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§0. Trntnoducti on

Let T be an algebraically clbsed field of characteristic
zero and let G be an irreducible affine algebraic F-group; ouf
main object of study will be the space A(G) of (non necessary
F-linear!) derivétions of the coordinate algebra #(c) which
take F into itself and 'commute’ with comultiplication ., counit
and entipode. We have two motivations for this study. First,
the subspace A(G/F) of all F-linear derivations in A(G) can be

identified withaf(o4utG), the Lie alpgebra of the automorphism

funetor of G. 1L dis o fact that &QI(}need not be representable

on the category of all F-schemes, but (as shown by Borel and
Serre [BS}) it is representable when restricted to the catego-

ry of reduced F-schemes (by some locally algebraic group, call
it Aut G), In fact there exist examples of G's (e.z. E=¢_ x &
for which the map between the corresponding lLie algebras ,9:
q(’(Aut G)-%xpﬁﬁkj'G) is not surjective (cf. [BS]) (in other words
for which there exist "infinitesimal automorphisms™ which do
not come from an algebraic group action). The results of this
paper will provide a better understanding of the above lie al-
gebra map ) . For instance we will prove that there exists a

complex which is exact in the first two terms:

log kod
OqfwutG}»J@&f@}ﬂﬂgHmﬂwﬁnﬂgghJyh%-eHzmﬂﬂ

where g;ﬂG) P:JQR), uzka), R being the radical of G and U

being the unipotent radical of G. As we shall see log will be
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induced from the natural operation of A(G) on r while kod is
related to the geometry of linear subspaces of the variety
of all Lie algebra multiplications on u.

Cur second motivation is provided by the fact (proved
in.[ﬁﬁ}z that any irreducible linear 4ﬂ~algebraic group
(in the sense of [CI]) of finite transcendence degree (i.e.
with tr.deg. A</ X<os) has a finitely generated (in the non-
differential sense) coordinate algebra.?éfp} hence derives from
some affine algebrai0~ﬂ-gf0up G equipped with m commuting ele-
ments of A(G). The results of this paper will provide in parti-
cular a complete description (both from A -algebraic as well
as analytic viewpoint) of all A -algebraic groups as abave for
which either the radical is nilpotent or the unipotent radical
of . ?(@(M) is commutative.

Note that the two kinds of applications mentioned above
are related since any G with non-surjective ) provides "non=-
trivial® examples of waalgebraic groups‘(e&g.G=Ga x Gm leads to
the A -algebraic group (= gyy"‘v- (y‘)gf‘-O}c: GL1(2() in notations of
[C;l—]))o

Our paper (s organized a5 follows ; sectiens 1-4 are concerned with
Z&(G) while seclions * 5-3 are  devoted to applications to ZXual»
gebraic groups. Let's discuss our results in some detail. First
we shall be concerned with the natural map 10g:A(G}a>W(G) (in-
duced by "logarithmic derivative'™) where W(Q) is the space of

all group homomorphisms from the group Xm(G):Hom(GﬂGm) of malti-

plicative characters of G to the group X (G)mnom(ﬁﬁﬁa) of addj-
&

tive characters of G. We will prove that kerlog is precisely
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the S;pace.A(G‘;fin)s of all derivations :ih A(G) which are locally
finite on $(c) ; equivalently A(@,fin) is precisely the gpace
of all derivations in A(@) preserving the ideal of the unipoten
radical of G. Now an element of #(G) is called a weight of G
if it is a multiplicative character of G (i.e. a group like
element) whose restriction to some (equivalently any) maximal
torus T of the radical of @ ia o weight for the action of T on

by fnner avtomorphisms | :
(? (6)< We will show that if all derivatioms in A(C) 111 all the
weights of G (this happens if either the radical of G is nilpo-
tent or if the unipotent radical of G is commutative) then log |
has a section defined on its image (which we call e}c‘p) sueh that
Im exp is an abelian ideal sa A(G) is the semidirect product of
A(@,fin) by Im exp; moreover if F=d};.f((,:(ujt Ge f(Aut &) where

G an

is the underlying analytic group.of G2
Now W(G) identifies with I—Iom(u/un[g,g],r/u); usine this identi—
fication and a purely Lie algebraically defined map Hom (u/ [,
rj,u/r)———?ﬂz (u,u) we get a map kod: ‘\-’J(G).i-——‘?HZ (u,u)e we will pro-
ve that ker(kodelog) is precisely the space of all derivations
in A(@) vanishing on the smallest algebraically closed field of
definition Fq of G (’thle existence of FG follows from [82,]; we
will also note that FG*xFA(Gﬂfin))w In sections 5 ¢

we deal with irreducible linear A -algebraic groups of
finite transcendence degree (called here f-groups) . Using our
theor;y:v\f&ill prove that such an f-group M is splittable (erf,
[55} iees A ~isomorphic to 32 Amalgebsraia group of the form
r"xh GIJR(K) where i'"z is aK-»c:lofaed subgroup of Gan, in nota=-
tions of E(fﬂzci‘a glse (521} 1Ff nd enly if 2} group=like ele-

ments of the coordinate algebra Zﬁ/"f are constants. We also
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prove that rl is semi=splittable (i.e. A-isomorphic to {”Xn { c(;yjk-—Pi . k=0}with‘i”"ﬁg

as above and Pijk non-differential polynamials in the ij' s) if and only if kod

log ng‘ for all i where we view LC:L as elements in A(G) ,G=§9( 'Z«’? l"}) (cf. notations
in [BBZ\, see also (5.3)). Next we will give a precise description of the set of A-
isomorphism classes of f-groups all of whose weights are constant (the weights of

[" are by definition the weights of 5? (‘U ‘} Y ) viewed as elements of & %/m’f); these
groups include all ['’s for which either the radical is nilpotent or the unipotent
radical of ﬁ(@f%f‘%) is comutative. We will also prove that if P is an f-group all

whose weights are constant which is defined over an algebraicalily closed A—fiel{f){,

?' then there exist a Picard-Vessiot extension ?:L/ F and an intermediate A-field
",Jtijt Cgc%<ﬁ> such that f/‘?l is split (i.e. generated by contanty) ond ji<(ﬂ>/g

is generated by exponential elements, in particular all three extensions | “}\l< i"'>/ z,
2/31“ 1 F 1/ F have no movable singularity (NMS) in the sense of [Bl]p.'S. Finally

we shall define an analytic concept, namely that of Painlevé extension of [\-fields
(corresponding roughly speaking to extensions "arrising" from Painlevé foliations of
the first kind in the sense of [GS]) andspreve that if i o f-group defined over
F (5 aléebraically closed) all of whose weights are constant then FXT'>(3F is a Pain-

Lepuesent

levé extension. Our analytic results our efforts to understand some very interestinc
remarks and conjectures made by P.Cassidy in ailetter to the author (C 4 1 ; we are
endebted to P.Cassidy for her stimulating suggestions and comments on a preliminary
wersion of this paper. We are also endebted to O.Laudal for his comments on de-

formations of Lie algebras.

We close our introduction by notinag tl.at most results of this
paper can be extended (in a noen-trivial way) to the case of non—
linear algebraic groups and non-linear differential algebraic groups.

This will be done in a subsequent paper.

In what follcws we fix some notations and conventions.
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(0.1} Termimology of affine algebraic Fmgroaps is bowr- .
rowed frmm;[H]; however we shall also look at affine algebraic
F~groups as "group schemes of finite t type over F". We will of~-
ten denote by the same letter an affine algebraic F-groups and
ite "underlying" abstract group (= its group of F-points}. Re-
call thatdfCA)ﬂ (6} denote the Lie algebras associated to an
associlative algebra A and to an affine algebraic Fegroup G res-
pectively. (P (G} will denote the coordinate algebra of G, 9 (H)

will denote the affine algebraic F-group associated to an affi-

ne Hopf algebra H. Lie algebras of algebraic groups G,R,U,...

will be sometimes denoted by g,r,Gyees

(Qe2) In sections 1-4 terminology of differential alge-
bra is that from [Bl]'while in sections 5-8 we use Kolchin's
terminology [kljfbl][BEIG So in sections 1-4 if /\ will be an
arbitrary (non necessary finite) set of (non necessary commu-
ting) derivation operators we will speak about [&mfieldsgzﬁ,w
~F=vector spaces, ... Recall that a A-F-vector space over a
A ~field F is an P-vector space together with a map A;»Endva
g“‘7fv with the property that(y(ﬁx)x(Jy}x+)J& for all J%Ag
}éﬁy x¢V, where we have writeéen dv instead of 5;v for all wel,
Recall that if V,W are A~F-vector spaces then V®W and Hom (V,W)
have natural structures of A-F-vector spaces (cr"’@yj X®y t
+ x@gb" for Jel) y XE€EV, y€W and (&) (>:)‘=:§<f‘(x);)mf(<fx) for CYGKH
feHom(V,w), x€V)« By s A -lie F-algebra we understand a A-P-
vector space h which is a Lie F~algebra such that the multipli-

cation map h®@h—vh is a A-map (this is the concept from [51]

A e e e O T e S e Bl — Sl D S i T e S e i rf‘ TRr= I
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A A-F-vector space is called locally finite if it is a
union of finite dimensional A-F-vector subspaces. If V and W are
locally finite so is V®W but Hom(V,W) (and even the dual vO=

=Hom(V,F)} won't be in general.



1. The space A(G) and the map A .

(lLel) Let k be a field of characteristic zero, P an al-
gebraically closed field containing k¥ and let G be an affine al=
gebraic F—group. Denote by A(G) the F-vector space of all k-de-
rivations 5 ey — P(@) enjoying the following properties:

1) J@er

2) feod=(o 141 @dop :Ple) —» 00) @ Clo)

3) Sed'= $os: @0y — @)

4) Socf: 5’0%:@((}} —>F
where/u,s,s are the comultiplication, antipode and counit res-—

pectively on F(a) [Sw], Then A(G) is also a lLie k-algebra equi-
ped with a natural map d:4(G)—> Der(F/k) and with respect to

this gtructure it is a Lie space over T (i,e.[/\cg,ﬁg,__!*)[}g, 52]“.
~-(é72>)o¢l for )eF, 5’1,52 ¢A(G) where gz)xé)(cg)()), See[NWl?(_-Cgl)q
For any intermediate field E between k and F we may consider
the Lie subspace A(G/E) of A(G) consisting of all y@ﬁ(‘_(}) which

vanish on E: then A(G/E) is a Lie E=algebra, he F-Lie algebrs
A (G/F) has a remarkable interpretation in terms of t‘he ault o~
morphism functor of G. \

Indeed, let oéth:gFmschemes}a fgroups?(be the functor
defined by SPAaut(G x S/S). This functor is not generally repre-
sentable cf. [13&;] : ite restriction t_,.o% reduced F-—sc:hemas} is how.
ever representable cfa. [BS] by a locally algebraic group sche-
me, call it Aut Gy with affine connected component of the identi
ty Aut®g, ye may view Aut G as a functor %Fmschemczzsg»g\;ﬁrwps?,

by ldentifying it with its functor of points. Then there is an

. - - - ° . 7 " =y
ebvious homomorphism Aut G — (/ﬁﬁ} induecing a homomorphism ;)fi(Aut G
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L (el @) (here ir st ig any functoz:"{F*sc,he:meaf{groups;, b
is defined to be the kernel of the map}((Spec Fj} w»d(&‘pec )
induced by projection of the ring I & =P @EF of dual numbers ontc
F given by gwo;,fc;{() is aprieri only a group, not a Lie algebrs
ef [DG’] Jo Now the map @i+ id +£6 clearly identifies ACCG/F) with
z ( u{wf G) making the latter a Lie F-algebra and making the map
(/f (At Y- (bt @) a Lie algebra map.

An important role in our paperr will be played by the set

/)
ACG%fin)./ af all lecally finite derivetions in A@) (here LKGA(G) is called
%)
locally finite if ('))(G) is a locally finite o -F-vector space). Apriori this
set is not even a vector subspace of /\(G); but as we shall see below (cf. Theo=::

rem(2.1)) it is in fact a Lie subspace of A(c).

(1.2) PROPOSITION. The map J:f(hut G)-.(AdG)=AlC/T) is
1ngect1\z“e and its image equals A (c/F YAnA(G,fin) (viewed as a sub-

get of A(@)).

Proof. Start with a preparation. Assume W is a finite @i=
mensional vector subspace of P(G) generating P(G) as an F-algebrs
and let dul(G,W): {ai‘fine F-«scl’lemes%-—)\}groupsﬁ be the subfunctor
of G defined by S=Spec E-l-»?feAu”r(G x 5/8); £5:0(0) @ B Ple) =
® B preserves W ©@ u}’ We claim that (,M (G,W) is represent able;
note that the affine group scheme Aut(G,W) representing it ies re-
duced by [Oh’] P.280. To prove our claim let W, be the intersection
of all sub-F-coalgebras of (e containing .J SWASW; by (_uWJ‘V

is a finite dimensional coalgebra, Now define inductively the in-

creasing sequence of subspaces ‘&-.j_ =0 e by the formula W i
-/A(J @ W:) for iyl and define functors ‘/“éo’ L;é], [,2,.,,, from gafw

fine F-»sch.emes}to 3 g;roups% as follows. We let (;LO(Spe.c B) be the



group of those B-linear autamorpm ms. (T’ of W @ B such that

%@SB:SB (7;}, where SBT-‘S R IB_e Tor izl, lek (,“(/i (Spec B) be the

group of those B-linear automorphi sms 0_3:. of Wi. ® B such that
T3 (W; g ® B)=W, _1 @ By T3 }w L ®B €t _1(Spec B) and G“%;M

0. _+) where M= ~e We have ce lesl restrietio
o (0;";»1 @0 _4) mhczr@/ugl/«m lye We have canonical restriction

maps (fir ?% 3 for all izl, Now clearly alluéi‘&; are repregsenta-—
ble by affine algebraic F-groups. Ai’- hence we have g projective

system o..- A- - A‘:i’.-}‘_ P Al——\» A@" One checks that {f (€ ) =

“<1J~I'l<fé’. . Consequently (,c(u)f( sW) is represented by Spec(uw(f){fa ))
e —>

and our claim is proved.

Let's prove that Im)=A(G/F)AA(G,fin). The inclusion et
is clear, Conversely if XGA(G/F)'AA(Q,f'in) we may choose W above
such that S‘WCW@ Then ic}+€cg\éoc{ai((},¥"!) (Spec . ), hence we get a
morphism f:Spec FE—-» Aut (G,W) such that ig+ed=f CP W where
Aut (G,W) is the affine group scheme representing M(G,,W) and

(p@’,w is
Aut(G,W) being reduced there exists s morphism h:Aut (G,W)—Aut @

the universal Aut(G W)~automornhism of GxAut (G W). Now

ouch that, (t’ .-r1 ? where PG is the universal Aut G-automorphi sm
of G x Aut G. Consequently id+ed= (hof):’tF’G hence §'c Im.g .
Finglly, let's prove that 7 is injective. Let Aut®g=

=5pec R; we may choose a finitely dimensional subspace W of (@)

generating £ (G) as an F-algebra such that ‘Féﬁ(?[@ R)=W & R (here

¢ éz@CG) ® R->P(@) o R is induced by LPG)., Exactly as above, there

exists a morphism h:Aut (G,W)—> Aut G such that hXY’G ‘{’(.f w ¢ There

is also a natural morphism c2Aut G —> At (G, W) defined at the level

P S molmto o tait LG) > suste ). sl A
=

Consider the affine group scheme A=Aut (g yW) % Aut® @s ntn
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that the projection Pyl — Aut{e,W) is a closed embedding., Now

the map Af-g> Autle S = Aut (G;‘V&"}?‘equala the map pl:A -
—> Aut. (G, W) for if (F£,r"JcA(8) is an ‘S'»poin't of A we have hof'=
=jof* (where i:autl o Aut. G is the inclusion) so the image of
(£,£%) via (G')Pa)CS)ﬁ is a map seAut(G,W)(S) such that Eixf‘;éﬁwz
mf'ximf’@xfﬁhj: </7G="»tﬁ$%ﬁ; consequently s=f by the universality
of Aut(G,W). We get that P, is a closed embedding, so 4 is an
affine algebraic group. Since the map P, tA — Lot e inoices o
bijection at the level of F-points this map is an isomorphiesm.
Consequently ¢ is a closed embedding hence Aut®G is a subfunc-

tor of Aut(G,W)} hence of At @ ana injectivity of ) follows,.

(1.3) Ve end this section by reviewing some results from
[83_3 which will be used in what follows. Note that in [B,ﬁ‘} ve
worked in the setting of partial A-fields; but there is no dif-
ficulty (using for instance [Bl]) to extend these results to the
setting of A ~fields ( A arbitraryl. Let G be an irreducible af-
fine algebraic F-group. Then g={(G) has a natural structure of
A (G)-Lie F-algebra defined as follows, Py is a A(G)=F-vector
space hence so¢ is its dual ?(G)O.. Then with respect to convolu=
tion, Q(@)? becomes a A(G)waalgebI‘ay sol (P(3)°) becomes a A(G) -
Lie F-algebra. Finally one checks that /2(Q) (viewed as s subspace
of of (@(GIG)} c:f[H] p.36 is A(G)~stable. Now we proved in [B%,J that
the Lie algebra r of the radical R of G is a A(G)-subalgebra of g.
Argunents similar to those in [B??] also show that if His an inic
ducible algebraic subgroup of G whose Lie algebra is a/_&wmbalgem‘

bra of g (A being some subset of A(Q)) then the defining ideal of
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W~ﬂiiﬂxfiéeal of P(G). But we should note
=
(and this will be a crucial pgzﬁﬁ\here%v%b&t‘the lie algebra
u of the unipotent radical U of G is not in general a A(G)-sub-
algebra of g; nor is the defining ideal of U in G a A(Q)-ideal
in P(G)! The above discussion implies that we have a natural
"restriction map™ A(GY—=AM). We will also need the following
fact:if 1:G -Gt is~an isogeny (i.e. a homomorphism of irreduci=-
ble affine algebraic groups with finite kernel) then there is a
natural "lifting map™ i*; A(G')— A (G) defined as follows. Note
that 6—=2G* is an Stale map, hence any k-derivation S' on (7(G')
lifts uniquely to a k-derivation 5‘0n P(c) (see [Bljp.IB). But
i gwé;A(G') then X must b@lbng tozﬁ(G) because the maplﬁcJL
«(.&& 1obo) @S)u:,u (respectively Sed - ycS,EvJ-»f%) is & H-F-
~derivation £(G) ~»0(e) @ P(C) (respectively an S=F~-derivation,
an ¢~derivation) vanishing on GRG'); suech g derivatioﬁ must va-
nish on the whole of F(q).

inally we have:

(1.4) THEOREM lBé] Assume the radical of G is unipotent.
Then A(@)=A(G,fin) and rA(G) is a Field of definition for €,
Since this will play a key role in our approach let's say a few

words about the proof. We prove in fact that P(G) is locally fini.

te as a A(G)-F-vector space; this will imply the statement about
the field of definition (use the method in,[Bli]g chapter II).

As for local finitness one proceeds as follows: using a version

of Kolchints theorem an the surjectivity of the logarithmic derdi-~
vative one can replace F by a A(G)-field extension of it such

el o S oy P b > - =
that, {_{'“[(CJ) &nplitu (1030 sk SPamMNed aor T ey s b et N e
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g’:g;Am Fﬁﬂzﬂ(ﬁ-)}‘a Let gAm:z:.'Qi*aG be a decompogition of gA‘ with
Ty its radical and s, @ complementary semisimple Lie alg@bra;
Then by [ﬁ] pell2 smﬁﬁc@ F is an algebreic Iie aubalgebrs of £,
s=j?$}$ Sc Ge Both ideals defining R(=radical of @) and S are
A ~ideals in @CG); therefore the multiplication map R x S—@ is
a [Xmmég and we are reduced to prove that both F(R) and Pz
are locally finite. This follows for instance by inspecting
their embeddings into the corresponding comtinuous duals of the
universal envelloping algebras of their Iie algebras: fOﬁ(P(R)
the image of this embedding lies in the algebra of R=nij lpotent

representative functions which is locally finite while for P(S)

the whole continuous dual is locally finite (for bockground =see

[u] ).



2. The maps log and exp

g

\
let G be_an irreducible affine algehraic Fegroap. Put

L

X (G)=Hom (6,6}, Xa’ce)‘;:‘fﬁaﬁﬁcﬁ;gea); note that X (G) and X_(C)
viewed as contained in Ptg) are precisely the group of group-—
like elements of FP(q) respectively the group of primitive‘elaw
ments of ®(G). Put.w(G):Hom(Xm(G)r X, (G)); since X (G} is an
F-vector space so is W(G). we define a remarkable subspace

W,(G) of W(G} as follows. Let T be radical of some maximal re-
ductive subgroup of G (equvalently, T=a maximal torus of the
radical of @) and let &(T,£(C))e X (T) be the set of weights

of the action of T on ®(G) by inner automorphisms (l.e. & (" Qie
:%%ﬂsxmﬁf);€kﬁi:#0 ). Moreover let $(G) be the subset of X_(C)
consisting of all characters of G whose restriction to T belongs
to (,0(a) ). It can be easily shown that §(G) does not depend

on the choice of the maximal reductive subgroup of G. For con-
convenience the elements of $(G) will be called simply the weilght
of Glor of P(G)). Now let W, (G} be the space of morphisms in W(G)
vanishing on ¢(CG). Clearly W, (@)=w(G) if the radical of G is nil-

potent.

Our main result is:

(2.1) THEOREM. There exist F-linear maps log:A(G)-—>W (@)
and eXp:WQ<G)~?AKG/F) with the following properties: |

1) kar-lOE“AKG,fin)a Koreover A{G,fin) is a Lie subspace
of A(@) ana @(G) is locally finite as a‘AIG;fin)~F§vector space,,

2) log o exp is the natural inclusion WO(G)~9W{G) and
Im exp is an abelian subalgebra of'A(G/F) such that [ﬁm), Km.@xpj

C Im exp.
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) For any (e Aut ¢ and aeW (G) we have O"”ICexpa)fi’i‘--
=exp (Ca where we also denoted by ¢ the induced automorphi sms of
P (a) ana W_(G).
4) For any field of definition E of @ contained in F

and for any J& Dor (F/E) upon letting G":G’F @ LT (G'E an E-group)

and letting 02 1o ehe trivial lifting of $ to G)(G)XG)(GE) ® F
ta 7

N

and“W&(G)=w0(GE) @ F we have[gxg exp g]texp<§xa for all aeW (C).

(2.2) Let®s define the nap loge. The map exp will be de-
fined later. Note first that if {e-Xm(G) and JEACG) then {"IJQQQ
€X,(G); indeed /Ag)ﬁszca 1 wx exsg)x{n( fo 1 +1 al) (L@ )=
= cl@z%+‘ﬁ;ﬁ5ﬁ;and4multiplying this equality by the equality

Yz C{ml)*{j}‘ QD&-{E we get/u ({"lcf)[:)=cﬂlo%op 1+ ® /T/»ICPZ: showlng
that L“Kénl is primitive as required. Then define (logAS({iﬂ
=18,

A similar computation shows that X, (G) is a A(C)=F-vector
subspace of P(G). Hence W(G) has a natural structure of A(G)~F~
vector space given by (J;)(I}=é}a({)) for gll 5%A(G% acW(ac),
ﬂveXmﬁG). In fact W(G) is even a A(G)-F-module (i.e. the map
[X(G)wvmndk(w(ﬂbl is a map of Lie k-algebras). Then one immedig—
tely checks that log is a cocycle of A(G) in W(G) in the sense

that
log I:gL - 52 1= cglagjug-» cgleg dg

Tfor all ééfé;eA(G}m In particular this shows that ker log is a

Lie subspace.
In what follows we shall repeatedly use the foklowings

(2.3) Remarks. 1) let G=Gy >4 G, be a semidirect product



of irreducible affine algebraic éroups and i_denti.fy () with
(P(Gl.)” @ 67(62) by the multiplication map Gy x G, f>G¢ Ir X (Gy)=
=1 then X (G) identifies with X (G )‘ vi'a the identification of
B ilo) G)((J?)\mth @(Grg)e On the other hang, if X, (G }=0 then X, (G)
identifies with (X (Gll) P(-» Gy-invatiant space of X (Gl) with
C'2‘ ac:tlng__by inner automorphisms on Gl)' via the identification
of G)CG};) ® 1 with @(Gl)a

&) 'A.ssume Gy =Gy is an isogeny. 'hen the map Xm(Gl} —>
-%XmCG"z) i1s injective with finite cokernel and the map X (G4)—
=X (G,) is an isomorphism. In particular there is an induced

isomorphism W(G.) 25 W(G,).

1)
(2,4) To prove Theorem (2.1) we fix some notations:

let U be the unipotent radical of G, H a maximal reductive sub=-

group of G and T the radical of H; put S=[H,H], M=U>qS and

-

G-M><)T"U><] (3 x T)o The isogeny S x T—H induc;es an isogeny
G- 6=U>all. We write %=X, (). Note that the map X_(G)-»X induced
by restriction is injective and has finite kernel; indeed thisg
map is easily seen to identify with the map X’ (G) = —>Y (Im)— X (sx
i), —-7X (I} ef. (2.3) sbove and we are done also by (2.7

Letj) :T x M— TxM be defined by f(tgm)n'{t,tmtnl), Then

the multiplication on G is defined (after ic’ieﬂtifyiﬁg G with MxT

as an algebraic variety) by:

Txpxl 1xTx1 Mu e
>Moe P x Moy > x M x=TxT > M x P

MxPxMx?

Where T:T x MM x T is the twist mape. For 76X we denote by
@(,U ol } the eigemspaces corresponding to 7[, (with T

acting wvia f):; note that we shall always view here o(,o (I1) as the
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Lie algebra of left invariant derivations on P(1). We will
still denote bey/x the comultiplications on (1) 5 9’(&3 and by
P Pry o PP aPun, t: Pr) o Pan >R @P(T) the
maps induced byfg Te
For YeX let Py * ® Q0 - 6’(&’1)7(’ < P2y be the projection

. =, I
bnto the A -component; then we have the formula fFli® a)= Z i
(4

© pz'(a) for all aefa1). Moreover, note that J(M)l is the subs-
pace of a(f’(l‘si) consisting of all 660[9(1‘*5) such that Gopll=p ¢ €
L

for all y'¢X (as linear endomorphisms of (P()).

Finally, for all {éX and for any k-derivation §or Pun @ @)
such that é\FC F we define k-endomorvhisms JX} of () by the
formula 5;‘ (a)=(1 ® qz:~l}d(‘(a ® 1) for all ae¢P@1) where qz;:ﬁo(T):

=®F)' »FY is the canonical projection. In other words we
i
. 8 =51d =

have the formula d(a @ 1)= 2 ( Xﬁa) ®A . Clearly, 051 will be

a k-linear derivation of (1) while for 7L, cf/;: are F-linear

derivations of @(M), « We put SO?-ZL(;:.
8

L
N
(2.5) IEMMA. Let JeDer(POD o P(r)/x), § Pe PYas in

(1.4) above. Then &A(G) if and only if the following conditions
are satisfied:

1) For any {¢ X we have g(l ®f}=a, @ § for some ac Xa(l‘%ﬁ)T(

¢ 1
2) Bor any 7,1'€ X, {#L we have

(1o p(l’ )17«AMO {::(1 @ ;{o p/{' )“a/,:M_

%) For any J€X we have

Q®p ) ‘,o(S:(lQOSop'*a @ p +§f®p Yo py,
1 s 1 £ 1 1 ;/ﬂ 7 /*m

4 (‘VQGE Leiae il
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5) TFor all{éx we: have

s e e

Proof. 1) is equivalent to the fact that /uafezmc'i
(ur(?ﬂ. I+ 1 eacc}o/u agree on X. We claim that 2)+3) are equivalent
to the_‘» Taeh t;nat. the two maps above agree on (P(I1) ® 1. Indeed

for aef(l) we have

* o > CY< 2 “l~= ; A ' ’“1 Mj “i =
/uf(a ® 1) /A%(la)@’ﬁ Pl sce 1) (g(‘;za}(um @C}éa)(zz ey =

= N =1 ¢ ‘L'l
;Zfé;“ @@y er, (ga ) o
: ok
('.S®1+1®5)/A(a®1)='(f®1+1®5)4 (Ja (1)® /{'@pl, (apy) ® )=

| i (]
=\Z§Fa<1>>@% Lt ey ) a g
25 e @0, Byl e 1

e e @’;’Z(P;[, (ap)) @17

Now using the fact that C(1) @ @(r) @ P @ P(T) is a free
Ca) @ C @1 - module with basis 1@ Z '@1&;{/ and identifying
coefficients we get our claime.
Condition %) is equivalent to c?oe’ﬁ E,‘c(y o Finally, using
the fact that the antipode on ¥ (1) @ G(T) is given by (1 ® Sl_) °
cf"ro (SM@ 1) where J;C: Can P ->Cu) @ (1) is obtained by ccfz»
that

posing i with the twists we see using a similar computation ‘eon~

dition 4) is equivalent to SOS*S <>(T o Our Lemma is proved.

(2.,6) Assume S\ satisfies the conditions 1)~5) from

¢

(2.5) » Then taking in 2) the sum over all {' we get

/(w/j‘z‘éf%’?Z
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(2.6.1) pyee=a @9}{'?7‘*1\& for all J/ A1
which says that cfiéf (I} . Combining the above formula with

2) in (2.5) we get

(1w Du,"é;[ Yopy =@ “@g"l’z/)"/“m

applying & @1 ta this equality we get that p Iocf?: c? op
. | L o« i

which says that in fact

GCie2) S el for allg# 1
1 74
Taking in 3} from (2.5} the sum over all [ we get

(2.63) /MMO();. = @51 +§° @ 1 4»2}%@ E}[) °/‘M
A

Summing up (2.6.3} with (2.6.1) for all J#1 we get
o 0.0 =

‘2e6.' i °g: g’f‘ et ) 2

(2.46.4) Syl =@ .5@1 %alm pL>/uM _

Finally teking in 5) from (2.5) the sum over all 7{ we get

2 e
(2 ¢~6 .5)‘ (S\ = SM [ é‘ I SM +%al p/t

; .
In particular we see that if a}c—‘-O for all Z then ({\GA(I‘;I)‘

(2.7) Let us prove that ker log =A(G,fin). To prove that

(aV3
ker log is contained A (G,fin) consider the lifting map 4A(ey->A ()

As

~N V4
(1.3) and since the maps A(G)— A(G) — W(G) and A(C)W(G)W(G)

are equal it is sufficient to prove the corresponding assertion for G.
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Let QéA(&3 with lagcme, heénce in the notations of
(2.6) we have a}(’:‘zo for all {€X, Since a((h’l)lr«(a(’(U)? @[(S))L:
%[(U)% for ¥ #1 we have by (2,6) above that éééa(}(U) for [ A1

and (5‘1 Ay +L@U) (the latter sum being taken inside Der (€(D/

E)le

Claim 1. There exists a finite dimensional F-vector subs-
pace V of (1) generating Pun as on F-algebra and which is pre-
served by both A() ana £Q1).

Indeed, since the radical of M is unipotent, by (1.4),

1 is defined over FO=FA€M), hence M=l ® P F for some F -group
M (and clearly U*U‘ ® P F, U, the radlcal of M ); moreover

by (1.2) and (.41 any é"cA(I ) can be written as d=& + 6 where

5:& is the trivial lefting of S]I‘ to M @ F and e(.,f(Aut )=
o

={(aut°M ) ® o F. Since M  Aut®M_ (with AutM_ ecting natural-
0 :
1y on MO) acts rationally on P ) (with M, acting via left

translations) there is a finite dimensional FO- subspace VQ of
(})(MO) stable under the actions of both Mo and Au;tOMO.; Our claim

followo by putting VxVQ D Fe

lain 2. [ACD, £ W]cLW) .

since [§* fan]c (@) for all JeAQD) it is sufficient to
cheek that [of (aut 1), £ el (in End (Pa1)). It is sufficient
to check the some relation viewed in EndF (V). But this follows

from the fact that [Aut%,@]ctr in the group Ms« Aut®M,

Claim 3. Let N=dim V and ely,.,,e eAMYE L) TF con

%1, 8. éof(U)S 'N then 6,6,...8 (0)=0.
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Indeed if Sl_ww,.@m éf (U) then use the fact that with respect
to. & omes b&SiS of V,y th@ I‘Gstt‘i@tiomﬁ of ei ta V are upper tlwianm
gular with zero on the diagonal for 1<i¢N, The general case fol-
lows using Claim 2 ang an induction on the number (i -1+
“*‘(12“2)-‘*'“»«:4’(11\1[@1’) where 1) seee,iy are numbers chosen such that
aij§f(17) for 1<j<N and @pée,[)(U')ﬁ for all p€iy for which pqégjil,”
¢ e o«,il\r}w
=X - =~ L T Y s
Now let 3%=3 (Ty £(M)) be the set of non-trivigl weights
i 3t —— -9 ¥ T 3 3 X._, b ] o 3 . . o
oft the T-action on (M) i.e. 3 «g{egi{;sliof(hﬁfﬁoj; it is e i
nite set. Denote by §“2(N) the P-span of all products of the form

{112"“{1\1 with f. e@,gl},

Claim 4. For all a€V we have that 1@ ) is o J?icardn-’i?ess:io{

element for A=ker log, ‘Recall that an element x in a A-field extension éo.f a A=
field ¥is called Picard-Vessiot if it is contained in a finite dimensional A- £-
vector subspace of £ ;in our case F=F,A) and E=(Q (), 0). Assuming for a mo-
ment that this holds let’s see that Claim 4 implies that ker loge A((?,,fin) . In-
deed, since 1@Q(T) still consists of Picard-Vessiot elements and since @ (G) is ge-
nerated as an F-algebra by V@l and 1@®(T) it follows (EBJ that any element of & (¢
is a Picard-Vessiot element. Now to check c};ium 4 note simplyv that

SR o g i) =
the sum being taken for all i.ts belonging tod U{LL%., By Claim
31

|
#
|
|

% each product c() soa «57

sequently § Ma @ LET @ §(m and we are done,

vanishes unless card gi; /Tié@xf.lN, Cone

To conclude the proof of assertion 1) in theorem (2.1)
We are left to prove that ker log 2UG;Tin) . Assume the contrary
end take geA(G‘«,fin) with (_legg) (7)=2#0 for same X;H(G).By(ZsZ)Xa(G)
is stable under A(G). By [H P.88, th@ symmetric algebra S"(X’,a (e
embeds into (@) and then of course each homogeneous component

Sn(xa (G)) is stable under A(G). By indiction we get that
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g nzx(an &Pl for mol

(G)). By our assumption the femily (d l}n

with P e o X

- pg<n-L
is F-linearly independent; this implies that (an%Ph)n 1 Fe

linearly independent. But this is impossible since angggn(};a(g))ﬁ

Assertion 1) in Theorem (2.1) is proved.

(2.8) Now let*s define exp:W (GY—~>/A(C). The action of &
on H by left (or, which is tho same, right) translations gives
an X—-gradation € ()= @P(H)x : let pX/ : @(H)HGD(H)ZCGD(H) be the

corresponding projections. Identify Hom(Xm(G), Xa (G)) with

% : I :

1Iom(X,9Xa(U) }o Then any 86“[0((3); can be viewed as a homomorphism
}(——>}{€3@(’LI)II vanishing on ¢ (T, P(G)) e Moreover identify £(C) with
 (U) @ P () via the miltiplication map U x H—G and define the

F-linear endomorphism exp a of P(G) by the formula

P8
(exp a) (x @ y)=)xa () & p (¥)
L _
for xeP W), yePUn) . clearly exp a is a P(U-derivation. To checl |

i

i

that exp acl(@) it is sufficient to check that its unique 1if-

ting § to 6’(@):6’((]} @5 (s x T) belongs to A(é}v).n But we have

S(X @ z):ZX&(?[) @ Ex(z)
A

for all Xé@(U), ze®(S x T) where p :P(s x T)sP(S x TIcP(S x T)

: . . : e
is the corresponding projection and (S x T) =Pt @ .
In particular, using notations from (2.5) for our s we see that

=0 = {EX Pl 5(1,@;()::3 (l) @{’ Since a vanishes also on <
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& (T,000) we see that :f’orlany JeX either é%«”f-‘a (1)=0 or %ﬂo 80
§ satisfies the conditions 1)-5) in (2.5} hence by (2.5)
5&[&(6§¢ We conclude that exp is well-~defined.. Clearly log exp
is the natural inclusion and Im exp is an abelian Iie subspace

of (a/p).

(2.9) To prove the remaining claims of assertions 2)
and %) in Theorem (2.1), note that Aut @ is generated by Int @
and the group Aut(G}H)‘cf all automorphisms of G preserwing H,
Consequently by (12) Im,)=4QAut G) is generated by JZ(Int @)
andof(Aut(G,H)). So it is sufficient to check that. for gl

a€WQ(G) we haves

(2.9»1)0*"IQGXpa)JEexpa for all ceIm(M—->Int(G))

(2.9:2) [&,exp aJ=O for all deTm(LAn) - L(Int (Q))

(2e9.0) vml(expzﬂvzexp oa for all e Aut (G,H)
(2.9.4) [Cf,,, exp ale Im exp  for all deflAut (e .

"o,
To prove the assertions sbove we may assume G=G. Start with
s » o » 3
(2.9.1) and (2,9.2).The action of M on G=G by interior automore

phisms is given by the composition of napss: v

a h (%
MxMxT S MxUxT SMxMzx k> T

(mgx,t)k»(mx,m,t)h»(mx,tm"lt”l,t)hq(mxtmmltwl,t)

where a and ¢ are induced by multiplications while b is induced
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- by teking first the antipode on the middle factor and then
applying the action by interior automorphismg MxT—-I of T on M,
This immediately implies that for any zef(M) we have thét the
image of z® 1 via the map aﬁbxf@kaé) D) & P(T)> P QNP o@(T)
belongs to PM) @ PO & (§ (G) > where (@(G)s>c(9(ci:) is the F-
linear span of $(G)=&(T,P(C)). This shows that if ¢ and d are
a8 in (2,9.1} and (2.9,2) we have 0(z @ 1), dlz ® 1)ePM) ®
@<§_ (G)>. This immediately implies that the derivations
a“"l(exp a) ¢ -exp a and [d,e-xpa:] vanish on P(M) ® 1. On the other

hand these derivations vanish on 1 @® (T) (uge the fact that
g is the identity on 1 ®P(T) and on Xa(G)- and d is zero on
these spaces) hence they vanish on ® () @ (P(T) and. (2 9.1,

(2.9.2) are proved. To prove (2.9.3) let ¢ still denote the oo
triction of 6 to M and T. Then for xeG’(M),{eXm(T}C@(T) we

have

0_—»1 (exp a)o(x Gp}[):o'“l {exp a) (x ®a] )-f:a-“l(a (cr{ lox cg)a-{):

:w"l(a(o‘/{):)x Q“D)[ =(exp 0a) (x @{ Ve

To prove (2.9.4) let @ still denote the derivation induced on
P (1) ; noting that @ kills all elements of X (T) we have for x

and 7[ as above
’:ci,o;‘p c:l (x @)[),:Xc} (1({) )@97[2 (exp da) (x @){}

So assertions 2) and 3} in (2.1) are proved. A computation simi-

lar to the latter proves assertion 4) and our Theorem (2.1) is
now completely praoved.

In what follows we discuss a remarkable property of

exp in the analytic case i.e, if r=C,



Indeed, let G be an irreducible affine algebraic €-group, Then

there is a commutative disgram

)
L ut @) ——— A(c/T)
( L
(V4 hv3

i 67 - A6
q

where G™* ig the underlying analytie Lie group of G, Aut o0

pi = . < Lo i

1g the Lie group of analytic isomorphisms of @ (whese iden-
.  : : ey Sl -

ti1ty component is algebraisable cf. LHM]) and A(G™) is the

Lie algebra of analytic vector fields on g0 vanishing at 1€G™2

~and for which the multiplication and the inverse map are equi-
variant. We have the following result (which will play a key ro-

le in Section 8):

an
(2.10) PROPOSITION. In notations above j(Im exp)c Im ) .

L H
Proef, Let a GWO (G) =Hom }Cm (T)/(gz (T,G)(G) )>, Xa (TJ) ) where

T,U and H are as in (2,4) .Let {1’“"’{N be a basis of X (T 2z

and put aiza({j), We shall identify in what follows T with
((LX)N by means of ()l'l,. - ,;{N) T (QX)N. Let us construct a l-parameter subgroun
of analytic autcmorphisms of ™ whose derivative in zero is j(exp a). Let o :

ol )NxH—?H be the action induced by multiplication and define for each t
a map ¢ t:Uanx Ge e e by the formula

¢ ta(x) : € &
(a) Y)t(}:gy).x(xgg'(e 1 (x) ST s Xéany y(:‘Hdn

: . - N
where we write a(x) for the row vector (a (x)) _ in C and
J J

taa) : . SN : :
gtal ) 1s the corresponding row vector in (0*)". Since g vani ches

on ?(G) and since {(eta(x)):eta(l)(x} for all {eX eﬁa(x} =

J

rentral in ence Y Y ay . ;
central in G hewce YtEEAui(G 1) . el %% . =%£ °Lft -

P
e



gat. a l-parameter subgroupe.
Assume now that in (*) % (resp.y) is a colleetion of
local coordinate on U (resp. on H) while 3:‘:(31,“% )N) will

> SO 2
be the standard coerdinates on (€M), By 5;; we hsall mean the

~

2 9
column wector (=——}. (gimilarly fopr =, =—). Then consider the
Sy (a 7 e

vector field on Uo x B defined by

i >
v= (.&lji:) ) % \ = a(x) _.Q..‘.Z(l,y) —
dt [t=0" | / e oY

3

o
To check that v=j(exp a) take any character Je¢ X (1), 7[(/))«*: )
(o a column of integers) and be®(11) such that ch'(A,y).)::'/Z(Q)b(y)?
for all A and y. Applying T to the latter equality and then

id

putting J=1 we get

e L
55"(193’) ﬁ(yiwxb(y)

lultiplying this equality on the left by the row a(x) we get

that (uwb) (x,y)=a(x)«b(y)=((expalb) (x,y) and we are done,
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§%. The map ked

Throughout this seetion we fix an ifreducible affine al-
gebraic F-group G with radical R and unipotent radical U, we

(&7

pick a maximal torus T of R and put rmJ%R)? e Y, =,

(3.1 We start with the remark that W(G) naturally iden~
tifies with Hom('u/[gﬂg](\u,r/u):@ Indeed identify both o/(i}m}z and
I(Ga) with the field F via the identifiCatidn Ga::Spec }3‘[5];
szﬁpec. F[t ,vtul_]e; Loreover write G/[G,G]zc}(a)x G(S) with G(a)‘
& vector group and G(s) a torus; clearly the natursl map
U/Un[G,G]—éG(a) is an isomerphism while the map T-»G<m) is an
isogeny (2.4). We have identif‘icationa{((ﬁ(a))OgHom([(éa}],[(Ga)

v Hon(6(, €)=X,(6) ana L™ Homtt ™), L6 2 X (O

® F, hence we have an identification

W(G)=Hom(X_(G) @ T, x&(c:zx)z}zom(ot’(@(m)}O,f(cca))°) ©

~ Hom ([(G-<a)‘ Vel (G(m) ) ) -Iom(u/un[gg‘,g]gr/u)

(3.2) Next let's note that for SeA(G) y the image of
logg in Hom(u/[g,8]nu,r/u) (still denoted so) has the follo-
wing particularly simple description: upon letting cr' atill de-
note the k-—endsmorphi.ém induced by § onr (efo(1.3)) and by
T :r —» v/u the natural projection we claim that (logd) (}g)ﬁ??’(o(z.{)
for all xeu (where . denotes the image of x in u/[g,g]nul. In
particular log 530 1 andg only A f fucur. To check our elaim note

that under the identification in (3.1) we have the following for-

-1
mila: (d,{)c log S -“':cjf‘(}{; cfxz for all character 7( tR/U~— G (where
. m
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daf: = f(R/U) ~>[(Gm}avF is the tangent map of 7 s z“lcf}exﬁ(m is
viewed as an additive character U/[G,mew#%ﬁa and similarily
d({"lfk) is its tengent map).

Ldentifving an¢[TU/Un[@,GJ} (resp. {{R/U)) with a subspa-
ce of &KU/UA[@,GJ)Q (resp. PRI the above Pormila reads _
ClogS)(Q)({):éwqf%ﬁ{) for all XGJQU)w But §%{*%ﬁ{) coincides ;

with the image of {_via the map

f &/ 5 FRI=PU) & 0”@)58; &) @fT) }ffrov(m 2 5

and our claim is proved.
Next we have the following Iie algebra theoretic construc-

tion.

(3.3) IEMMA,., Let r be any Lie F-algebra, u an ideal in p
containing [%,r] and s:ix/u—r a lie algebra section of the DO

dection r—r/u. Define the Iincap map
3 fim 2
b;Hom(ng,r]ﬁ r/u))— Alt (u,u)

2
(A1t (u,u) = space of alternating bilinear maps u x u—u) by the

formula

b(?)(x,y)=[é$£g y]m[§Y§,x]

- A A
for all YeHom(/(r,r],r/u),x,yeu, where XY are the images of

X, in u/[r*,r]a Then the rolleowing properties hold for any ¢ :
il = .
1) b(f)€ 2(u,u)=space of 2~cocycles of u in u,

2) b(¥) is a Iie algebra miltiplication on u and (u,b({))

R

AL e A A i e

3
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%) for every zér/u, ad s(z) induces a derivation of the |

Lie algebra (u, b(¥)),

Proof. A computation involving only -definitions.

In particular the above Lemma shows that in our Specifie

situation when u=/(U), r={(R), taking s to correspond to our

cholce of a maximal torus T of R we are provided with a map b

as above and hence with a map

/g : Hom(u/ti,r]ﬁr/m)—%rﬂz(u,u) k |

Noting that HomCu/uf{g;g]ﬂr/u) is a subspace of Hom(u/fbgr]wrfU)g
we get a map kod: W(G}—> Hz(ugu} by composing/g above with the |
identification isomorphism W(G)~ Hom (uw/un [g,8]c/u) «

{
|
i
i
¢
|
I

(3.4) PROPOSITION. The smallest algebraically closed field
of definition,FG of G contained in F and econtaimiug k( cf [égj)

coincides with FA(G"fm); KHoreover ker(kod-log)= A(G/FG) .

Proet. The equality FngA<G’fin) follows easily from the
fact that P(@) is a lacally finité A, fin)~F-vector space (cfe
Theorem (2.1) by using the "qﬂitting arguments" from [53]0 To
check the equality ker(kodoldg)xA(G/FG) it is sufficient to show }

that for a derivation SéA(G) we have kodTogéq:O if and only if
§

F ig & field of definition for G. By [sz the latter happens if and only !

3

, $ & -
if F° is a field of definition for u. Now assume kod logé =0 hence that there

is an F-linear map £ :u-yu such that
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(=) b(loggg(x’y):e[iyy]»[éx,y]w[%ﬂ9y3 for all . ycu
Letting € te—r and esir-r be the projections onto u and t

regpectively we have by (3.2) and (3.3) that
(e Eilﬂgj}Cngﬁx[ézgggg]wl&2§§ﬁx] for all = yew

Projecting the equality'ﬂ}@y]z[gkﬁy]+[ﬁﬁgy] on u and using (3¢}

we get

(x2e) Blgﬁcﬁyj ::;[elg‘x‘y]-k[;:,elgyj+ h(logg} (=, 2}

\ ~
for all x,ycu. From (%) and (x*x) we get that J}melfglﬁ_is a
k-derivation on u and one checks immediately that
gkgx):(éﬁ)x+,35%. for all )é-F3 XU o By—[hll p.86, EJ;s 5
fielkd of definiiien for U.

Conversely, if the latter holds, then writing 62G1<@

@%1F(F12F ; G; an affine algebraic Flmgfoup) we may consider
Q(Jﬁeber(F/Fl} and - litt 7t to an Fl~derivation $*.=1 @) (J} on
QDCG)° Cleérly'gi preserves U, hence preserves u. Then view 6=
xelcgwﬁi as a map from u to uj clearly, it is F-linear. Subgtrac-
ting the equality (®xx%) from the equality JX[&,y]rgx xfy]%
jfE:,S%y' we get that formula (*) holds for our © just defined,

hence b(lagg\}ﬁﬁaexceboundary and we are done,

(3.5) COROLLARY, If the radical of G is nilpotent, FALG)

is a field of definition for G (in fact it equals Fg).

Proof. Since in this casefﬁ,t]mo we have b=0 hence kod=
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=0 hence Fo=F A(GE,

In fact a more precise statement holds:

(3.6) PROPOSITION, Assume [ is & subset of A(G) such that |

A

logAcW (G). Then F is a field of definition for G and W, (3) A

nIm logcker kod.
Proaf, By (2.1 and.jgllcan be written_aS,J;d+ exp a for
some d€A(G,fin), aGWa(G)a Since exp a is F-linear éxand d have

the same restriction to F. Now apply (3.4} to conclude.

§4, Conseaguences

Start with some immediate consequences of the preceeding

theory. As above G is an irreducible affine algebraic F-group,

R its radical, 1 its unipotent radical.

(4.1) COROLLARY. The following hold:
1} There is a complex exact in the first two terms:

log

r = i Bod 2
0a0aut @) = £ (et gy —2>Hom(w/u n[g,8],r/u) =0 B fu )

2) A derivation in A(G) belongs to A(G,fin) if and only

if it preserves the ideal of U in G or, equivalently, if and enly

if it preserves u.

%) The natural restriction map A(8)/ A (G,fin)-4R)/ 4. (R

ESN ¥

fin) is injective.

4) For amyisogeny i:G—G' the lifting map iX:AA(G!}~qA(G}

has the property that (i&)”l(A(Ggfin)):A(G‘,fin).

5) A(G)=A(G,fin) is any of the following cases: a) the
radical of G is unipotent, b) G is reductive, c¢) G/[égG] is uni-

potent (i.e. a vector group, d4) G//G.¢] is reductive (i.e. a torus)
f o B
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6) dim(ﬁ(@)/A{G/F))étr&deg.(F/FG)+dbn@mb/£mb/wBg(wyu)},
In the laét assertion, we used notations from §3; morally it
says that dim, (A(@)/A(C/F)) is restricted by the geometry of
the linear SubSpace§ contained in the variety V of all Lie algem
bra multiplications on the underlying vector space of u (gsince
Im b is such a linear subspace of’V}m Some information on thig

ceometry is provided by work of O. Laudal.
i <

Progf. L} folilows from (1.2}, (2.1) and (G.4]),

2) follaews from (2.1}, (3.2) snd (1.2},

3) follows from (2.1) and the fact that the map
W(B)——> W(R) is injectife (see (2.4) or (3.1)).

4} follows from (2.1} and the fact that the map
W(G*)—=W(G) is an isomorphism (sce (2.%))

2) can be checked as follows: a) is (1.4);b) fol-
lows from representability of Aut G(cfs[fﬂ) but can be derived
in a more elementary way from (2.1) since Xa(G}:Q; c) follows
sinece in this case the radical of G must he unipotent; &I follows
from (2.1). Finally to prove e), start with a preparation. Assume
V is an N~-dimensional A-F-vector space (A an arbitrary set). Then
the coordinate algebra @YGL{V)) of GL(V) has a natural structure
of A-F-algebra defined by identifying P(GL(T)) with S?gHZ(V)O)[i/%
where S="symmetric algebra" and déSN(jZQV)O) ig "the determinant®.
We claim that P(GL(V)) is locally findte; indeed S(jg(vio) clearly
is so and we are done by noting that d is a A-constant (to check
this replace (ﬁfa[33]) F by some A-field extension of it suech tha
V splits (i.e, has a A-constant F-basis). Associated to this. basis

there is a A-constant bagis Xij;ofj/(v) s now d is a polynomial in{
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the Xij‘ﬁ with @-coefficients hence is Zlmcon stant}. Coming baelk
to our group G, let Ad:G->8L(g) be its adjoint representation,

Using the description of Ad in [ﬁ] P«51l one cheks that Ad

%
w3

%JO

:Penle) ) P is a /A(G)-algebra map. Consequently if Z(Q)

the center of G, P(G/Z(Q)) is a Ioeally finite A (G)=Pevector gpm

ce (being identified with (P(CL(g))/ker ad¥). By assertion 4) \)@(C‘

mi1st be locally finite as a 5\ -F-vector space for all Vg{ (3)

and we are done.

Finally to check 6) one uses (3.4) and the obvious exact sequen- |

ce O0-MC/F)-> L\(G/;:G)——ﬂ)cr(l*/"‘ }— 0 .

From the discussion of assertion 5) above we get the fol- |

lowing useful:

(4.2) Remark, The jdeal deflmng, Ulo center of G is a A(Q)-

:Ldeal of (P(G).

Proof. Indeed one checks that the ideal m defining 1{* in
GL(g) is a A(G)-ideal of P(CL(g)) (use once agalin a splitti;g of
£)« Then the ideal defining the center of C is (Ad m)P(G) hence
it is a A(G)-ideal of P(3).
In what follows we aﬂreus the question of describing the Lie spa-

ce structure of A(G). We succed to do this for a remarkable sube

; . -1
space of it namely for A (G)=log W (G). Indeed we have

(4.%) COROLIARY..
1) AJG)=4(G,fin) @ In exp.
2) Im exp is an abelian ideal in AO(Gl

3) A(G,fin) ~ Eer"(F/Ig)@f(Aut G) (where Der(F/FG) embeds

into A(G,fin) by {ed* = trivial 18ftingof & toG(ef.(3.4)) and



=

[:Sﬁzg eXp aJ:' exp 5‘% for a11 Je ‘IJGI‘(E’/E) and ae WO(G)g : l
5) Lf in addition F=C, upon letting AO (G[ﬁf)mﬂo(G},n[j (G/(E‘)%

“we have j Q\G(G/(E): Yo Tm ¥ (notations as in (2.10)e

{

Praof. Just put together (1.2}, (2.1}, (2.10), (5.6),

(4.4) PROPOSITION. Assume one of the following holds:

1) The radical of G is nilpotent
2) The unipotent radical of G is commutative.

Then AO(G):zﬂ(G}; in other words any weight of G is A(G)=-constant,

Proof. We muast prove that Im 1agcwo(<}), This is elear in
case 1)« In case 2) upon letting R be the radical of G, the map
W(G) —W(R) is injective and viewing it as an inclusion we have
W(GIn WO(R):-WO(G) . So we may assume G solvable. Borowing notations

4% )
from (2.4)-(2.6), we have G=G, M=U, H=T. If JeA(G) then we have
«6ed) the o §%= (1 @ fP +¢9 0 ; - .
by (2.644) that u §%=(1 @8° +8% @ 1 +Za.({)« ® p/t)/xu where
a=log ora Applying T:P(U) @ @ (W) 2P(U) G‘?G?(U); (twist map) to the
above formula and using commutativity of /MU’- (i.e. Z‘»/ o “U?) we

get U %= 9y 1 1 7 . pxal ) U’ consequently we have

() (Z&‘OU ® p{) oy ( Z‘ & al])) >y
» .
1 1

Let XEXQ(U)][CHU) he a primitive element of weight {; applying

(x) to x we get

(e ) a({) ® x =X.@a(1)

(RIS (215 1 seax i S N e L e N s S
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0F%=Ja C{) for some J¢& F*, The latter equality is impossible
because a ({)'é X&(U)ll.,f S0 a vanishes on all weights of Xa (U)o
But P(U) is the symuetric algebra on Xa(m hence all weights of
on

f (U) are products of weights of X (U} ana hence & vanishes
. a

all weights OD(U') « The proposition is proved.
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e Split and semisplit pgroups

In this section and the following we place ourselves
in the setting of [Kl],[clj ,,[8.3:(., So A will be a fixed finite
set‘ (m=card A} and all our A ~objects will be"partial difleren-—
tial" i.e, derivations by which A acts are always paifwise
commuting. Y will denote a universal A -field with field of
cdnsd:ants 7{; Fuwirl generally denote an algebraically closed
A -subfielra of U over which 9 is universal and (f/y;will denote
the field of constants of Fe We will also freely use terminolo=

gy from [Bl] involving A-schemes, A -varieties , A - function

fields with no movable singularity a.s.o.

(5.1) Definitions

1) By an f-group we understand an irreducible linear
A ~algebraic group [M such that tr.dege. A<M/ U< alsee also E%,j,]),

2) An f-group is al ed split if it has the form
("':tn GLQ(K} where r“x is a K-closed subgroup of GLn(Z(), It is
called splittable if it is 4-isomorphic to a spli’f, f-group (cf.

133 ).
%) An f-group is called semisplet if it has the form

M*A X where M* is a J(~closed subgroup of .GLH(Z?) and X is g
A -closed subset of GL (U) defined by equations of the form O=

§. yal, o with B 1,6_7/([(? ,,)] lsicm, 17 . kdn, Clearly "apli bl

9

: El - :
implies "semisplit" (Take P, . =0). | is called semisplit table
1k

if it is A-isomorphic to a semisplit f-group.




= gF = _
(Be2) 11 opife af Cassidy's deep results in [él] [C?‘S
[031 a-satilsfactory picture of f-groups is still missing., What
we intend to do here is initiate a study of f-groups based on
the concepts introduced in (3.1) (ef, alsg [133]) and using our
theory developed in the preceeding sections,
| By [%]{“#yy"« (y'}‘?«":Oac(}l‘l(Z():ZfJC is an example of a se~
migplitiable f-group which is not splittable.

-4

The relation between f-groups and the theory from fem":‘n,«;sﬂ

is given by the following.

(5.3) TIEOREIML. [B'i]o Let [ be an f-group. Then the A-coor-
dinate algebra 'Z,(?F} is finitely generated as a non-dif{ferential

U -algebra,

=
-5 ,/ o 3 P
Thus to any I—graup\one call assoclate an affine algebraic

WU ~group G“:i(%j}("b together with m commuting derivations J;)“-*
'°°9§‘méﬁ\(G). By Theorem (2.1} we have well defined elements
log cyiéW(_G} with 5;-. log fj‘—' (glogcri for all i,j. Moreover by
(3.3) we have well defined cohomology classes kod log fiéHz(u,u)
(uzl.ie algebra of the unipotent radical of @). Finally the weights
of G UIPYY (or of Uir}, cf. the discussion preceeding (2.1))
will be sometimes simply called the weights of e o

Since rational maps between algebraic groups commuting
with multiplications must be everywhere defined one gets that
any surjective homomorphism [ '— (7Y of f-greups induces a natu-

ral surjective homomorphism between the corresponding affine al-

.gebrale groups G—G': clearly if M/ is a A- isemerphisn {(res-

pectively a A -isogeny) then G—G' is an isomorphism (respectively

an iSOgGI‘LV). Heme FESEs S i I e 3 o e s R AR e S
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A A -algebraic group will be called nilpotent if it is 80
as. an abstract group; it will be called uni pottent {:Cg]if it
consists of unipotent matrices. Note that an f—group [Mis nil=-
potent (respectively unipotent) if and only A8 G U ). i o

Recall that the radical R(") of a linecap A -algebraic
group ' is the unique maximal element in the get of a1l A~closed
norumal irreducible solvable subgroups of G

Agsertion 1) of the following Lemma was proved in [BB](\A;hi;L?@, its

assertion 2) can be proved similarly by using (4.2)),

(5.4) LEA. Let ["be an f-group, let R(M) be its radical
and Z%(I"} be the connected componemt of the center of ", loreover,
let 6=§(U{M1), 1ot R(G) be the radical of G and Z9(C) the commee
ted component of the center of @. Then

1) R(GZ=§(’M%ﬁ(P)}) as subgroups of G.

2) z°(<;>-=§(u{z°(f’>}} as subgreups of G.

Pinally recall from [83]:

(5.5) LEMMA. An f=-group M ig splittable if and only if
(N%/"} is locally finite as a Ad~Y-vector space. Moreover i Ehas

»

7 it
Is the case and ir |

- ° = A’ kd h
is defined over ¥ ( ¥ algebraically closed)

e -~ 13 L3 ie = A % e
then one can find a Picard-Vessiot extension ?1/? and a [-F -

of

o Vo e b o : x
isomorphism“with an f-group of the form B G};,n ) P o ‘fwclo»

sed subgroup of GLn (.

(5.6) COROLLARY. An f-group [ is Splittableif and only

if all group=-like elements of Z«({/”JZ are constants,

Furthermore we have -



L gs .
(5.7) COROLIARY, An f-group | is semisplittable if and

only ir K is a field of definition forv'g(ZLfﬂj)or, equivalent-

Ly, if and only if kod Tov‘g ;=0 Lo all 4, Movewwer if all
weights of = are constant then [ is semisplittable, In particu-

lar if the radical of ['is nilpotent, [ is semisplittable,

: |
Proof. The assertion that [ is semisplettable if and |
|
only if X is a field of definition Ffor ?(ZL%F}) is an easy exer—
cise. The rest of the assertions follow from (3.4) and (3.6).

Kow putting together (5.4), (5.5} (5.7) and (4.1) we get

(5.8) COROLLARY. For an f-group [ the following hold: ;

1) [T is splittable (respectively semisplittable} if and

only. if its radical is so.

2) If there is an isogeny M-r* then ["is splittable (res- |

pectively semigplittable) 1f and only if £ is s0.

3) [7is splittable in each of the following cases: a) the

radical of [ is unipot ent (ef [hﬁj)t )t coh e e fintt.

|
I
1

-—, bt b - 0 - .
¢yl has no non-trivial uml potent commutative qgueotient.

6+« The classification problem

Let @ be an irreducible affine algebraic Ue-group. We pro-
pose ourselves to describe the set (G) of A-isomorphism classes
of f-groups [' for which ?(W}P}).ﬁ U-isomorphic with G, We restricl
ourselves to the case when K is a field of definition for G (hence
G«G%Q?Z( for some K =group G%}; by (5.7} this restriction is nob
effective if we are interested only in semisplittable [ 's.

To get an idea of ['(G) note that ((C) has precisely one

element in each of the following cases: a) the radical of G is uni-

r~ ——y o =l e e
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finite center, cf. (4.1) and (5.5). . k
shiho :

In general it is clear that [(Q)~4(3) /Aut G where :
A(G)lnt is the set of m-uples (cg,n.«,cfm) of pairwise commu- |

, int
ting elements of A(Mnﬁ Aut G acts on A(G) by the formila
(lifting the derivations of &67

(IO—W(J;QQ\»OQ(S;H’)J)/""> (0‘“15‘10},@”.9,0:16(;16'),, 0"6 .Ath G

where we also denoted by ¢ the corresponding automorphism of
6)((});,, But this description of [(Q) is quite unsatisfactory.
ILet SX be the #triwvial lifting of cr Tran / ta Pl(e)=

_G’(G ) @U. Then the map AG)™> A(c/u)™ cefined by (451,..,, ¢

= (c?~ol,..o*ag&8 } induces a bijection

MG~ A (G/zu /nuu G

where
- 1) A/y) is viewed as a A-lf~vector space by letting
giex[Sf,_e] for all €ed(G/y)} (bracket taken in the Lie space
M@, .
20 A(G/’&()int is the\'gpjace. of m=uples (@l,“,,@m) of ale=
ment.s G_iel\(G/z,(), such that 5;9j=- g;@i+ [6]-‘,65] Tor el 1.3,
3) Aut G acts by the "Loewy-type" [C.l] action:

(F00)5000,8,) ) (7 l0 ra (e “'slcr»%,,,. )

This description is as unsatisfactory as the first one
because everything is hidden by the A-algebraic action of AutC;

what one should be looking for is description involving an alge-

braic (rather than a A-algebraic) action of Aut G ., Such a des~ |

X

. .
PR e s v SRS e SR L D I gl e £ S e T RS 1 s P L N
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But more generally we will give a description in the
general case of the subset FO(G) of (@) consisting of all
A-—isomorphism classes of f-groups [" in [7(@) all of whose

weights are constant. As above we have

rqo(G)ﬁﬂﬁb(G)int/Aut G

where Ao (G) int=[§(-G) inth (Ao e .x[}o (G)). Moreover, since

S? kill all weights of G we have

r;(G)ZAb(G/%)int/Aut G

where AO(G/M)int=A(G/M)int/\ (@ (o=, ol (@

Note that FO(G)=F(G) provided G is in one of the two

situations from (4.4).



e

Qur main result here io:
(6.1) THEOREM. We have
[ (G) = (@) %/aut @

where:

1) w (G),.w‘ﬁWO (GK) @YU is viewed as a [ -j~vector space by
o
letting A act trivially on i (GK}.
2) WO(G),J’Ht is the space ef m-uples (al,"wam) of ele-
ments a.¢W (g R NE B o : i
l‘éWO(C’) such that.glaa SJal tor all 147
3) Aut G acts on W,(G) via its natural action on X (@)

and Ka (Q) o

Proof. We will ghow. that the map exp:?f(\)’ ey —> AO(G/%) i -
duces a bijection e:W O(G)imfmt E AO(G/ZL)int/’Aut G. That
exp induces a map e as above folleows from assertions 3) and 4) in
(4.3)}. To check that e is injective, assume (al,.“,am)}(ai,.,.

--wa;) EWQ(;G)m.b are guch that there exiats ge dut G with
exp aizo'ml(exp ai)o"&ﬂ(arléﬁo'» )
; i i

: = g o ; ;
Since ¢ §77-8.¢ 4(@,rin) and since Im exp nA(C,fin)=0 we get
1. .
¢ - ! ml k o ﬁ: o« 4} 3 3 > o T £ ) o . -
ai= Ta; and ¢ “{¢=s ; the latter equality implies that gechAut GJC
; i .
and injectivity follows. To check surjectivity of e, take any
3 + i A s
(91‘,.“,6111()& AO(G/Z’,H e By (4.3) we may write 8;=d. + exp 8. fun

some a.eW, (G) and d'ie A(G/U)n DG, £in), We claim that (dl’””dm)e

= Ao (/U) ™", Tndeed:



-

* hx . .
i85+ 05l B + a3,8% + 45 ]

o=)}9§+e

oo o
f}_é‘i + di’ exp aj]-&sj + dj* exp ai]

Since by (4.3) Im exp is an ideal in A (G) the last two terms
Gk o

of the right hand side expression belong to Im exp while the

first belongs te /A(G,fin), because by (2.1} A(G,fin) is a lLie

subspace of /(G). Consequently the first term vanishes and our

claim is proved. Now the f-group obtained by considering #(¢)
e e * * ‘ ;

as a [l -ring w1thn derivations Sl + dl,...,gm *+d 1s sp]fltta—

ble by (5.5), hence there exists g€ Aut G such that d‘i=a~”l<§;t -

-g’i‘ for all i, Applying formula 3) from (4.3) we get that

(61,‘...,em) is‘ Aut G - conjugate to (exp o-“lal,...,exp cr'"lam)

and surjectivity follows. Our theorem is proved.

Te ILink with MMS extensions

Next, we are dealing with the question 164] of how A -
-field extensions arrising from f-groups are related to A -func-
tion fields with no movable singularity (¥MS) (in the sense of
our bock 2311 s Pe9)e P. Cassidy has shewn [0’4] that £ [ 55 the

1 2 g .
A -algebraic group %w"’-(y') -‘-Q}cu.:’It and ¥ ie any /[ -field then

the extension F<M?»/ F does not split (in the sense of L—Bl]’ e
is not generated by constants). In particular such an extension
cannot have NS ):B‘l}. On the other hand we will prove that exten-

slons of this type are "not too far"™ from having NMS:

(7.1) THEOREM. Let [ be an f-group all of whose weights
are constant and F an algebraically closed A -field of defini- -

-tion for = o Then there exists a Picard-Vessiot extension ?.,/’ff'
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and an intermediate A -field %CEC};‘{F' >s;uch that the extension
5/9'1 ig a split A-function field and 5‘\;&<F>/’8 ig a A-func-
tion field generated by exponential elements (i.e. elements who-
se logarithmic derivative belong to§).

We will also prove

(7.2) PROPOSITION. Any A - function field generated by
Picard-Vessiot elements has NIS.

Consequently we get:

(7.3} COROLLARY,. In notations of (7.l) all three exten-
sions Ji<"/€, €/7, F1/F have WS,

(7.4) Proof of (7.1). Let € be the constant field of 7.
Since by (5.7) ?(’Z(}F’}) is defined over X it follows from [82]

that €@ =9(#/r}) is defined over¥=%nf s0 G+C ®F, G a ¢~
¥ G
- ET'QUDe

In particular the derivations cfl on G’(%v) have the form
% : % . - e -
Si'zi + ©; where Si is the trivial lifting of {i from ¥ to 6’(%\,)

and eieA(G'N/'at}. Now look into the proof of Theorem (6.1) vhere
¢

we checked the surjectivity of the map e, borrow the notations
from there and let's be careful about "rationality problems".
._d o ‘ A . A. ; ".: .-b . V L : ‘ X : \ 5 ~
Indeed in writing ©;=d.+exp a; we have alel‘{p(G?) and dleé\(% Va0

AA(G?,fin);. Next by (5.5) we may choose g¢ Aut G? for some
1

Picard-Vessiot extension ?1/3‘@’ « Now the extension %(I”Wfi is

1somorphic to Q(GJ(G?, ))Z":’f\'l with derivations S}f + exp g-"lai’
4

1¢iém, Let U and H be as in (2.4) and put E=Q,(G)(%):); thern clear-
: 1
Iy Afc§ ana E/o’q is split. Moreover 9;0“’7/"5 is generated by

elements of the form I @ v with ye\/&’(ﬂ)" < (notation from (2.8))
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and any such 1@ y is an exponential element for the extension

;?Vl<l'77/€° Qur Theorem is proved.

(7.5) Proof of (T«2)e Let £/F be a A-=function field ge=-
nerated by Picard-Vessiot elements. Then clearly a finite set
of them suffices so £=Q(A) where A is a sub - F- algebra of 5,
finitely generated as an Ff-algebra and locally finite as af=F-
~vector space. Let X=Spec A be the corresponding A-variety and
Vc A be a finite dimensional 4-F -vector space generating A as
an f-algebra. Then the symmetric algebra SV has a natural strue-
ture of A~ F-algebra and the closed embedding X —>A=Spec (3°7)
is aA- map. Let the polynomial algebra (S'V)[Tj be a A-algebra
ext,el‘lsion by putting AR=0; since A preserves the gradation on
(S'V),[‘I‘] it follows that P=Proj((S°V)[T]) is a A ~-variety and the
open embedding A- [P is a A-map. Let X be the Zariski closure of

X in P. We claim that X is a projective A -model of its function
field (and this will close the proof). Indeed, let Spec B be an

open subset of [P not contained in /A, let Pc B be the prime ideal
corresponding to P\A and Q the prime ideal corresponding to X.

How AQBQC QBQ because Q€ X, hence A Qc¢ Q,BQn B' = Q this showing

that X nSpeec B is a A -subscheme of Spec B and we are done.

Remark. Theorem (7.l) applies of course to any ["whose ra-
dical is nilpotent or to any [’ for which 5(2{{/7})‘ has a commuta=-

tive unipotent radicale
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§8. Painlevd extensions

In this section we introduce the notion of Painlevd ex-
tension of A-fields, discuss its comnection with "™logarithmic
derivatiwes" of analytic actions on algebraic varieties and gi-

ve an application to fegroups whose radical is nilpotent. Start

with an analytic preparation.

(8.1) Let £:X—Y be a map between analytic (complex) mani
folds and suppose we are given analytic commuting vector fields

gl"“”-gm on ¥ lifting to some analytic commuting vector fields
(still denoted by) g‘l""’cgl on X. We say that £ has the Painlevé
praperty (with respect to fl“”’fm) if, upon letting ¥—Y he th

% a4
universal covering of ¥, there is an analytic Y-isomorphism

~s

X %, Yaeo x ’f (Zﬁ—l(yo), ¥,£¥) sending fi’ into gf where dﬁ’: is
the unique lifting of éﬂi from X to X x Y}, and Lg‘f is the trivial
Iifving of (Ci from ,)\‘I/ to 24 x Y.

Note that if dim Y=m and if we throw away from Y the locus
where yl*“"'fm do not generate the tangent space and from X the
preimage of this locus then we get a foliatiom on X, transverse
to £ and being a "feuilletage de Painleved de 1re epéce™ in the
sens of [GS] s 1.e¢ having the property that any path on ¥ start

ing from y €Y can be lifted in the leaf passing through any point of

£71(y,) .

(8.2) From now on F will be assumed to contain C, to be
algebraically closed and to be such that A provides an ?'-»-boms
of Der(¥/€); in particular tr.deg ?/Qf:card'Arm..

Let V be a A-variety over & (in the sense of [131] P.4). We say

t hat! N Ay e D At o o e E e L e e e S e e e e e T R i e el
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A - schemes

U - >V
| |
v v
S -7 Spec F

with U and S smooth A-varieties over €, dim S=m, such that
£A g0 5™ yoa the Painlevé property (1'1Qre £% denotes as usua’
the analytic map underlying f).

Finally let's say that a A -function field £/F% is a Pain-
levé extension if it has a Painlevé A -model.

Remarks,., 1) Any smooth projective A -variety over F is
a Painlevéd A-—varie.-ty; in particular, any extension with no mo-
vable singularity (NMS) in the sense of [Blj p.5.is a Pail:llevé .
tension., This is a trivial consequence of "Ehresmann's theorem”
.

2) A consequence of the above remark and of our result ip
[B].], pP.103 is that any strongly normal extension of"?is a Pain-
leve€ extension (as it has NMS).

3) Painleve extensions need not have NMS, for they may
have "movable singularities hidden at infinity™. For instance
K.Okanioto's work (in Sém. F.Norguet, Fevrier 1977) shows that the
famous Painlevd second order equations lead to Painlevef extens
sions; these are not necessarily NMS extensions (ef. work of
Nishioka and also ef. [C,]).

Our main result will be:

1 N
(8.3) THEOREM, ILet | be an f-group over J such that all

. 2 G/t p N, .
weights of [ are constant. Then JX")/F is a Painlevd exten-
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(8.4) Let us introduce some introduce some notational
conventions which will simplify our exposition in what follows.
For any analytic manifolds X,¥ we denote by Map(X,Y) the'set of
all maps from X to Y. For f& Map(X,Y) we denote by f, the tangen
map vieWed as a map between the manifolds.xx, Tr,(:tangent bund
les ) so figmap(xx,TYE. Analytie vector“fielda on X will be vie~
wed as sections of the canonical projection.?x-—¢‘X hence their
space H*(X,T,) lies in Uap (X,Typ). So if £€ Map(X,Y) and
veHo(X,TX) then f&y&Map(X,Tx). Moreover, if /\ is a finite dimen:
sional linear-subspace‘of HQCK;TX), there is a natural injeciive
map.Map(IgA)~—>HQ(XXY3TXXY); we shall usually identify elements
of Map(¥,A) with their image under this map., If W!ic a finite
dimensional complex Vectér space and Y is an analytic manifold
then for any héMap(¥,W) snd any vector field veHo(Y;TY) there is
a well defined map vhe€llap(Y,W) (take a basis (e;); of W, write
hsziei with hieW(Y) and let vh=2}vhi)ei; this definition does
not depend on the choice of the basis). Moreover if A:W->W* ié a
linear map of vector spaces and v,h are as above, then v(4eh)=
=AeVhe

Now if G is a complex Lie group and feMap(Y,G), define
Lp€llap (G=Y ,GxY] by the formula Lo(g,y)=(£(y)g,7) .

Here is an analytic analogue of Kolchin's surjectivity

theorem £or the logarithmic derivative,

(8.5} PROPOSITION, Assume G is an algebraisable Iie group
(iee, admits a structure of affine algebraic group) and ¥ is a

simply comnected analytic manifold with trivial tangent bundle



sl e
.. . ‘ L : (-S? r L )
generated at each point by commuting flelds 1y,,,’cmeH (¥,Ty),
m=dim Y. Then for any hijap(Y,J?G)% lstm’sudh that ‘%hi+
+Sinj +[h,hs]= 0 holds for all 1¢1,jén, there exists

féMap (Y,G) such that

- for all J

A e < ,’E'-::

|
where S%{;HO(GXI,TG Y) is the trivial lifting of Aj from ¥ to
J S

GxY o

Proof. First let's prove the proposition for G=(GLn)an.
In this case if we identify any feMap(Y¥,G) with a nxn matrix
with?entries.belonging to the ring &(YI of global analytic func-
ctions on Y then an easy computation sheows that for such an f we
have Lftsg -g§'=5‘15:f. So given h as in the proposition and
identifying it with an nxn matrix with entries in dx) (so
hégln((Q(Y)),: we are lodking for an f&@%(@(‘f) Jicuech that %f’f:fhj
for all j. S9inee the Sj ‘s form a basis of the tangent space of
Y at each point, Y is simply connected and the hj's.satisfy
the "integrability conditions™ from the statement of the Proposi-
tion it is classically known (see for instance [b]) that an £ as
above exists and the case G:(GLn)an is done.

Now let G be an arbitrary algebraisable Lie group énd view
it as a Zariski closed algebraic subgroup of Glh; in particular
”CCG)C:gln,SO the hj’s define maps from ¥ to gl still satisfying
the integrability condtions. By the discussion above there exists
£ellap (¥ ,61,,) =61, (O(X)) such that Ly §% -5% =hs for all j. On

+

the other hand by Kolchin's surjectivity theorem for the logarith:



mic deriwative (cf. its version in [*Bl]p.'sl)‘ there is a Picard-
Vessiot extension & of the quotient rield of (XY) and £.€6(€)

such that _@g.fl#hj far a1l ] ( f{];x:f(olc;hin'a logarithmic Qeriva-

gj?méﬁ;: . which immedia~
e g

: . ? -1 - :
tely implies that f’{j-;(flf )=0 for all j hence that fyf te GrL, (¢

‘ tive). By [BI;] pe25 we see that fcgf.-: i
==G‘Ih(6:}::C GLH((Q(Y));,- Sinece £ te GLn((?(?f)' } we get fleGIh(U(“Yﬁ))n

NG(E)I=G(O(T)) and we are donee.

(8.,6) Let X be an analytic manifold. A Lie subalgebra
of HQ(X,TK) will be called analytically bounded if there exists

an algebraisable Lie group G and a faithful analytic action

GxX— X such that A is contained in the image of the natural

map (G —>H° (X, Ty )

(8.7) PROPOSITION, Let X be an analytic manifold, A an
analytically bounded Lie subalgebra of HO(X,T ). T a simpily
connected manifold with trivial tangent bundle generated at each

) :
point by commuting vector fields J’l""""‘)m-é HO(Y,TY) , 0=dim ¥ and
« &1 ; £ hat; £ T_ s = :
l{;}émap(ﬁf,l\), 1¢j¢m such that %X; Ml/‘; +[X§,X;] 0 for all
1,1y eeeyle Then there exists an analytic Y-isomorphism
Y:X~¥—>X~xY¥ such that tfmgif -4% = f:] for all j where §$%* is the
Jd dJd Jd

trivial lifting of 8:I~= to X~ Y.

Proof. If Ac In(L(q) —> B° (X,I,)) where € x X—X is en
action as in (8.6), then JE:Y-—V/\ induce maps hj:Y-»[(G);

since the natural map A= JL(G) is a Lie algebra map, by will still

satisfy the integrability conditions. By (8.%) there exists



fellap (Y,CG) auch'that

A

!l

A
Gornyp LGS
- d
A ' ¢
where 55 is the trivial lifting of aj to GxY. Now consider the

J for all j

I“lSQmQPDhlum»Y¢XXY’”9A0X f(x,y}=(£(y)x,y). To check that

(8.7.2) P §x gt = YT for all j

consider the diagram with commutative squares:

. :
GxYe¢— Gx¥xX % X x¥Y
Lexid l ¥
v &

S T

Le

?

\V/
Gx V¥ <———— @BxYxX
P q

with q(g,y,x)=(gx,y) and p(g,y,x)=(g,y) for all geG, xeX, yeY.

Now (8.7.1) implies that

2
4

N
® . @/ " 1 & = : :-i‘ { l T
(805 (Lf x 1d)xé; 5 hf or all 3

~ 0 i sie.
where h . :Y—H (GzX,T_ _J) is the trivial lifting of h, and 5
J GxX J J

is the trivial lifting of 5& to Gx¥xX. Applying g, to (B.7.5)

we get
o~ N ~
q hJ (u \1&) S) QA é f
But g nd ‘g,:5t 50 (8.7.2) follows be S ig surjec
U qjt 1 and qx 3 Jq ows Decause q 18 surjec

tive and we are done.

(8.8) COROLLARY. Lev V be a A-variety over F. Assume



g&

= B0 -
V=Z ® ¥ for some smooth algebraic C-variety Z2 and assume there
eiists a finite dimensional Iie subalgebra A of HO(Z’,.,TZ) whose
image in H°(z:8n,'13-’ on) 18 analytically bounded such that

Z

;‘ (o o~ =
. =0 ehe Lo all d
J N

where S’j above is viewed as a C-—derivation of %Q?While
* is the trivial lifting of c% from 5“\"(,,0 002@3&“’ Then V is a

-

Painlevd A-vari ely «

Proofe Since tr deg F/C<ee any finite subset of Fis
contained in a A~ subfie.ld of ¥ which is finitely generated
as a field extension of €. So we may choose a A -variety S over
C\wi'th Q(3)¢ 5*",, dim S=m such that 5;,- 5’;6 N Hé(s,(ﬁs) and TS
is trivial) generated at each point by 5‘1,...,5;1. Let Y—35™ be
the universal covering of San‘ Then the unique lifting of
%-S}t to Z x Y (still denoted so) gives rise to a map b}eMap (Y,
N)}. By (8.7) there exists an Y-isomorphism ¥ of Z x Y such

an __an

that ‘1’2%‘ =E:§ + ZSTT = gJ hence the projection 2% x S¥ 5™ has the

Painlevé property and we are done.

To prove Theorem (8.%) we need:

(8.9) LEMMA. For any affine algebraic C-group G, we have

NG @ F/FvN/T)® F .

Proof. We have a natural injective map A(C/C)@F->A(C @ F /5
8o we have to check surjectivity. Let Se Bc @ ¥/#) and choose
8
an effine A ~variety S such that & defines a regular (i.e. every

where defined rational) vector field on G x S)CQ(S}C F). Let A and
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B be the coordinate rings of @ and S respectively, It is clear
that for any maximal ideal M of B, the derivation (c()mod M)
tA~—> A induced by (p: A®B > 4A® B belongs to A(e/t),

Let V be a finite dimen8ional C-subspace of A generating
A as a CU-algebra and let W be a finite dimensional C-subspace of
A such that én(viﬁ BleW® B and A(G/C)(V®B)cW® B (this is
possible because dimcﬁACG/Q}*koo of (2.1} and this is the point
in ﬂle proof of our lemma)e. Now let E be the B-submodule of H=
==HamBCV ® B, W® B) generated by the image of A(G/T) and E' be
the B-submodule of H generated by E and the image of d . We have

that for any maximal ideal M of B the images of E and E' in

L=

H/"‘"""‘HomC.(V,W) coineide, Replacing B by Bf for some fe€B,f#0 we
may assume that H/E' is a free B-module, hence that MZAEL'=IE?,
Nakayama immediately implies that E=E', Since two derivations on

A ® B which agree on V ® B must agree everywhere we get that

cfé—A(G/(I}) ® B and our Lemma is provede

(8.10) Proof.of Theorem (§.3). As in (7.4}, 9(Fir=
=G¢®~3? for some algebraic € -group G. Let as usual 5"; denote
£.he triviel lifting of ‘% from ¥ to G®® F and SJ the derivation
corresponding to the operator g‘j on (P(Gm@?)z. Then by (8.9)
65=5% e (g0 ¥)n NG aH/8)=A (o, @FIN(A(G /o F)=
=0 (G /C) ® F. By (4.3) A, (G./C) is analytically bounded hence
by (8.8) §(Firf) is a painleve variety and Theorem (8.3) is pro-

ved e



Appendix . Derivations of general Hopf algebras

Let A be a Hopf algebra [éw] over a fleld F of arbitra-
ry characteristic and k a subfield of F. Then define A(A) to be
the Lie F-space of all k-derivations of A satisfying conditions
1}-4) from (1.1} (with 4 instead of ®(G)}. The aim of this Ap-
pendix is to study A(A) in this general context. The "algebraic
group version" of the result we are going to obtain can be easi-
1y deduced frém our Theorem (2,1) plus standard structure theory
of algebraic groups; since these tools are not available in the
"general Hopf algebra"™ .case we found it interesting to show how
one can develop some purely Hopf algebraic techniques in order

: |
to deal with “infinitesimal automorphisms", Apart from the fact g
that (non-necessary commutative or finitely generated) Hopf alge%
bras have tlieir own right and beauty we are also motivated by thj
fact that linear A-algebraic groups [Mof infinite transcendence
degree lead to (commutative) Hopf algebras UIr§ which are not

finitely generated as U-algebras.

We start with a preparation on cocenters and centers of
 Hopf algebras. Then our main result will describe the structure

of A(A ® B) with B co-semisinple., Our background here is @wjﬂ

(A.X) Iet F be a field and C a F-coalgebra. A coideal I
of C is called cocentral if T (1 @ plom=(p @ l}:v/i ICC/I®C
where /- is the comultiplication, piC-C/I is the canonical sur-
Jection and T:C @ /I —C/I @ C is the twist nap (equivalently,
ie JE-TpE €l @ C for all xeC, where T: C x C—€ x C is the twist‘

map)e If dim C<eo, I is cocentral iff the subalgebra (C/I)° of




i ]
poen

g® ia .Central., One easily sees that 5r dzm C<e then, there ig
a minimum cocentral coiﬂeal.IC of C; indeed let 4 be the centep
of ¢° ang put Iézker(msfcoo-?AO), low we claim that any coal-
gebra C (possibly of infinite dimension) has g minimum cocentral
ceideal Lo Indded, take any fa111y (C ) of subcoalgebras such

i
that Cz;zci and dim Ci<oo; then IC=2iIC is easily seen to be the
oo : 1
mininun Cocentral coideal of (S5

(Aol 4 coalgebra C will be called cocentral irf IC=

A

=ker € (6= 5. counit). If dim €< oo then C is cocentral 18F 65
is a central algebra, Hence, if P isg algebraically closed and

C is simple s then C is automatically cocentral,

(A.3) Recall fron [Sw] P.161 the following basic proper-
ty of simple coalgebres: 1 C ia g coalgebra, C *ZTC i sub-
coalgebras, then any simple Subcoalgebra of C lies in one of the

ci's, Recal) theat o coalgebra is called co-semisimple if it is

the sum of its simple Subcoalgebras. The above property implies

that 1 @ 48 co~-semisimple then any subcoalgebraof(:hasaicm@ﬂ@mm“f

tary coalgebra and is the sum of its simple subcoalgebras .

(A4} Tet B pe 5 Hopf P-algebra, A Hopf ideal T is calleq
Cocentral if it is so as a coideal, Any Hopf algebra B has a mj -~

nimum cocentral Hopf ideal JE, indeed put J "B(zgu 18 )B where

S=antipode and IB is the minimum cocentral coideal in B. The quo-

tient BC=B/JB i8 called the cocenter of B,

c
(A.5) Assume in (A.4) above that B is a group algebra
and let B=€§B_ be the G(Bp)~gradation corresponding to the co-

action of B® of B on the rig AEfB-*EEQQIS (here G(A) means




e T
the group of group like elements of A)}; since JB\is cocéntral,
this gradation coincides with the gradation carresponding to the
left coaction)): BB @ B. We clain that all Bg's are subcoalge-
bras of B. Indeed/M:B-#Bw® B is equivariant with respect to the
right coactions of BQ on B and B ® B (for the latter take the co-
action p , on the second fackor); in particular/M(Bg)c:B~® Bgc
Similarly,/u is equivariant with respect to the left coaction of
B° on B and B @ B (for the latter take the coaction ) on the

first factor) and get./u(iBg)CBg ® B ; consequently /«A(Bg}C: Bg ® Bg°

Note also that B_#0 for all geG(B®); indeed, if beB lies

c
above geG(B ) then,bg s the g-homogeneous piece of b also lies

above g, hence bg#O!

(Ac6) A Hopf algebra is called co-semisimple [SWJ if ik e
so as a coalgebra. In [Sw] D294 sevefal.characterisations of co-

- semisimple Hopf algebras are given; in particular if H is an af-
fine algebraic F-group then () is co-semisimple if and only if
H is linearly reductive. Note that if B is co-semisimple anf F is
algebraically closed then the cocenter Bc is a group algebra. In-
deed, write BF&)Ci, C, simple (cocentral) subcoalgebras. Then
B/Iff=69(ci/lci)= QB(Ci/keeri) is generated by group~like ele-

c
ments, hence so will be B , being a quotient of B/1g.

(A.7) Let's discuss the notion of center of a Hopf algebra.,

A subset. of a Hopf F-algebra A will be called central if each ele-
ment of it commutes will all elements of A, Then A contains a méxi-
mum central sub Hopf algebra ®4 (we let ®A be the maximum element

of the family of all central, S-stable subcoalgebras of A). Ve cal

©4 the center of A; it 19 contained (but apriori not equal to) the



i
center of the underlying algebra of A. Note that 1f P(A) (resp.

¢ : - ;
p(%4)) denctes the space of primitive elements of A (resp.©s)

c : . ‘
then P(CA) consists precisely of the central elements of P(A).

(A.8) let A and B be two Hopf F-algebras. We denote sim-

ply by A(A) @nﬂ(B) the fibred product A(A) X A(Bv) . Stopt eun
er F

investigation of A4 @ B) by noting that there ig a natural F-1i-~

near projection A(A & B) —A(A) @ Fﬂ(B) ,5‘%7(&,&3) where cfA~ (lA &

®£B)°L'1A where iA:A'-—vA ® B is the natural map iA(a):a &%
(and SB is defined similarily). Our projection admits a section

(which is a Iie space map) A(4) @ FA(B)-7 AlA @ B) defined by

(5‘1,5‘ Y2 gl Sul e @52\, We shall identify from now omn

A(A) (g? A(B) with its image in A(A ® B).

c
(A.9) Next assume in (A. 8) above that the cocenter B 1is

a group algebra; by (A,6) this is the case for instance when B

ig co-semigimple. Then we shall define a remarkable ILie subal-

gebra A(B:A) of A(A @ B) lying in the kernel of the projection
Ala ®@ B) = 4(4) @A(B). Tndeed let P(®A) be the group of primitive
conolder the G(B )-~gradation B= EBB on B defi-

elements of CA,

ned by the coaction of B on B (cf.(A.5)) and for any group homo-

morphi sm aelom(G(B®), P(®A)) define the F-linear map f A QB =

— A ® B by the formula

ga(x ) b)‘—'ZX& (z) ® b, =6A, DEE,
= g

where b—Zb 18 the decomposition of béB into homogeneous piecesSe

Then clearly 5‘ is an A-derivation and using the fact that all

B 's are subcoalgebras of B one checks that in fact cf ca @ B).

&
we defined a linear map



Hon(GB%Y, PCA))>AL ® B)

whose image will be denoted by A@B:A),
Since BP{O for all g (ef.(A.5)) it follows that Hom (€ (B%)

PCAN~AD:A) is an abelian lie subspace of A(A ®@ B} (it is of

course the analog of Im exp from (2.1)),

Our main result is the following:

(A,10)} Theorem. Iet A and B be Hopf F-algebras with B co-

semisimple and F algebraically closed. Then
Ala ® BY=(A2) @ AB)DA(B:4)
F

Proof. We must show that every yé ker (A(A @ B) - A4) Q

£

®NB)) lies in A(B:A). Clearly g ig F-linear.
F

Step l. We show that pis an A-derivation. It is suffi-

3
cient. to check that L(CA @ 1)cA @ 1. By (4.3) Bs=F@E for sonme
coalgebra E. Consequently, for any a€A we may write (S‘(a ® 1z

8, @ 1L + AGE with aQC—A, We get that

/u(fg‘(a®l))e/x(ao®1)+A®E®A@E,/«(ao® DNeAploriel

On the other hand

§ N & ’(S\ €
plae@)=@al+ 1 @pla @ Ne(del+1)AoleAe lc

cCA®1IRAR L +rAQ@E A lt Al AL

We get that/‘(_y(a @ I.E}ﬁ/U(a o2 1) hence 'S\(aow 1l)=a, @ 1 and our

claim 1is proved.



Step | 26 We show that for any subcoalgebra C of B, we have
g (1® C)c & @ C. Indeed by (A.3) C has a complementary coalgebra

(
¢'e For each béC we have ()‘(1(27 b)éxb + A®CY with XbéA ®C,

We get

S (&1 ® b.):)e/u(xb)ﬂx @C' @A C',/u(xb)éA QC®A®C

On the other hand

o
/«(5(1 @ b)):(c% 1+ 1@5)/4(1 & b)e(cfc“a 1+1@) et olot)lc

c AQB®1LO®C +1Q@CPAQRB
T J
We get that /u( (1e@ b))=/a(xb) hence d(1 @ b} =x and we are done.

Step 3. We show that for any simple subcoalgebra C.of B
1
there exists aCGP(CA) such that forall beC we have o((l @ b)=
= & b
%
Start with the following general remark: if C is any simple F-
~coalgebra and L:C—C is an F-linear map such that/uoL:
=(L® 1 ,)o/,x:(l @ L)~7,L :C>C @ C then L is a scalar multiple of
G @ )

the identity. Indeed choose t&F such that L—tlc is not inverti-

ble. The equalities /W(Ir-tlc):((L—tlc) ) J_C)c/-«=(10® (L—«tlc} )v/4

show that the image V of L—-tlc is a subcoalgebra of C; since V

is not thw whole of €, it must be zero, hence Lstlc and our re-
mark is proved.

Now let aXe A® and

13
L =(ax@1c)o§ci‘cg C2ARCAQ@C C
at :

where ip:C A x C, ig(x)=1 x x . We claim that L, is a secular
a

multiple of l{,‘ ®



To see this note first that a =(a @, )/u‘A~‘-7F Which im-
plies that A, (¥ @ 1) =(a" @ 10 O 10)/%@0 : A C —

= C ® C. Now if x€C we get

/JC(La‘k X)-"/)C((a‘x @ 1)5\(1 @x)) =
2 m
é(a’*{ ®@lL,@f, ®1 )}1,@05(1 ©x) =
= (g™ @1(3‘@5 C:} (3,3 Lymo™L ca("@g)/“‘A@C (lox)=
=(( (a3 mcw J@E,®1, )ffac (12x) +
+(aX @ 1g) © (¢, ® lc)é'aﬂ)/A@C (1 ® x)

J

The second term of the latter sum vanishes because ¢ projects

into 0eMA)BAB). Using the usual sigma notation mM.x= Dx ®
- e 2¥ (1)

® X(é) we get

=000 x : e
/AC(LGXX)—-Z(((FA & lC)cy)daEAéD lc)(lco X(q) © lo® X(Q)) =

in other words ﬂQOLaan:(_Lax ] 1(1)% e Similarily, starting with
the equality ax:(.EA @ ax);c/(,x we get/ﬂC_oLa}t:(lc o) La)t)yu . By s
previous remark, L - must be a scalar multiple of the identity
and our claim is p?oved.

Qur claim implies that there exists a€¢A such that 5(1 @ b=

=a @b for all beC. All we have to check now is that aeP(CA}.

Writing

O=f4 @ (L@ bl-lal, o p*ly o p ®‘>/“A ® B2 ©

=(1A&T®1B} C(/AAa -a® 1-1® a)aa/uab)



where T:A @ BB ® & is the twist map we get that aeP(4). Wri-
ting xa @ b=§(x @ b):X((l @b)(x® 1))=ax ®@ b for x¢A we pge

get acP(Ca).

Step 4. We show that whenever C and D are two simple
subcoalgebras of B contained in the same B g 3 we have asape

Indeed, by (Aul) and (A,4) the ideal JB=1:er (B»B%) is
generated (as a 2-sided ideal) by elements of the form s« whery
n70 and x belongs to the union of all simple subalgebras of B,
This together with Step 3 shows that the ideal A ® JB is sta-

r~

: = c.
ble under 5; in particular 0 induces a derivation J€(A ® B )

and'we have a commutative diagram:

M lelwlep e
,A@BO®AQB —  S5A®B®A®B

@

‘ |
) “ Cnedmd {s1+10d

v v

c
AOQB— L@B@A®B —AQ@QBQ@A®B
1pllop ‘

o

- c

Now clearly the projection of § in AWOAB ) is zero, hence
P
e € ;

by the Step % applied to kg end B instead of C and B we get

that d(leg)=a ®g for some agéA‘ We have for any béeC:
< 2

de1+108)0 (161010p)s 2 (100)= a0y epeing)=

L

= bg G :
a C&J&l@mlabma B8

and an the other hand
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(Iﬁlalﬂp)//oy(lmh) (mmmp)/u(a @h)=
=g c&ab@}.@gr + Jobmecog

from which we get aaﬁag. Similarily aD=ag and we are done.

tep 5: conclusion of the proof. By (A.3) each Bg is a

;

sum of simple subcoalgebras, hence by Step 4 we get a function

(%)~ P(4), ghealgl such that d (lebl=a(g)eh for all beB_. To
check that a is a group homomorphism, compute (l@b1b27 for

‘ B vith b,b, i hat - B B 208 >
blngl,bzé e with by 2#0 (note that : géFQ for all 811 &

b se b A.5) OB cB B-B J.
ecau 3 g5 Dg;~17, e,

2

(4.11) Remark. The proof of Step 2 in (A,10) shows that
for any co-semisimple Hopf algebra B, any subcoalgebra C of B
and any SLZMB) we have SECC; in particalar B ids locally fin fe
as a A(B)=F-vector space.

Thisg, in its turn implies the following statement: let [Mbe a
linear A -algebraic group such that the Hopf algebra QJ{P} 18
cofsemisimple; then ?(%P} is finitely generated as a (non-diffe-
rential) (~algebra (i.e. [ is automatically an f-group!). In-
deed, using arguﬁont similar to those in [B ] one sees that

%Pj‘”(U}F})Q%U But the right hand side of the latter QQhﬂllty

Y

cannot be Finitely generated as a A-Jl-algebra unless ’M5F3 is
finitely generated ag a:KnalgebraAand our asswertion follows.
Our Theorem (A.,10)} can be used to produce some classification
statements for A-algebraic groups (in the same way as (4.3) was
used in section 6); since the results obtainable are far less

complete than in the case of f-groups we shall not give them here
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