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1. INTRODUCTION

The theory of Katz algebras was introduced to give a natural framework for
the duality theory of loecally compact groups" Moreover, this theory ;;)01*11')%1;253%3 the
extension of the ‘f*smt& concerning the actions of locally compaet groups on a von
Neumann algebra and many concepts flom harmonie analysis re naturally cenecalized
to Katz algebras.

Following . this method, in f:‘i} was defined the concept of amenable K

algebra and given the first equivalent conditions of amenability for Katz algebras; a

A

detailed study of this problem was done by M. Enock and J.M. Schwartz in [3]
In this paper. we define the concept of wmenable action - respeetively weakiy

amenable £ oo IWate e T aT 7 o alioeahpa W= (M Tl d)) ciieh thot
amenapble - of a Katz algebra - vespectively of a Katz aizebra K = (M, ! K,0) suenh that b
IS 9D S P ] 2ST

has minimal projections ~ on a von Neumann algebra and we study their connection with

the amenability of K. We mention that when the Katz algebra is G =@ (Gha . k. # C‘>

1 L 2]
with G a discrete group, using the correspondence between continuous actions of G on a
von Neumann algebra A and actions of G on A, the coneept of wealdy amenability of an

action of G on A is a natural extension of the one oi amenable action of G on A defined

in [1] by C. Anantharaman-Delaroche.
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2.1 Tn the following K = (1.1 J,0) will denote a Katz algebra (T : M + Mx M
the comultiplication. k: M -+ M the coinvolution, ¢ .the left Haar weight), 1, the

Hilbert space associated to the weight ¢,

9

;

2.2. An action of the Katz mc bra K on a von Neumann

6}9)
e}
=
o
-
2
73
&
=

injective, unital, normal #-homomorphisma : A -+ Al sueh that:

3o o = (a@i) o

G-{

where i ¢ cuot“x L}m identity mapping.

2.3 10 Gy adocally y compact group and \ a von Neumann algebra, there exists

a bijeetive correspondence between the con tinuous actions of G on A end the actions of

(G),m -k “L’ on A {for the definition of G see. e.g. [4]. 18.5);
= 1 I

o

the Katz algebra G = (L
hamely, - Tol s a0 ‘cortinllons > aotion g G » Aut(A), the corresponding aetion

[eS) = : :
T A > A@L (G)is given by:

ST lrew> =)
o ;

(o) g

for e . and ey el (G T Ac BIH) and AL (G) <€ BIL(G,I) are realized as Von

Neumann alee bras. then:

T
O

=) DS
(’ﬂ'(j(}{)é;)(f__’;') ~J% (x)E(g), for £e LYG.H) and ge G

(see, e.g. [4]. 18.6).

2.4. It is known (I3], [5]) that K is called amenabie if and only if there exists a

state m of M such that

() = mxdw(1). for all we M, and x e M.

o

m(i®w)



5, A a von Neumann algebra and 0: Groon

te)

2.5 Lct Gibe oo lo\:ail‘x mpact grou

)

r Aut (A) a continuous action of G on A. 0 is called amenable ({11, nition 3.4) if
” T A . & : . e .

there cxists a conditional expectation P : /\ &L (G) ~ A (identified with the subalgebra
A® €) such that:

g P=Po(o &t ) terall g el

O O 1)

(@8]
where T_1s the automorphism of L (G) defined by

. o

2.6. We recall that for the Katz lmura G = (L

e ‘HG’RG’Q)G)' T delin

0

by
3 - w,
(ch.l)(s,t): fits) (el (G)sit, e G)
A

e =0T | 7 i P o o ; ') SN T e e '/'5/
Fhen 1. = T, (where T was defined in 2.5 and M. in 2. 3). Indeed,- for every ¢ € L (G)

A L

) 2 -~

and f e L (G) we have :

respectively

< (0,5 > =[] 1 L0 (g)dtdg

e

|| flete(i(g)dtdg,

so the equality is proved.

2.7. A Katz algebra K= (M,T k) Is said to be of diserete type ([2], delinition

(a0}

7.3.1) if the Banach algebra M, is unital. For every Katz algebra of diserete Lype, bl

atomic ([2]. theorem 7.3.2).



For cvery locally compact group G, the Ratz algebra G is of diserete type if

and only if G is a discrete group ([2]. corollary 8.1.2).

. If M is a von Neumann alg

ora, we will denote by Z(M) the center of M;

for xe M, z{x) will. be the central support of x and for o € M., s{w) will denote the

dew
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3.1. DEFINITION. An action o of the Kalz aloc

a K = (M,I k.¢) on the von
Neumann algebra A is called amenable if there exists a ditional expectation

P AL A@®E sueh that:

o]
[

(1) [(iewl@iew)T)l e P = Pellidw)aa(iouw)l)], forall w el - :
or, equivalently. identifying A@ € with A.
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3.2. DEFINITION. If the von Neumann algebra 3 has minima projections, the

LN

action o of the Katz algebra K = (M.T,k,0) on A is called weakly amenable if

i
F e LE
et ©

Xists a conditional expectation P : A®@A + A® C‘ such that

- : - Benans ; o
(2) (liewlda(i@w)l)le P =P [((igwwe(i®w)l)], foralw e,

such that z(s(w)) is a minimal projection in Z(M).
Clearly, every amenable action is weakly amenable; morcover, for a diserete
L,Louo G we have the following connection betweecn amenable actions of G on A and

weakly amenable actions of the Katz algebra G on A:

ICN. Let G be a discrete group. A c B(II) a von Neumann

H
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‘Then O is amenable if and only if T_is weakly amenable (and then 7

algebra, 0 a continuous action of G on A and M the corresponding action of G on A.

- : amenable implies

that o is amenable).

PROOI . Fiest, owe suppose that T, is weakly amenuble; so. thére exigls @

S A OV S I S AT e o) .
conditional expectation P : A®2L (G) A which verifies (2), that is

Wi ul)ﬂo,} o P=Pol((i®w)n )Q(iew)n ). foralw

e S EO e S e N et DR T G =t Lo B ) ~ )
hithat z(s(w)) is a minimal projection in Z(% (G)).

e canonieal crthonormal ba

5o (G Ehens

n i 3
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() ) is a minimeal projection in Z(L (G)) = LW lg e G
o
g

and we have the followine relation:
ana-we o vie tie o OWINe FeLauon;
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“Then:

o (IE@w I Je P o g “oP forpll gl

BB )T )] =P o [0,

o al g€G
g ~

i

509 op=po (9 OT) forall g €G, which means that 9 is amenable (ef. 25

g He S
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Conversely. the proof is immediate. using 2.5. 3.2, (@) and £).

e D IR SO Qo S (Rl s s e e Nt ot
K. Using Proposition 3.3, 2.7 and ([1], Remark 3.7). we obtain

there exist non-amenable kKatz

Lype Wileh may act arsenabie on

certain von Neumann algebras.

o

3.5. The connection betwecen amenable Katz algebras and

(respectively weakly amenable) actions on von Neumann algebras is esiven bv the
R : O o J

B s
following.

THEGRESL Det K be a Katz algebra. A < B{ll) 2 von Neuwmenn

(=)

a:A ~ A®M an action of K on A. Then:
a) K is amenable if and only if @ is amenable and there exists a state m of A

such that
m(i® wielx) = mixlwe(l), forall xe Aandw € B,

Y’

b) If moreover, M is atomie, then X, is amenable if and only if ¢ is weakly

amenable and there exists a state m of A such that

m{i@wlax)) = m)w(1). for all xe A andw € M,

”

PROOCFE. a) and b) "==" First we suppose that X is amenable and we will prove
that a is amenable (and then weakly amenable) and the cexistence of a stule m of A

which satisflies the required condition.

Because K is amenable, there exists ¢f 2.4) a state i of M such that

{

(1) m{(i@w)l () = mkw (1) for all xe M andw € M,

We will obtain first the existence of a state m of A such that

\

(2) m((i@ w)ax)) = mx)w(l) for all x€ A andw € M,



(we mention that this existence has been slre

s

this paper we give anoth

n
i

ady proved - but not directly - in [3}; in

S

er proof).

In order to do this, we consider a state V: A *€ and, for every X € A we
define ixz My @€ by the termula
(3) 1‘*«0) = Wiowax)), (weM,)
If is easy to see that f s linear, continuous, so £, &M J = Then we
definem A € b:i\f
? (4) mx) = ML), (xe A)
5 Then m is a state of A and, for ever zu),w € M., X £ A we have:
(owor® = Hiedate ), wing &) ,
= (i \"oio’wmw 0®i)(c  >'>'>
= Wi B ¢ ‘f"U‘)(i'(::).}f')((»"!(x))), sing 2,2 " - ‘
But also
<(j@[,o)1‘(fx),[¢/> = l“(fx),lgcp w>
= <fx,(&_f®m) o>
= YR (WO W) o T)alx)). us ng (3)
= 1&((;()@) @wi(i® I’l)(a(,\;_‘)‘)‘)
and therefore :
\
2 ¢ 52l £ 4
(5) f(iG‘ e (i@“i)l‘(fx). for all x€ A andw € M,
£ Then, for x € A and © € M
m{(i @ w)ol(x)) = i"‘?(f(l(o U_))Q;:'(\)), using (4)

—~
(]

H‘i((i@><x>)l"(1‘?y>), with (5)
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At is easy to verify that P is a conditional expeetation. Inorder Lo obtain 3.1 (1), w

= MW (1), using (4).

$0 we have obtained (2).

Now. we will prove that @ is amenable (and then weakl y amenable).

A LG

2 ) (’ oS o i S NV 7 R ~ ~ : -.‘ .‘- - YT Sy I _’ e ¢ fi i
Because m is a state of M. tliere exists a net { {"iji"-‘I < Hy. with ;f&i H =0y
I, such that
(6) We (x) = b, for all xe N
ol iel
Let LIM be any Banach limit with Pespeet 4ol
We defline P : A@M > A by’ the formula
(7) Px = LI?\I;((iCj’\wg )x)
2 2 o0
i
¢ 3 .

o

suppose that A is invstandard @ form on 1. Then, for every ENe il and <€ AT M vio

have:

(Px§&

= L”\Ti((i{‘f 'LUF. )€ In)

2 A0

1

1
i

- G >

g

LIML.<x,W
1 s St bt i

= lim,<(w‘g @i)(l\‘).wgﬁ‘. using (6)
el e :

8 s 0 e
and therefore

(8) (PxE|n) = m{(w Fn@ )(x)) for all xe A@M and &ne II

- Then we deduce:
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AP ({1 ¢ u)l H)E [ n) = mw Fon D DUESI@W)T N(x)), using (8)
S 9l
= m{{w na‘}((ii‘"ﬂ TN x)
= MU W)IT (W 1))
b1

= wW(1)(Px5|n), using (8) /

But also

-3
(i@ (1@ N(PE|N) = w()(PxE|n)
because P\ £ A® € = A. and we have obtained that
(9) Poio(i@w)D)]=[i®(i®w)l)] e P, forall ® &1l
On the other side we have
] !
(PUGS )2 ()8 n) = LI ‘!i((11‘<‘>:— (@ w))DN0)S M), using (7)
o
! N EDN 1Y e
= LIM.(i9® w)0)®w . )T |n)
i .
i
- : > i
= L-I:“\-ij((lf? W)W, ) NE 1)
-
= LIM}K(?'@ m%. )('\;))({JJE_,‘T]G?F -'L‘}‘) o Ci>
. Ji 27
But because we supposed A in standard form on 1 and (W, ,\.1*'»3‘ W)o0€ A, . there exis
Il o~ ' ) 4 9 Yy er R S S : e 4.
¢'N'€ M sueh that e Dk»)w)" Q=W £ips SO We may continue in the last equality with
Sy e
4 L= LIF\'li_<(1’”>’ g ), U)e, q(>
i
= L1 (( @ w, }x)&' | NY)
= S

1

it

(PxE N, with (7)
= P Wi
<Px,U E“:n>

= b 7 \
= <Py, (W i,ﬂo wje oy
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and so we have proved that for every ® € M,

(10) Peo [(i®w)@i] = [(iBw)e]e p = [((j@w)n)oi] o P

/

(in the last term of the ecquality we used the identifiention A® € TA). With (9) and (10)

we obtain

P e [(IQwa(@w)l)] =w@)(i®w)]e P, forallw & M,

that iy the action © js ummmln] (e}
a) "&=" We suppose that therc exists a state m of A such that
(11) m((i@w)ax)) = mx)w (1), for all x€ A and®w € M,
and also that the action @ is amenable, so there exists a conditional expectation
P:A®@M * A sueh that 3.1 (1) is verified. We shall prove that K is amenable.
We delinemi: Dk = by
(12) mix) = nPU %)), (xe M)
Clearly m is a state of M. For every W € i, and x € M we have
m(i@w)l (x) = PO (10OW)T (x), using (12)
=m(PH{(IQ w)a)O (1@ w)I)(18 x))
= W(Dm((®w)a(P(1@x)), using 3.1 (19
: : S
= 0 (m (P @x)), using (11)
= W{Hmx). using (12)
5 and so K is amenable, using 2.4
b) "¢==". We suppose M Is atomie, 0 weakly amenable and the existence of a

.
¢

tate m of A such that m((i® w)a(x)) = m()w(l) for all x€ A and ¥ € M,,. We must prove

the amenability of K. Using the same notations and proof as in the previous impli cation,
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we obtain that there exists a state M of M such that

(13) HG@W)T ) = FEW (1) for all x € M and 0 € M| sueh that #(s@)) -

is a minimal projection in Z(M)

In order to obtain the above equality for every x& M and W € M_; it is sufficient

prove that

(i@ W)l () =MW (1), for all xEM and E€ 11,
(e, ' = : i/’

o

SRSy

Because M is atomic, l:l ¢ where ¢, are minimal central, mutually

orthogonal projcetions in

: ! poa il e,
e o
H% o

~ G o Ry 3 @ oy P ,
where T > CI..F 2 is a finite set and e.5 Z O flop 1iET " Ihen,.for every 2 € M we have
b

S8 2 Yice forallie Pn and n€ N
e

> 1

i
SO
Nedie: fonall ER candn €3]

Ehie e n
i

AICY

and. beeause 0 # z(s (UJC “and ¢ is a minimal projection in Z(M) we obtain
Zis e S e s fomall el Sonidin €N
e.% i n o

Then, for every x € M,

(14) mEQwy )T 6
“n i€F i

&
=
it
—~
~1
—
&
t
Qe
)
—
e
Rt
S—r

72 So. il LB H. chhened - / c and we may find

a



el wo_g(l)l\ﬁ(:) using (13)

1€ 1
I
= U)\C ( )]hk\'
n
: - S S - : S e > = €
Because S_ > €, for every € > 0 there exists a n. € N such that e el =
o i e n e
n :
e - o 0 l"ll - ”} ”} e e 3 = e
for all > B owijere @ = Tnaell i Sill, sup. i i 'hen, for n > n. and x £ i we have
n&H
| P b 2
- N = 2 ElE
lop () - wp ] = (65 |2 ) - 5 18)]
n
Gl el 5 £l s
Sl s ras R e e
= ne 0 n n
& i = [ o : o | o e
< £ el lelle sl = st = i -l el

so 1oy ~wll

n n
Then, for
e
l[ (1w

5
n

so, if-we pass to th

m(i @ W )

0

that is K is an

T

Gerad <0}

cvery x € M OM fixed

7 . 5 | s
<)~ (@0 | i

o limit in relation (H) we obtain

\

Exli= ml Jee(1), for every X £ M,

.}

3.6. COROLLARY. Let K be a Katz algebra of discrete type, A< B(Il) a von

Ncumann algebra

only if @ is weakly

m((i® W)

RREOIE

and . A T ADN an action of K on A. Then K is amenable if and

amenable and there exists a state m of A suech that

=

(x)) = m{x)W (1), for all x€ A andW € M,

[For every Katz algebra K = (Mjl 1kO) of diserete type, M is atomic

(ef. 2.7), so we can apply Th 1corem 3.5
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3.7. CORCLLARY. A Katz algebra K is amenable if and only il tnm > exi

von Meumann algebra A such that the trivial actionof K on A : x =+ x®1]

\

Ly is amenable.

T

i amenable action of the Katz algebra

C
=
v
o
crn
=
e
0

K = (M.LI,k®) on a von Neumant 1 algebra A and B a von Neoumann subalgebra of A such
that 0(B) € B@Il. We suppose t that there exists a conditional expectation P from A to B
VR S '/\//\ Dy 3 + G e & A R < : ' % 4 ‘ i
such that (I®W) e P = P o(i®W) for all W € M,. Then the action of K on B obtained by

restriction of @ is amenable.

PROOF. Because ¢ is amecnable, there exists a conditional expectation

B A®M > A sueh that

v

Then if we denote by Elthe vestriction of P o L at BO M, E' is a conditional expectation

from B® M onto B; using the above equality we obtain

WO L) Jle B = E o [(iGu)a] )@GOW)T)], for al @ € M, |

ol

50 G oy s amenable.

.\.4

3.9. PROPOSITION. Let A,B be two von Neumann algebras and @ an amenable

/
/

rebra K on A. Then

(ii) (ix c)/dOI ) is an amenable Lmtloq of K on AQ@B. where ¢ : M®B > BGHM
is defined by c(x&b) = b® x. for all x € M and b eR

The proof is straightforward.
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