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égiﬁfastt The heat propagation equation in a medium
containing two phases, one with a much larager thermal conducti-
vity than the other is considered, lt is proved that the solution
converges to the solution of the heat propagation Prob]em in a

body in contact with a well stirred fluid,

1. INTRODUCTION, The problem of heat propagation in
a body in contact with a well stirred fluid was considered by ma-
ny authors (see for instance Carlsaw and Jaeger E]] and the re-
ferences. given there) and in several particular cases the solution
is given, As far as we know a general existence result for this
problem is not proved till now,

in [1] it is asserted that the solution of this pro-
blem yields a good approximation for the solutien of the heat
equation in a two phases body, one with much larger conductivity
then the other, The bpurpose of this paper is te prove this acseiie
tion. |n order to do that we have to consider a singular pertur-
bation problem for the heat equation in two phases body which
(asfar as fie kgow) cannot be included in the framework of general
abstract resulfgfor singular perturbation evolution problems
(see for instance Halanay (?], Friedman [3], Kurtz [}J, Lions [?],

Krein and Hazan (Q]).



In section 2 the problems are stated and in section 3
same notations and preliminaries are given., In section 4 we prove
an existence and uniqueness result for the heat propagation problen
in a body in contact with a well stirred fluid, lh the last sec-

tion we prove the convergences results,

2o RROBEEM STRTEMENT

Leit us considerszCRN an open bounded set with a smooth
fsay ct) boundary , We shall suppose thatjz=JiﬁJj%;QﬁﬁgzﬂJW@feﬁlia
open subsets of {l with smooth boundary. We denote by f’;M;ﬂ.MﬂZM,

r§]=}J%n{1and{ﬁ253$E@WWe shall consider the heat equation in
the case of a two phases body i.e, we shall suppose that the con-
ductiviicty: s i HIJZ] and 1/8}@ in!lz. Hence weihave to determine

the temperature field u :R+ xfl@ﬂ{ such that;

' Ju
2.1 i % in.

3
; ] :
€2.2) q£=\7u5 inudl, qi=€v-Vu£ maﬂz
(2'3) qf_,'ni =O for t70
; i
(2,4) u (0)=u_,

If € is small then (2,1-4) describe the heat propaga-
tion in an isolated body composed of two phases one of them Eaving
a much larger conductivity then the other, Carlsaw and Jaeger sug=
gested ( [1] p.22) that the solution of (2.1-4) converges for
£=—70 to the solution of the heat propagation problem in a body in
conlaict awittha swelll stinred fluid,

This problem consists in findina the temperature

picld usR, xJL]-¢R in the body and the temperature y:R —7R of the



Z %;5, A : Eei
2.6 d =
(2.6) "&'}t/' . S.Au_,
(T,
2.7) u = duy g for t»0
: in T Bn‘n ?
(2.8) u(0)=v_, ‘ indli,, y(0)=y_ .

where of is the measure of;ﬂ;z,

The equations (2,5-8) are also governing the diffusion
of a dyestuff in a yarn situated in a well stirred dyeina bath
(cf. Peters [7]). In this case u is the dyestuffi concentration fiel

in the yarn and y is the dyestuff concentration in the dyeing bath

3. NOTATIONS AND PRELIMINARIES

Let us denote by L=L2(JD; L1=L2(JA), L2=L2(J12),

J?E?mﬂNNA=ﬂ2MHﬂN,Jf{ﬁd%ﬂN,MHWm,HJmWZWJth
the inner products and norms denoted by:(( : ),u 1[), ('({, )
e o6 o Bl e el . a0, i
(((’s ))2-,m mz), (s )H’“ 1\1), G, )'o’" ”o)" respectively.

We denote byyi:H1(;ﬂi)~—?H1/2(5ﬂi) i=1,2 the trace @ &

1 5

maps. Wesshall denote by U & and-by u;, - the Srestriction of
s I,

{](u) and)rz(u) tof—‘o. We notice that uf H1(u’?.) i uGH1(J2])(lH1(uQ2)

and u ‘(‘c'*' = Ul\-\o“ s

We denote byy;‘; :H(div,{?_i)-—-"}ﬁ]/z('bﬂi) the normal tra-

ce map given by

Ca Y G ) iy v, 0] Tu)) -

Vi |

i
o ol uQH](JLi) i=1,2, We denote by v.\')}l_H (where [T is a subset

2 -
ofaxﬂ.i) the restriction of T—qt on the set of all v€H1/ (a‘ﬂ‘”i) with



; {
v=0 onail/ P. Let us d@note by v &, vy the restriction
o l ] IPo
of Xy“v) and VL on{ﬂ

We notice that veH(div,{L) iff veH(div,.] D0 H(div,dL)

and V'\)‘{”"*‘Ve\) =, Ou
9]

14»
i

I f we denote by

(3.2) D(A€)={ueH1(J?.)/qi(u)éH(div,u’?_), q. (u)y =OS 5

where q;:H]Gﬂ)4%Z is given by
X
(3. 3) q. (v)=

and if we put A :D(Ae)ng%L given by

&

(3.4) Ag(u)=div qi(u) for all UGD(A{)

then problem (2,1-4) is equivalent with

(3.5) ‘[”; i o

e € o -

It is well known that AE=A5§O hence AE is the infinit-
esimal generator of an analitic semigroup T (t) and for all uoeL
the problem (3,5) has an unique solution ue C° L)q o (0,+=9 ,L).

From the results remainded at theibeginingof the sec-

thion ohe can:see that Ue is the solution of (2. I=b)-or (3 5
3.6) d Y : RER .
( = =Au Tl & = =ﬁu£ |nd12
( ) on du, J Y
307 : LIPS =U, oy g s B ) 5 —
Gl = Ep I 2 )w EY ip




for 0 and

2. 8) 6 G0,

L, THE REDUCED PROBLEM

In this section we shall stddy problem (2,5-7) (which
will be called the reduced problem) by writting it as a Cauchy
piEebiliems i a it lberituspaice, et X=L] X R endowed with the following

scalar produet;

(4.1)<.{V],2;1, [vz,z;l>x=(v1,v2)1 toz,z, foriall [wi,zg]éX

Let D(A) be the following. subspace tof X:

fe 2 -
e D(A)"U”’VJ/”GH Bl i = 351 = O} )

apd A7DEA) € X —2X defined by

=i

(b3 A[u,y]=[[§u, ~°(-:()S[}u~} .

Lemma 4,1, The operator A is the infinitesimal gene-

rator of an ‘analytic semigroup T(t) of contractions acting on X.

Proof., The conditions D(A) . is dense in X and A is a

closed operator are easely verified and a simple calculation yields
< A;@;y], v,z\7X=-«Vu,Vv))] for =l [h,y],[},z]CD(A) hence A is

a symmetric and negative operator, In order to prove that A is a

self-adjoeilnt operator it is enough to check the surjectf{ity of

Nl =cA for alli AN70, lndeed if {},éléx then we can see that

(AI-2) [u,v\= (7,6 iff



S

(b 1) A S

i

2 du »
) oy P W=}~ = b 0l t= P =3
where g=f-§, u-y, D(C) {uCPI @L])/U”g 0, Bv\ru Og =
C:D(C)QL]mﬁL] » Cu=Au and R(A,C)=(AI-C)—] kst the resolvent of €
The funcrion W.is the solution of (h.h) iff w=R(A,C)(g+zO) where

z is the fixedpoint of S:R—R given by:

(b.5) s(2)=0c 1§ CROA,C) (gra)
L-,n-‘

If we make some calculations we get that

St NS mikeytn) A ) v

dly
-1 | -1 S . .
where G=x S R(A,C)g - « Gee I5F Wi hiawvie i nasm ERd thia t
Ly i A - :
HR(A,C)H' Z T with w >0 then we deduce that « SAR(A,C)(])Q]
o L
e

hience the slepesof S js negative and there exiists a uniqgle fix
pioiinitt oif 1S,
One can easely notice that problem (2.5-7) is equiva-

lent with 'the following Cauchy problem in X

(b

i e

g

Y

A straightforward concequence of Lemma 4,1 is

Theorem &,1, For all VEL{5 Y ER there exists a unigue

eouple of fiuhetions: fu,y] solution of (2.5-/) siich that ueC? (R

L1)ﬂC

L 3
@
(

(0, v e 1 e R YA (0, oo R

5% CONVERGENCE RESULTS

The main result of this section is the following



Theoggem 5.1, |if V=g J?é L, and yb=uo(x)&l{ flow wall \
“G 1

Xé$£L2 then for all T30 we haver

K5.1) u. =2 u in CO(EO,fj,
(5.2) U=y tn c2 R0, 7],
when &0 ‘
. -1 S
g = = =
lihecrem: 5.2, | f uO&L, UOLQ, You oy u, then for
ailzl= i 70 UZL
@5 ué(t)mau(t) weakly in L, uniformly with respect to
e["o,T:\_,
. 2
(5. 4) Us==y stiongly fn L7(0,7, L2)

In order to prove theseresults several lemma are neces-

S Ay,
Lenme: 50k, For all']l . T70 ssmd uoéﬂﬂk) we have
T :
(5.5) S U M) Zaseera a2
o .
T
(5-:6) ' Sﬁrvhi(sﬂ” < dsé]/Zl]uo” -
e

Piroieif . “If we multiply (2,1) with ug and integrate the
dug “ 1 2
3L ovE \"“m]‘ NTu )3

result over ) we get (u

Ik we integrate the above relation fimeom (0 to T iie gew
172 | ug 7)|| +—§“\h1 s)il] st + ﬁS”“Vu )H[;ds < ]/2??u0252 and
(5.5-6) hold,
Let us denote in the following by .yt(t) the evaraae
s e Ul on JLZ i.é.

4

(5.7) v lehsadl 4 i)



Lemma 5°2i There exists 90 such that for all T70

UOED(AE) we have

/.
(5.8) jl}ui(s)--yg(s)“ idség Cllu |l 2\
9]

Proeof, |f we have in mind that S(uimﬁ')=0 then by

..-...,.....-....—.

using the Friedrichs-Poincaré inequality we get “ui—yw\zéc ’&Vuﬂ?“

Erom the econtinulty of the trace map.g‘ we obtain Uu ~yd <C=Vu ”2

oz

hence from (5.5) we can deduyce . (5:8),

Prioof ot Theorem 5.,1. Let us suppose from the moment

ﬁ_a_ = |
o) : - : ,
= =0 and we notice that in this

that u (:"HZ(JZ. ) =
0 g, ‘

U =y
ohg o’

case u C []D AE
£70

Uoed e dRnllod —ope o0 =
Let us denote by U =Ug —u indl, U 2oy inbe, . Rron

(3.6-8) and (2,5-7) we can deduce that Gg satisfies the following

equations:

3T PR .
(5.9) 3’"% =, indl,, r=3c% =§L’AU£ +o :;Au inﬂ2
= i ;O . 5 .
S o o e L s
(5. 11) 'Ja(0)=0
Lt we mud bliply (5.9) by E% and we integrate the result
} u, TR S : -
over Jl we get (7%, 7)== I¥7a, )| ?~ l/ﬁlf(\/ui,fli —g:%%(ui~yi ) £
‘B ; <o
! S%HH"”Z Hut*yi“o :

By integrating the above lneouallty from 0 tot we

deduce 172 || 5, ()l 2 € 3%\ 2172, yas) 172 §n(L e

0 (o)

and



firom (5.8 e get (5,1-2) . Tn drder fo brove b1 2) tor Al ugEl,

it is enough to notice that the set of all uQHZ(JH), with'uWL =y

0 s dense in |

Su
yn L

b

Proofi of ‘Theokem 5.2, Having in mind that the set

D=Eu€jﬁﬂ2)/ gu=0’%in dense in the set {uGLZ(ﬂQ)/S u:OE}and using
of l iy Z-L
theoren 5.1 we notice that it s enough to prove the statements of

the theorem for uJED. In this case the solution of the reduced pro-

blemeel2ob-7) s el y=0. let w

a(t) be the solution of the folle-

wing elliptic problem;

(5 Awﬁ(t)=0 indl,
(5.13) 1 ()] (t)-y, (t) o 0
[ WL wt=U )= e 5 P = -
3 f’o ¢ yg 1 o r‘l\p1
I f we denote by Ve =u ~We then Ve o Yo i's the solutiion
of the following equations:
(5.]14) B_V‘L _A __'}-Wl‘z’, o L[Z.
= o o
dy L
(5415) -;%:-OUSAVE
{1
, v
(55 1:6) v =Y, =10 For: all. t50
» lae
i }n‘q
o 0)=0 0)=0,
(517 Vi( ) yi( )

| f we consider f%GC (R,,X) given by

+!

Eowl el (), 0 ] -



g

then we notice that (5.14-17) is equivalent with

o : df - 2
(5.19) %«{ﬁ.,él=AL% ,%} - zfé - [ﬁ_,&ik(0)=[p,0;}

r df.
From (5,19) we deduce that [g,%“](t):«ST(twsyaga(s)dsz
= ]

_ 1
=-f, (t) Aé T(t-5)f, (s)ds+T (), (0).

Having in mind that F?(O)=O we get

Lo

t
(5. 20 Fui(t), yi(ti}=—Ag T(t~s)%:(s)ds.
Q

Taking the inner product in X withﬂf, dk&jﬁuw :
Q7é'§}(ﬂ]) then (5,20) becomes:

T‘ v
\(%(tL%)A=K§TYPﬁ) %(SNS,A QJﬂ7X\é

-g C%g”fi(S”}deéc%ithL(S”hds where q€=uA[Q,o}HX :

(5,12-13) we can “find that C%0 such that
i%wa(t)H1§E lu (o) -y_(ll _ and from the above inequality we obtain
e e

Using now Lemma 5.2 we get:

. . =
(.21 \<u2,(t),ga)z\gc,c((c\fﬁ@\\uo\\
SinceéDCQ]) s dense in L] we -obtain that ug(t)nao

weakly in L] uniformly with respect to t@[O,Tl,

| f we take into consideration that

S L (£ ) ey (210 foir ol téIO,{X it follows:that yv—>0 jn 30 0 07
0 ¢ ¢

Using now again Lemma (5.2) we get that u€’50 strongly in LZ(O,T,L?f
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