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Abstract. An initial and boundary value problem describing dynamic processes
for a class of rate-type elastic viscoplastic materials is considered. The mechanical
problem is reduced to a semilinear hyperbolic equation in a Hilbert space and the
existence and the uniqueness of the solution is proved. In the linear viscoplastic case a
singular perturbation problem is considered. It is proved that linear elasticity is a
proper asymptotie theory for viscoelastic materials.
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1. INTRODUCTION

An initial and boundary value problem describing dynamic processes for

materials with a rate-type constitutive equation of the forml):

(1.1) 0 = E¢ + F(o,e)

is considered. Various results and mechanical interpretations concerning this
constitutive law may be found for instance in Freudenthal and Geiringer [6], Cristescu
and Suliciu [3], Gurtin, Williams and Suliciu [7], Suliciu [15] and Podio-Guidugli and
Suliciu [13].

If F(o,e) = G(o) depends only on o then equation (1.1) may be reduced to some
classical models used in viscoplasticity. Existence and uniqueness results for dynamic or

quasistatic problems involving (1.1) for different forms of G where obtained using

“)

Everywhere in this paper the dot represents the derivative with respect to the time

variable.



different methods by Duvaut and Lions [5, Ch. 5], Suquet [17], [18],‘[19], Djaoua and
Suquet [4], Anzelloti [1], Anzelloti and Giaquinta [2], Necas and Kratochvil _:[11],
Laborde [10], Sofonea [14], [15] and others. Almost al} this methods are making use of
the monotony properties of G - ..~ ~ “i. %, If F depends both on 0 and € (examples of
(1.1) involving the full coupling in stress and strain are given for instance in Cristescu,
Suliciu [3]) the monotony arguments used in the above mentionated papers do not work.
For this reason a different technique is used here based on the equivalence between the
studied problem and a semilinear evolution equation in a Hilbert space. To be more
specific the mechanical problem is reduced to a Lipschitz perturbation of a linear
evolution equation and semigroups techniques are used.

Existence results for quasistatic processes involving the full-coupling in stress
and strain were obtained by Ionescu and Sofonea [8] by reducing the problem to an
ordinary differential equation in a Hilbert space.

In section 2 of this paper the mechanical problerd is stated and in the next
section some preliminaries and notations are given. In section 4 an existence and
uniqueness result is proved (theorem 4.1). The same technique as in the proof of
theorem 4.1 is used in order to obtain an existence result (theorem 4.2) for problems
with hardening (the hardening parameter used is the equivalent ireversible strain).

In the papers of Suliciu [15] and Podio-Guidugli and Suliciu [13] it is assumed
that F(0,€) = -K(0,€)(0 - R(€)) where K(o,€)T ° T> k|t 2 and G is a monotone funetion.
For isolated bodies assuming the existence and smoothness of the solution and
constructing an energy function in [13], [16] it is obtain the folowing inequality
IE(IQIU(S)— R(€(s))|2)ds_<_C/k. This inequality shows that for large values of the
viscosity coefficient k the solution of the viscoelastic problem almost obeys an elastic
law. That is why one can expect that the study of the asymptotic behaviour of the
viscoelastic solution upon k will show that elasticity is a proper asymptotic theory for
viscoelastic materials. This fact was proved by Ionescu and Sofonea [8] in the

quasistatic case. The dynamic case of this singular perturbation problem is studied in



section 5 of the present work. Using the energy function constructed by Suliciu [16], and
assuming that R is linear it is proved (theorem 5.1) that the solution of a linear

viscoelastic problem converges to the solution of a linear elastic problem for k large.

2. PROBLEM STATEMENT

Let 2 < RN be a bounded domain with a smooth (say ch boundary I' = 9§ and
let I'1 be an open subset of I' and 1‘2 = Fl' Let us consider the following mixt
problem on the time interval [0,T].

Find the displacement function u:[0,T]xQ - RN and the stress function

0:[0,T]x2 =S such that

(2.1) pult) = divo(t) + pb(t)
(2.2) a(t) = Ee(u(t)) + F(t,o(t),e(u(t))) in @
(2.3) u®| p =glt) o) vl r =1f(t) for te(0,T]
1 2
(2.4) w0 =uy,  u@=v,, 0o(0)=0_ in
NN

where S = R is the set of second order symmetric tensors in RN, €(u) = 3(Vu + VTu)

S.
defines the strain tensor of small deformations and V is the exterior unit normal at T .
In the first equationp : & = R_ is the density and b : [0,T]x% RN is the given body
force. Equation (2.2) represents a rate type viscoelastic or viscoplastic constitutive law

in which E is a forth order tensor and F : [0,T]x2xSxS =+ S is a constitutive function.

The fuhctions Ugs Vi 00 are the initial data and f, g are the given boundary data.

REMARK 2.1. The function F depends usually on time by mean of the
temperature field which can be easily obtained from the heat equation in the uncoupled

thermomechanical processes.

3. NOTATIONS AND PRELIMINARIES

By °y | | the inner product and the euclidian norm in R and S will be



denoted. The following Hilbert spaces: L = {LZ(SB)]gXN, L= {LZ(SZ)]N, H = [H(div,)]

H= {Hl(ﬂ)]N, Hp = [H%(I')]N are used and the cannonical inner products and norms are
denoted by (G)[| [1) (OO, NIl I @y 11 I gh @y | 11y and gy | 1)

respectively. Let

(31 V={ueH/y (W)=0o0n Ll

be a closed subspace of H endowed with the norm of H where Tk L HI‘ is the trace

map. The operator ¢ : H -+ L given by

(3.2) e(v) = z(yv + VTv) for all ve H

Is linear and continuous and the deformation coercivity inequality holdsl)

2 2 2
(3.3) ” g(V)“ + IH v]” > Clll v“ 1 for all ve H
If mes o > 0 then the Korn inequality holds
2 2
(3.4) ; ||g(v)|| —>—CZHVHH forallve V.

1
If teH then there exists Y\)(T) € H;‘ = [H "’(r)]N (the strong dual of Hl’) such

that s
(3:5) <Y\)(T)’ Yo(V)> = (1,e(v)) + ((divr,v))

*

IE
TV p. Weshall understand the restriction of Y\,(T) on E =y (V). Let

for all T ¢ H, v e H. The operator e H ~+H_ is linear continuous and surjective. By

(3.6) W lme | = 1)
2

be a closed subspace of H endowed with the norm of H.

4. AN EXISTENCE AND UNIQUENESS RESULT

In order to prove the existence and uniqueness of the solution for problem

1) Everywhere in this paper C, Ci’ 1eg N will represent strictely positive generic

constants that depend on E, F, 2, Pl’ I'z and do not depend on time or on input data.



(2.1-4) the following assumptions will be used:

(4.1) =

el (), EX)tee=E)est forallxe,teeS

Eiij,
(4.2) E(x)t > t>d l‘rlz withd> 0 for all x € Q, T€S.

For all t €[0,T], o,e €S the function x +F(t,x,0,e) is measurable and there

2

exists 0 € Wl’l((},T,L () sueh that

(4.3) |E(ty.x,0,,€,) - Flty,x,0p,8) | < [6x,1)) - 6x,t0) | +
t Loy -0 + e - g, ) forall x e g, t; €l0,T], g, €S
We shall also suppose that F(t,x,0,0) = 0 and

L5

(4.4) be W™ (0,T,L), peL ™), plx)>c>0 for all x ¢ 0

(4.5) there exists u e W3’1(0,T,L) n Wz’l(O,T,H) such that u | r. =8
)’
o o 72,]. 1,1 22 = f
(4.6)  there exists G € W**(0,T,L) n W'*(0,T,H) such that V| [
(4.7) U, Vg € H, % ek,

(@) uld 5 =g(0), v_| £ =2(0), o i T = 1(0)

The following theorem is the main result of this section

THEOREM 4.1. Let (4.1-8) hold. Then there exists a unique couple of functions
u, o solution of problem (2.1-4) such that
2 00(

(4.9) ue W (0,T,L) n W (0,T,H)

(4.10) oe W %0,7,L) n L (0, T,H)

In order to prove theorem 4.1 we need some preliminary results.
Let us homogenize the boundary conditions by denoting with u=u — il

®

[ ]
V=Uu-u,6=0-0 and u_=u_- u(0), VO:VO—G(O),E’

. =a_ - ol0). easil
o U o« = 0, ~ 0(0). One can easily

deduce the following lemma.

LEMMA 4.1. The couple u,o is a solution of (2.1-4) such that (4.9-10) hold iff

Te W2 0,T,V), Tewb™(0,T,L) n LNO,T,Y), TeWh0,T,L) n L0 T.Y) are the



solution of the following problem

(4.11) 5(t) = v(t)

(4.12) 7() = p~Laiva(e) +adt)

(4.13) 5lt) = Be(@(t)) + HEFW®),e@o))
(4.14) uo)=u_, v(b) =¥, Gl0) =0

where a(t) = b(t) - () + p Ldivg(t) and H : [0,TIx2xSxS =S is given by H(t,1,0) =
= F(t5(0) +1,6@0) +0) + Ec(a(t) ~o(t) for all voe S.

Let us consider the Hilbert space X = Vx LxL and let D(A) = Vx VxVC 2K
A :D(A)€ X =+ X be given by
(4.15) Alu,v,0] = [v,S'ldivo,Ee(v)]

for all u,ve V,0e V. With the above notations we have.

LEMMA 4.2. The operator A is the infinitesimal generator of a CO semigroup
S(t) of bounded linear operators in X.

In order to prove the above lemma let us consider Y = L xL with the following
inner product

(4.16) vy 1vy,TyDy = (ovy,v,) + B e r)

which generates an equivalent norm on Y. Let D(B) = Vx V< Y and B: D(B)S Y + Y be
given by

(4.17) Blv,0] = [p—ldivc, Eeg(v)]for allve V,oe V.

LEMMA 4.3. If we consider in Y the scalar product given by (4.16) then

B* = -B (B* denotes the adjoint operator of B).

PROOE. For-p = 1 and B =1S>5 this lemma was proved by Sofonea [15].

However for the convenience of the reader we scketch here the proof. Let [v,0] € D(B*)

and [v* 5] = B*[v,0]. For all (u,1) € D(B) = VxV we have

(4.18) (divr,v)) + (eu),@) = ((pu,v™)) + (E™Lp g%



If we put T=0 in (4.18) we get (Vu,0) = ((u,ov™)) for all uﬁ[D(Q)]N hence
divo = -pv* € L i.e. e [f. We also have that (Vu,0) + ((divo,u)) = 0 for all ue V hence
o€ V. If we put now in (4.18), u =0 we get ((divTv)) = (T,E—]'U*) forall T€e [1)(9)]§XN. So

we get €(v) €, and from (3.3) we get v € H and €(v) = —Ealg* hence we deduce that
(4.19) (divT,v)) + (e(v),1) =0 for all TE V .

If vV then Yo(v) ¢ E and we can construct f € H}i such that f]E =0 and
<f,Y0(V)>z 0. Let T€ [ such that 'Y\)(T) = f. From Y\)(T) | g = 0 we deduce T€ V and from
(4.19), (3.5) we obtain <Yv(’t),Yo(v)> =0 a contradiction. Hence we proved that

[v,0l € Vxy = D(B) and B*[v,0] = -B[v,0]. YD

PROOF OF LEMMA 4.2. Let denote by T(t) € B(Y) the C, semigroup generated
B (see the above lemma). Let Tl(t) € B(Y,L), Tz(t) € B(Y,L) sueh that T(t)v,0l=
= [Tl(t)[v,o], Tz(t)[v,c]] € Lxp, for all [v,0] € Lx [, We shall denote by S(t) the following
operator :

(4.20) S(0[u,v,0] = [u + [*T, (S)lv,0lds, T(Dlv,0l]

for all [u,v,0]l € VXxLx[ = X. If we have in mind that [D(B)] endowed with the graph
norm of B is isomorph with Vxy (we use (3.3), (4.2), (4.4)) and y +ff)T(s)ydse:
€ B(Y,[D(B)] we get that y +f(t)T1(s)yds€B(Y,V) hence S(t) € B(X). One can easily

check that A is the infinitesimal generator of S(t). 0

In order to prove the existence and uniqueness of the solution for the problem
(4.11-14) we need the following abstract result (see for instance Pazy [12 p. 189] with

small modifications).

LEMMA 4.4. Let X be a reflexive Banach space, A : D(A)c X =+ X be the
infinitesimal generator of a C, semigroup and f:[0,TIxX =+ X. Let us suppose that

there exists g € Ll(O,T,R+) and L > 0 such that

t
2
(4.21) I f(tl’xl) = f(tZ’XQ) | £ ftlg(s)ds L “xl - X, ”x



for all tl < t2’ ’Ll,tz e (0. T X{X, € X. Then for all xGED(A) there exists a unique

XEW 1’OO(O,T,X) n L (O,T,[D(A)]) strong solution of the Cauchy problem

(4.22) (1.) = Ax(t) + f(t,x(t)) x(0) = L

PROOF OF THEOREM 4.1. We shall use Lemma 4.4 in order to prove the

existence of the solution for the problem (4.11-14) and from Lemma 4.1 the statement

of theorem will follow.
If we denote by f : [0,T]*X = X given by
(4.23) £(t,lu,v,00) = [0,a(t),H(t,05&(u))]
then problem (4.11-14) can be written as (4.22) where x(t) = [u(t),v(t),0(t)] and
e [EO,VO,EO] and A is given by (4.15). Since from Lemma 4.2 we have that A is the
. infinitesimal generator of a CO semigroup we have only to check (4.22). Indeed we have
126,00 1,v3,0, D = £t lug,v0,0,D Il <CLlllat)) - ate) Il + o)) - ot )] +

* o) - Bl g o+ He{l(tl»— et ) + Lillefate ) - ey +

1136 S+l - sl + ey -, < ctf Bl -
5+ oo ]+ 1) 1]y o+ lleiens ol

e i@l + @l s + 1llu; - u, Il + o, - a1

From (4.7) and (4.8) we deduce X = [50,30,-50] € VXV xV = D(A). Having in mind that
[D(A)] endowed with the graph norm of A is isomorph with VXV xV from Lemma 4.4 we

1,% Lo

deduce that u€ W™ (0,T,V), Ve W" (0,T,L) n L (0,T,V), and e wl(T,L)n

n L (0,T,V). ' 0

The same technique can be used in order to obtain th existence of the solution
in similar problem with hardening in which the rate of the hardening .parameter is a
function of the inversible strain rate. To be more precisely let F : [0,T]xQ2 xS XS xR =

+ S and let denote by ZZI the ireversible strain rate given by



(4.24) &' = ~ETIR(, olt), elu), y(0)

Instead of (2.2) we have

(4.25) 5(t) = Ee(u(®) + F(t, olt), e(u(t)), x(t)

and we must add an equation for the hardening parameter y
(4.26) x(®) = R, 0 =x

where R : S =+ R. If we suppose in addition that

(4.27) F is Lipschitz continuous with respect to ¥,

(4.28) |R(z;) - Rlt)| <L |r, -1 for allt, & S

2

then we have the following result

THEOREM 4.2. Let (4.1-8), (4.27-28) hold and suppose that X € LZ(Q). Then
there exists a unique couple of functions [u, g, ] solution for the problem (2.1), (2.3-4),

(4.24-26) such that we have (4.9-10) and y Wl’w(O,T,LZ(Q)).

SKETCH OF PROOF. After the same homogenization of the boundary data we
use also Lemma 4.4 with X = VxLxL x LZ(Q), D(A) = VxVxVx LZ(Q) and Alu,v,o,

x] = (v, o ldive, E e (), 0).

REMARK 4.2. In the case F(g, g, ) = -Glo,x) with G a monotone funection of o
existence results were obtained by Laborde [10] and by Sofonea [15] using a fix point

technique.

5. APPROACH TO ELASTICITY

Let us consider now the linear viscoelastic case i.e.
(5.1) F(t,0,e) = -klo -~ A¢)

where A is a forth order tensor such that

(5.2) A eLQ), AK)eet=AT e forallxe®, eTeS

ijke
(5.3) ,A(X)T'TZOLITIZ for all Te S with a>0



and k > 0 is a viscosity constant. In order to construct the energy function we shall

suppose (see Suliciu [16]) that

(5.4) (B-A)resa> 6| 2 forallTeS with B >0

Let now consider the following linear elastic problem. Find the displacement

function U : [0, TIxQ - RN, and the stress function g : [0,T1xQ -+ S such that

g e

(5.5)  pult) = divo(t) + pb(t)
(5.6) ot)=Ae@) in Q.

= f(t) fort >0

6.0 ulb)], =gl), o]
1 2

[}

(5.8)  u(0) = u u(0) = v,

Using standard existence theorems for linear dynamic elasticity one can easily

deduce the following lemma

LEMMA 5.1. Let (4.4-8), (5.2-3) hold with o Ag (uo), Then there exists a
unique couple of functions G, o solution for (5.5-8) such that:

(5.9) eIl w0, 1)

(5.10) 8' € ‘VI’OO(O’TvL) n Lw(O,T,H)

The main result of this section is the following.

THEOREM 5.1. Let mes ry>0, (4.1-8), (5.2-4) hold and suppose that
o, Ae (uo). If we denote by [uk,ok]k>0 the solution of problem (2;1—4) with F given by

®
(5.1) then for all t € [0,T] we have that uk(t) +u(t) in H, uk(t) + u(t) in L, Uk(t) + oft)

inL fork = +e,

=2

A *
ko

i e WI(0,1,V), v, € WIR(0,T,L) n L¥(0,T,V), 5, € WS(0,T,L) n L¥(0,T,V) and the

PROOF. Let us denote by u, =u » ) = 0 - 5. We remark that

couple [u ] is the solution of the following problem

k’vk’gk
¢
(5.11) uk(t) = vk(t)



(5.12) %]((t) = p”laivg, (1)

(5.13) G0 = Ee@, (1) - kG (0) - A & @, (L) + e®
(5.14) 1 (0)=v,(0)=0, G (0)=

where ¢ ¢ L°(0,T,L) is given by

(2 @

(5.15)  e(t) = -o(t) + Ee(Q(t))

Let X=VxLx[L and A be given by (4.15) and let us consider C: X = X be

given by
(5.16) & Cluv.ali=1[00,6- A e )l

for all [u,v,0] € X. If we denote by D, : D(A)e X +X,D, =A -KkC, and if we have in

k
mind that C is linear and continuous then from Lemma 4.2 we can deduce that Dk is the
infinitesimal generator of a CO semigroup denoted by Uk(t). We shall construct now an
energetical norm in X such that Uk(t) is a contraction semigroup.

Having in mind (5.4) one can easily deduce that B given by

(G lw B A)’1 T

is positive definite i.e. there exists y = o/(|E| |E - A ]2) such that
(5.18)  B&)Tet>y|t|® forallxe® tes.

Let us consider in X the following energetical scalar -product

(5.19)  (QupV 3,0y blugVy,0, D = (v ,vo)) + (87

0150,) *

+(Blo; - Eew,)), 0, - Eelu,)
for all U, eV v e L, 0 €L which generates the energy norm (which is exactly the
energy constructed by Suliciu [16] in our case) given by

(5.20) || [u,v,0] II]Z3 = (pv,v) + (B 10,0 + (B0 - Eelw)), 0 - Eelw)

This norm is an equivalent norm X for mes I, 0 (see (3.4)). After some algebra one

can deduce that for all u,v ¢ V, g ¢ V we have



(6.21) (D, [u,v,ol,lu,v,0l) = -k(E - A e Acu)),o - Ae(u) <0

Having in mind that %(d/dt)”U (t)[u.,v,g]”z. =(D, U, (t)u,v,al,U, (O)u,v,0]). <0 we
k E lestle k E -
obtain that H Uk(t)[u,v,g]ll B < “[u,v,U]H L for all wv, e V ge V. Using the density of

D(A) in X we get
(5.22) ”Uk(t)x”ES ”}\”E forall xe X, t>0.

Let us remark now that if we denote by f ¢ L“(0,T,X)

(5.23)  f£(t) = [0,0,c(t)]

and by xk(t) =~ [Ek(t), Vk(t),'Ek(t)] then from (5.11-14) we have that

(5.24) §k<t)=Dkxk(t)+f(t) x (0)= 0

hence we can deduce

(5.25) %, () = [0, V(0,500 = [Lu ¢ - 9fts)s .

K
Let us suppose for the moment that fe:Cl(O,T,X). From (5.25) and (5.22) we

have that ||x, () || < j‘;r || £(s) || zds hence we have just obtained that

(5.26) Gk is bounded in L %(0,T,V)

(5.27) G, is bounded in LoD L)

° &
Having in mind that xk(t) = Uk(t)f(O) + f(t)Uk(t - s)f(s)ds one can deduce that

“;k(t) g < [EO ] 5+ frg || £(s) || ds hence we have

(5.27) T, =V, is bounded in L*(0,T,V)

(5.28) v, =

ot e : s
K Bdl\/ 0} is bounded in L (0.1

e

(5.29) Ek is bounded in L *(0,T,L)

From (5.24) we obtain ”Dkxk(t) ”E < ]]xk(t) ” 0 + ”f(t) ”E < + and if we do
some computations we deduce (B(c}k(t) - Ae(ﬁk(t))), Ek(t) - Ae(ﬁk(t))) < c/kz and using

(5.18) we have



(5.30)  |[o, () - Aetu (D] < e/k

for all t e [0,T], k > 0. From the apriori estimates (5.26-30) we deduce that there exists

1e Wh20,7,V), v e W ¥(0,T,L) n L2(0,T,V), 5 e Wl (0,T,L) n L0,T,V) sueh that

s 5 B
u,_ +uweak* inL (0,T,V)

(Gl u K

+ U
k ?

8 )
(5.32) ¥, *V,V, >V weak*in )
[}

. bogas . - co
G, *0weak* inL (0. 2.1)

+3,
o : 0

+o weak* inL (0,T,V)

(5.35) v +v weak* in L"(0,T,V)

(if necessary we can pass in (5.31-35) to a subsequence). From (5.11-12) and (5.31-32),

(5.34-35) we deduce

B.38) U=y

1

(5.37)  V=p ldive

and from (5.30-33) we have
(5.38) G=Ac)

Using now (5.31-33) we get that ﬁk(O) + u(0) weak in V, v, (0) > v(0) weak in

k
I and?fk((]) +0(0) weak in L. From (5.14) we have

G39) Ul0) -0 -0 o0 =0

If we make use of the unicity result given in Lemma 5.1 we have u=v =0,

‘o= 0 hence

(5.40) x,_ +0 weak* inL(0,T,X)

k
Using again (5.21) from (5.24) we have
1a/at) | 5, W[ 2 = (D, x, (©), x O + €D, x O) < EWx, O)

and after an integration we get that % ||xk(t) I 12: < f(t)(f(s),xk(s))Eds and using (5.40) we

have just proved that for all f e Cl(O,T,X), t>0



a— 4 -

(5.41) xk(t) + 0 strongly in X for all t € [0,T]

where xk(t) is given by (5.25).
Let us return to our case f ¢ Lm(O,T,X)u If we denote by f€ aCl(O,T,X) sueh

that fg Il £ (s) - £(s) || zds < e then we have that

i@l < Sl 6 - £6) ] s + | [20, (- 9)t_()as I

and using (5.41) we obtain the statement of the theorem.

REMARK 5.1. For g,f,b = 0 one can use a result of Kurtz [9, theorem 2.1] and

the energy norm given here in order to prove the statement of the theorem 5.1,

Acknowledgement. I want to thank dr. I. Suliciu for interesting discussions

which generated my interest in the studied problems of this paper.



10.

i3l

12.

REFERENCES

G., Anzellotti, On the existence of the rates of stress and displacement for
Prandtl-Reuss plasticity, Quart. Appl. Math. 61, 181-208 (1983).

G., Anzellotti, M., Giaquinta, Existence of displgcement fields subject to
Hencky's law and von Mises yield condition, Manuscripta Math. 32, 101-136
(1980). ;

N., Cristescu, I., Suliciu, Viscoplasticity, Martinus Mijhoff, The Netherlands
and Ed. Tehnica Bucharest (1982).

M., Djaoua, P., Suquet, Evolution quasi-statique des milieux visco-plastiques
de Maxwell-Norton, Math. Methods Appl. Sci. 6, 192-205 (1984).

G., Duvaut, J.L., Lions, Les ine’quations en mécanique et en physique, Dunod,
Paris (1972).

H., Geiringer, A.M., Freudenthal, The mathematical theories of the inelastic
continuum, Handbuch der Physik, Springer-Verlag, Berlin (1958).

M.E., Gurtin, W.O., Williams, I., Suliciu, On rate type constitutive equations
and the energy of viscoelastic and viscoplastic materials, Int. J. Solids and
Structure 16, 607-617 (1980)

LR., Ionescu, M., Sofonea, Quasistatic processes for -elastic-viscoplastic
materials, Quart. Appl. Math. 2 (1988), 229-243.

T.G., Kurtz, A limit theorem for Perturbed operator semigroups with
Applications to Random Evolutions, J. Funct. Anal. 12, 55-67 (1973).

P., Laborde, On viscoplasticity with hardening, Numer. Funet. Anal. Optim. 1,
315-3319 (1.979).

L., Necas, I., Kratochvil, On the existence of the solution of boundary value
problems for elastic-inelastic solids, Comment. Math. Univ. Carolin. (1973).
A., Pazy, Semigroups of Linear Operators and Applications to partial

differential Equations, Springer-Verlag (1983).



13.

14.

15.

16.

17

1.8.

189"

P., Podio-Guidugli, I., Suliciu, On rate-type viscoelasticity and the second law
of thermodynamies, Int. J. Non-Linear Mech. 19, 6, 545-564 (1984).

M., Sofonea, Evolution problems for a class of thermoviscoplastic materials,
Preprint series in Math. INCREST no. 32 (1987).

M., Sofonea, Functional methods in thermo-elasto-viscoplasticity, Ph. D.
Thesis, Univ. of Bucharest (1988), (in Romanian).

I., Suliciu, Some energetics properties of smooth solutions in rate-type
viscoelasticity, Int. J. Non-Linear Mech. 19, 6, 525-544 (1984).

P., Suquet, Sur les gquations de la plasticité: existence et regular'ite/ des
solutions, J. Mec. Theor. Appl., 20, 3-39 (1981).

P., Suquet, Evolutions problems for a class of dissipative materials, Quart.
Appl. Math. 38, 391-414 (1981).

P., Suquet, Plasticite et homogenisation, Thgse, Univ. de Paris 6 (1982).



