
)\(o)ze, A(1Y=x and osagbg 1l implies )\(a)‘ﬁ}\ (b).
Then (h,U) is a regular comactification of P, and hence
‘L&YP) contains 3<KL2(fQP))g
Pfoof In order to prove (h,U) regular it suffices to show
that whenever t and (tn)sfl of P are such that h(tn);;2;h<t)’
there exists a compact subset of P which containsg every tn” Thie
ig a general fact from topology, and we leave its proof to the
reader. (N.B.: The proof makes use of the metrizability of U,)
5o, for the rest of the proof, we fix t and (tn)gii of.

guch that DC —
tnP"l Mo P

1 We want to-exhibit a compact subset
of P which contains every tna In order to do this, we elso fix
() / /
a tl in tP (SRB), i.e. such thet t<t ., We shall prove that tnu<t
for sufficiently larse mn; this fact, together with the compactness
!
of {seéPl s$1:}, ensured by the hypothesis (i), will clearly
finish the proof.
We first prove a related statement:
Lemma 1 Let s €G be such that s\j{t. Then S$tn for
sufficiently large n.

Proof of lemma 1 We define 7)~{x€(} \},< S, x%t}; D g

obviously open and it is non-void hecause otherwise the implica-
flon Yx< g =>x g t" would hold, leading ﬁo s&t by observation 4°
abave., We have D(\tP“ImD/){xé}G{ X~Qﬁ}=5ﬁ. On. the other hand, for
any n satisfying sg tn we clearly have DC{xe(x tn.lj t '.

So 1f we con81der an open re]dtlvely compact non-void subget D

of D we see that Jﬁ )wl) %M. =0, while ,§~]£17 dfk f*(D ) o

i Bl [
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for any n satisfying sg<t « But we know that J\X d/\& el
‘ n R
G P
JX‘ID df&, and this makeg the statement of the lemma clear.
o .
tp—1

Wow we cousider the compact subset K= {XéPl x\<t/ ,x«?."t/}

of P and prove the following lemma concerning it: '
Lemma 2 For any y in ¢ such that y{’t/ there exists an x
i K such thal s <y,

¢ /
Proof of lemma 2 Tf Y&t we may take X=y, so we ghall

assume that yﬁftz. We define D='{Z<§Pl z«(tlﬁ':Pf\tlg = ig
open in P and we have ClOoP D= clouG D<1P(1t Z = {ZGEP {z <t/},
hence the boundary of D relatively to P is contained in K. Let
)\ [o 11—*>P be a continuous path connecting e and y, which is
lncreasing relatively to < (hypotheeis (11} of the theorem),

We have ,X(O)CZD )\(1)¢7@10CP D, so by the connectednecs of
[0,1] there must exist an a in (0,1) such that X-/X(d)é;?B €K,
But ,X(a) ,K(l) means exactly that xgy, and this ends the proof

of the lemma.

Observe now that ) {}Lé(}};x) s} ie an open cover
neG,s{t

of X; indeed, if x €@ doeg not belong to this union, then it is
true that "s {t :737@:” which is equivalent to "S<x =7aL £ '
and hence leads to x£t, by observation ik above; but kol <t/
implies x<(t/, S0 x cannct be in K,

Let us take a finite subcover of this open cover of K;

that is, we pick Ll,,..,qm gt @ uuch that g. 4£t for any laie

and such that Kg;&wj xe(;[x.) } Ushn% lemma 2. it is clear
d=1

m
that {XéGlxitf}gU{xéG X>Sj}, hen.ce that sﬁt X e
Jg=1 ‘



4

e
.

S o B

.

sm<px imply together x <t/o.Using‘lemma 1 we fing n, with the
property that Q‘i{t - for any n ;n and I £j< m. Then n),n

implies tp<§t and the proof igs over,.
1

Proposition 3.2,2 The hypothegis of Proposition 3,2.1

are satisfied: .

a) by any cloged convex pointed cone with non-void interior

in an euclidian space .,

b) by the positive semigroup‘Pn g any H .

Preof a) TLet Pé;Rn be a clogeg convex poiﬁted cone with
non-void interior angd et us fix xX& P, Defining ,\(a):ax on [o,il
we see that hypothesig (i1) is satisfied focashel = ~axX+bx=
=(b-a)x €P). Iy order to verify (i) we consider the dual of p,

9: {26 Rn{ {y,*%} VyéP}, which is also a closged convex
pointed cone with non-void interior. We have Sﬁ$¥Rn, hence we can
choose n llnnarl%ﬁéndooendont vectors gl, s, gn éf g:

It is known that P =P, that ig Y S Peo G ‘%) Zan ’v‘%«é /I’\, a8 ¢
consequence we see that IS XE&-y+x Ehe ><-V+X §>>o ‘v‘§<~

s §7g \’X, £ 5 > ¥ils icn, Denoting O< =Ky e > fLsicn)
we obtain that {yeply x}c{yé ’z“( ](y,, t57] < N e n};

the lasgt get ig easily seen to be bounded .

HWE- e x:(xi J) - Gng V~(y o P are gsuch that ¥,

1y Lgd i,
then Xy gyl_j for any 1gi<j¢<n; indeed, dencting z= (2 “})1’J
ol s - J
Y XéPng we htave J&.i’;j——vkgi yi,k_zkpj>/"\‘ri,jzj’j=yi"j° ‘"‘hl md,},.ecv

clear the typothesis (i) ot bProposition 3,2,1,

We pess to (ii). We shall brove that for g=(

"

i,j)i,j and

(tl J)l 3 of P placedllmff_b y ﬁ@l follow1ng two situationg
; 1t 15 true that s £ tefand]y there‘ex1«ts‘an rnqi asing continucug
path cennecting s with tE

X)) s ¥s obtained from % by replacing a component of the



el Qo

first Iine with oy
B) there exist B< pc 0 &1 such that ti’pno for any 1< ig
p~L and such that s is obtained from % by replacing ﬁbwq with o.
Once we have done this, it is easy to see how an arbitrary XG}PH
can be connected with @,CP by a continuous decreasing path made
of (0~ izﬂ.pleoeua
Proof for the situation o : we can write t“8+cel,q for.
some c€ [(0,0°) and 2 {qgn, where ©1,q€ ¥at (R) has the 1,q-entry
equal to 1 and the others equal to o. )\(a):s+acel’q ig then g
continuous increasing path connecting s with t, because ogacghal

o y : : :
:§>,X(a) ,%(b)me+(b~a)celgqé§Pn, (here e ig the unit of Hn)ﬁ

The proof for the situation B is similar to the one fowed.,

- N '
4.The C -algebra P3) In this section we deal with the

Wiener-Hopf operators on the positive semigroup PB of H.,. Ws

3
shall explicitely describe in this particular case the unit gpace

of the groupoid construction of section 2, and we shall use if%

to obtain a composition serieg for 1&§P3)
We make the identification of HB with R3 by writing (a,b,c)
1 ac
instead of [0 1 b | ; so we are in fact working with R3 endowed
Oi gl

1 { /
I,C )z(a+a,,b+b ,c+c'+ab b

with the multiplication (a,b,c) (5 o
As we remarked at the end of section g the Haar measure coincides

with the Lebesgue measure and P3 becomeS»[o,oe)w
Fbr any & in RB, tPB"l»is easily seen to be {XHERBI X1\$tl
Y - E ¥
5 Lo N 48 ¢ ] ~ : g > Pe e g
X2.§t2, x3+(t2 Xz)xlsgtB} ,» wWhére xl,x2,§3ﬁ?nd tl,tg,t3 are the

components of x and t respectively; it ig convenient to denote
3 :

-1

P
tlB

by ”t + + = 00 the sefeofunits ofathe croupold conatrine.
0 Y 3 ™ & -~
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Propasition 4.1 [ I's made of

tion of section 2 ig wa%;clos {)c

We aleo make the following notations i

X : )3
Tpatp. T ~frer’ | x et lp s

w{xéRB\x

R —— .

1

(&

it'tjtéﬁ)%%u
; digde sl 3 4

l,b29t3g: R are arbitrary)

2<t2}

2?$t2@ X3+(t2~x2)xlg ﬁ3} :

tyrese ’:{XGRg\Xléﬁl};
{XQRB t X

o $

t2§¢

eix orbits, which aree

U and U are related by the equality U= {j{ = \OQA

U1 {?QS e \tl,tg,tse;[d;cw)}
{X b \tl,tz 6[0906)} :

Up,3 = {><S.,t \ tg,t3é;(0,06)} 5

055 “‘{753 3\@Le[c,cm)};
e

e =0 L\t €y
sk

B = {XRBWJ =11,

Moreover, if we place these six orbits on four levelgs as

in the table L, then the closure of each one consists of

itself and the orbits situated (strictly) below it

Level o Ui,2,3
Level 1 Ui,L : U223
Level 2 Ul s U2
Level 3 it " Table 1
Proof [t is enarer to cbmpute U ~w)~blom1i7t Pt ~~l t&p };

For

eu'ly,
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=1

closed convex get. containing PB’
Let (t(k) }} be a sequence of PB such that

W : o _

_] =2, for g solid set A.(In fach & must be closed

Fp 646 LRSS «

and convex and nmust oontainAPB, as we saw in the proof of propo—

k e ;

t( )z.(t§l),ték),t§k) YePassing

(k)
;l ‘

cje}[p,ﬁyﬂ for any jé‘{l,2,j}g LL Co=T% We shall assume, in

gition 2.1.) We write, for any k,

to a subsequence, we shall suppase that (t )} ONvergey
subgegue o all suppos p=] CPOVErges to

qdddts iho g - e :

ddstlon, that t #o for any k and that there exists

=it t(k)/t<K e fo, o).
K—>o0

There are eight possible cases, given by the following tres

Ci<oe case i
C2<<)6 CHh= o case

j 2
03<90 case 3
Cl“°"<
03::70 cage 4
. e
< v case b
(¢} 200
- e oo cass T
: zo"<
L g= o2  cose B

In each case, the limit set A can be written explicitely. Let us

take for instance the case 6. We claim that we have A= gx£§R31
Gy

x1:}~cl}, Indeed, let us denote the last set by A/¢ TE-x€ a4,

that is if x;7 -cq, then xfEPB(t(R) )“l for all sufficiently

: v k k
Iarge k because: § Luﬁ =C1< Xy wté )Eﬁ o Xy and
3+Xl (k)z (k 4;;x /t(1)+xlz, (k)/t(k) T4 valid for

sufficiently large k, since the left part of the inequality

£y
tends to-xl, while d1hs right part tends to =22 If xx#A » then
- (k) el S e ] e B
xwf?B(t ) for all sufficiently large k, because -t; -
7 Xy Taking into account that E}A{has null Lebesgue measure,

we can apply the dominated convergence theorem to see that
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The rest of the proof is a mechanical computation. The
reader may convince himself that if one will write the form of A

-l

in the other seven cases and operate the inversion A —»A ~, then

he will obtain the results stated in the proposition.

o
At this moment we have at our disposal a general machinery,
used by P.iuhly and J.Renault in (1] (theorems 4.7 and 6+6) feor

gome special euclidian cases, which provides a composition serie

(D

e
for a groupoid C -algebra. This machinery starts with a locally
compact groupoid with Hear system, é}', and withi & partition of
its gset U of units into invariant subsets. The partition is

non
written with double-index, U= LJ/(\E} Up ; ), because itsg members
l=o j=1 ’

are placed on n+l levele (the index ¥ comes from "level" ), and
the following condition concerning closures is satisfied: for

n r'lel
0 U, ) This
=g+ §f wl €
condition is obviously weaker than the one observed for PB in

any £ and j we have clos U@,jg;Ueﬁj Ll

propesition 4.1,
Under these hypothesis, we see that each U@ .-18 locally
¢ o

cloged,; being the difference of the two closed sets

W, b (&fg esd A JES B Glu
LuJ : anc ) hencs. :
{’J Q ¢+1 j' él j’ e-—g+1 J’ :]_ @[;d' g?d

is & locally compact groupoid, endowed with an inherited Haar
gystem (because Uf i is invariant). The result used by P.Muhly
s ;

and J.Renault is the following:

Proposition 4.2 One can find the closed two-gided ideals

. 1*‘ o 5 1 -‘ »
IOGQIISL = halany *u (3,) ofg (94) such that Ia is imomorph

[ﬂ

fc togg € (%y 19 and for ey 180 < n, Ie/I€~1 ig

i
ig OminhlP to 69 (éf
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The proof of proposition 4.2 is based on the fact that
3

open invariant sets of units give rise to ideals of ¢ (3,) and
other related results (see for instance the proof of theorem 4.7
of {l] Y

As a consequence of the propositions 4.1 and 4.2, we gee
that'lCQPﬂ) has a segquence of ideals I &T: €L, €T =W(r. ), such

3 oF k= ey 3
that s
.,4« (i :

IO’,‘:’,L (.3' Ul,?,B);

IyI, = ¢ (40 L) @4l L)

3o e 8’ ey
. 2% %
IQ/I:L ~=@ (gf{ Il)@c (g/\Ug);
> _

Tl =€ @ 2lu ),

What remains to be done is the description of the ¢ ~alge~
brags of the gix r@duoed groupoids.. R@v1nw¢ng the diecussion of
3.1 we see that C ( %»Ui o 3),~—]<} and- thet infact T an( (%FB)}
w1th f43 the Lebeﬁbue measure. At the other extreme, we have
C ( %ﬁlf) A () (P ), because U has a single element, with isotropy
group H39 hence %VEUO T8 in foel H3, In what concernes the other
four groupoids, each of them can be seen to be isomorphic (ag a
locally compact groupoid with Haar gystem) to the product of a
group and a trivial equivalence relation on a certain get. Ilor
example, if j< denoteg the trivial equivalence relation on fo c»)

considered with the Lebesgue measure ﬁﬂ?, then

(8_,, (t27t3)9 (SZQSB) ) 7( (é’i,‘t "”829 t3“83“a82)9 (j~°’S2983

establiqhe an 1sonorphlam between Q>(/? and g; 2,3 which
implies C ( 3’ 3) ~ (n) GOJ{(L (ptp\ [0,30)")), In a similar
way we flnd that L (g 1 )) ie igomorphic to ”O(R)@Qikf, tieo,
and that C ( glU‘)and G (8\1] ) are isomorphic to C (RZ)éO:Rf.
Let us make the remark that if we use theorem 3.1 of [al ‘then

we are exempt from establlshlng the group01d yisomorphisms, and we

only need to cdmpute the i otropy groups of the groupmdn involved.
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Finally, we have come to the following result:

Proposition 4.3 102P3> i1e of type I, and has a composition

~

series of length 3, such that:
a) the first ideal is—}f;

>
b)Y the last quotient ig igomorphic to ¢ (HB};

c¢) the intermediate quotiente are direct sume of terms of

Mty 2

v*..., -
the form C (M)XK, with ¥ a subgroup: of H3 (M=R or M=R

M-

B eBlar © ~ulgebra‘UT(P4) Computations gimilar to thosse

the preceding section can be made in the case of P4€;H4Q The

of

main difference is that, unlike the result of Rropogition 4.1,

U has now an infinite set of orbits. However, we can gather the

orbits in a natural way into a finite number of invariant sets,

guch that the hypothesis of proposition 4.2 are fulfiled: AfGen
yp

: . - . Nk 76
doing this, we still have the problem of desewibing the € =

algebras of those reduced groupoids which are not trausitive,
Fortunately, ali%f them are seen to be isomorphic to the broduct

of & group and a principal groupoid of the type described in the

next propogition.

Proposition 5.1 Let B and Y be second countable locally

compact. spaces. We consider the equivalsnce relation

= / / ‘ -
defined by (b,x,y) ~ (b 9X',yl)<%>b=b on BXY xY, which

]

gives

g
o

Radon measure on Y having supp M =Y, and Y :B—>(0,0°) is

a continuous function, then the family of Radon measuresg

A\ = (NBY) Yb,y)e xy defined by:

(b”y)‘

2 locally compact groupoid 7 « If M is & positive

L3

f(b1Y9X) d)\(b’y)(b‘ayﬂ‘) = /{(b) ff(b;.}’ﬂ() ‘jf\’L(X)y
¥
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s b,y ) % :
for any £ in C (?&L( W) Y, is a left Hear system on F_,
(63 -t
4 e : . - ;
and the reduced C -algebra associated to Fe. and [N ig

isomorphic to Cqﬂﬂ)cg)?é(Lg(pL))c

Remark We don¥t need to study the amenability of CH N,

because, using the proposition, we shall obtain the reduced

¢ -algebras of gome groupoids which are known to be amenable (by

propositions 3.7 and 3.9 of chapter II of (47 J.

Proof of proposition 5.1 We recall that the set of units

of F is B XY; ite set of arrows is BXYX Y, the domain and
range of (b,y,x) being (b,x) and (b,y) respectively., The multi-
plication on ‘36 i given. by (byz,¥) (b, y,x) =allb. o ),

We consider and fix a positive Radon measure p on B

guch that supp? =B, and an element XOGEX. We have supp {%:&gx =
o}
=B><{XO§9 hence the invariant support of P X gg_ ig BXx Y, This
: 0

implies, by proposition 2.17 of {I}, that the induced represen—
: : 2 ALy : . = .
tation Ind P.X(SX is isometric on brpd('}ﬁ,J\)o The space of
2 re

5 ! - 2 - 2 ~1
this representation is L (Y 1), where the Radon measure )

on. BXYX Y is given by:

f ray~t.

B 1

:f ( f flhyy %) d‘)\(b -X)(b'ayax) 3 df (% XSX J ()=
i 1 0

BX Y AJ&(b?X) | ‘

=j N iy ) 6 [’:xrn)(buy), Y e (Bxisei].

BX Y

It is easy to gee that the mapping f~e>/§l/2(.)f(.,.,xo)'from
o) -4
Co(BXY XY) onto CG(B){Y) extends to a ilitery T:L°()Y . ] —2

Lz(p>fow)a We 'conjugate Ind %bx%fg with T and obtain an
O

yspmarnnl® ><* SR, ) '~ '~ NG
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which is found fto act by the formuls:

X_(TW fﬂ(bm) /?Sﬁ(b)fi‘(bw 2) € (by2) dplz),

for any f@Cc(BXYXY),, %6 CC(BXY}9 b€B, y& Y. If we make the
identification L£(§>X[A~)£X;L2(?>)(§§ Lg(ﬁk)ﬁ the above formula
shows that when fag@@hﬁﬁ)h, with g&C (BY, hy.h,eC (¥}, TTE is

1T%¥¥GD( <°)hé>}ﬁ)° (ijg is the multiplication operateor with

Tg on Lg(@>) and: <, \h?j>h is the corresponding rank one

operator on L° (fki; ) The elements of the form ?G@hjﬁahp generate

C (’J@ ) as a0 C —algebra, while the C ~suoalgebra of

2€(L2(@ )Q@Iﬁ(ﬁk)) generated by the operators k, Q@(«( \ 157 hy
: : 7 2

is %,“é, \g;e(* (o)%@‘K(L (fxt))g isomorphic to C (3)@K(L (f«h))

F&?Végke of conmpleteness we shall present a table
comprising the invariant sets of units which appear and the

manner in which they are arranged on levels. As in the cage of

%
Ho, it is easier to compute U[:w =clog J v tep insterd
3 . P t“'l 4
*
of U=w -clos <{g¢ - ]t€EP4}° But this time, because the
tP ,

inversion operation is more arduous, we prefer to replace the
; ; : 2 [ :
groupoid ‘3,0f section 2 with the groupoid g% whose units are
U’ and whose arrows are given by right translations with elements

o G that is, 1F 2QB€Iﬂ and s&G are Guch that
Bs

in U( (which ie equivalent to s &B), then we have an arrow (8,B)

3 Lo stiln

from :(B to ?ﬁ ﬁls Multiplication, topology and Haar sy“tem are

defined on g% tw’%ymmetry with the case Of‘§:“ It is obvious that
gfand E% are isomorphic, so that C (é? )fodTbP e

B The identification of H4 with R6 is made by writing

: N’ 1 a/i (LL(%?X
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15 Xy X *g
: : ‘ g 1 Xy X . : _
(xl,xg, oo ’X6) ingstead of i e . ¢ I we write the
g agu 1
formula of the multiplication which is obtained @n.ﬁ6 and take

into account that X(EP4tml

‘

tovt &P, , we find thet, for any t in
7 4

R

. P4t”1 can be expregsed as Rtlr\bt t {\L g With tq s

ety
tg, '°"’t6 the components of t, and where we use the following

notations (a,b,c€& R are arbitrary):

R, = {xe Rl |x;7 =} ;
Sa = %X L—‘:R6 [ }:27, -alg >
T, ::{xé”6( zma}'

Sa,b = {x.éﬁ \ XpYy ~Es X4+axlz ~b% :
z:a,b { 6 \ 4dx —b} s
s {xéiG\

J:‘a,b,yc

7/—-9,, X

C‘\

::{XLGA l XBZ-%M X5fax22—¢u X6+bxl+ax4? ~{},

With these notations, the family of sets whose characteristic

; > o o ; L= e >
fupetions appear in U 1= listed in table 2., U 1s divided inte
28 invariant sets, placed on seven levels; unless otherwise

atated, the coefficients which appear are arbitrary in [B,OO),

Table 2

Level o iy 301(\502,C4r\TC3;05,C6
Level 1 2« B s e :
C CorCy Cq3Cg
K nu n 3,05’06
4o

S AT
02,04 03,95,06

e be e ﬂzd.),d_
a +C- (d

; o With d2)>02 and

gs o ¢,)




Level 2

6.

L
el
-

le,

Ll

l2 L3

Rclm ”czm ng,d

T

b2904 oo

s> With d?7 Co
4 — -~
, with dy5 e,

Level 3

i

i

155
16.
i
18,

19

Level 4

2

22

23,

24 .

chel 5

Level 6
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~20~

The reduced groupoide corresgponding to the lines 5,11,12
end 19 of the table 2 are not transitive; thepare handled with
tho aid of proposition 5.1. For exemple, in the case ol line 54

£y = vV ~ ~Y 3 ~ 1 W‘L b.or
we put B=(0,0®)", Y= ix elo,0) A1+x3j; y» M = Lebesgue

- - r> - (5

measure on Y, Y (by,b,) = ég/blon-B; we construct 2 and /\ as
- ; i a0 g : 3 10 -
in proposition 5.1, and we make the product R™X . A topo-
logical isomorphism, which preserves the canonicel Haar systems,
from the reduced groupoid corresponding to the line 5 onto R- xggﬂ

can be defined by the formula x = (%, Rolf1so?,c4fﬂzzd2,d ) —>

( (al(x),ag(xy,aB(x))éIét b(x) & B, yl(x)éﬁﬁ yz(x)é ¥ ), where:

ap(x) = t43

dz(X) = t5~(02+t2)t3 :
aB(x) = t6—t5(tl+cl)~t3(t4+c4)+t3(c102+01t2+t1t2) s
B(x) = (d2 CpprCy™ d4+u (Gae ) ) i
(doc. )t +c) +tie,
¥4 () :( R to+Cs, e > E
: 04~d4+01(d2~02) Gy 4+cl(d2~02)
: (d,-c5)c Cy
yp(}'?) = = - - 5 C?a ) .
> o4-d4+ol(d2—02) : c4~d4+cl(d2—02)

The reduced groupoids corresponding to the rest of the lines are

s : *
_ transitive, hence, by theorem Aol o [21, thelir C -algebras are

determined by thelr isotropy groups
We finally obtain:

Propogition 5,2’Vj(P4) is of type I, and has a composition

gevian =T cT € ... Q:Q¢AKWP4) such that:

T e (J%l ¢, (M) @ (¢, BH®C,((0,2))®K) ;
12/11‘25(5%3 ¢, (RZIQIK) 69(«§§ (0, (RI®C,((0,20)RK)) s
I3/, (Jé ®3<>6~)<<—5—> <H.>®X<>-®

X thFT)QDL ((o 90))@97(,>;



‘ ol :
_ o R o
L/l (@RI IR )@ C (BRI ;
4°73 J=1 - 0
3
L/L, ~ @ ¢ (. )® K, where for any IS <3 N 1ot

subgroup of H4 obtained by forcing the j-th component to
be zero;

: e
16/I5¢z<,(ﬂ4)ﬁ
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