INSTITUTUL NATIONAL

INSTITUTUL
ey PENTRU CREATIE
MATEMATICA STIINTIFICA SI TEHNICA
: ISSN 0250 3638

.POTEN”I"IALS IN STANDARD H-CONES

OF FUNCTIONS
by :
N. BOBOC and Gh. BUCUR
PREPRINT SERIES IN MATHEMATICS
‘No. 6/1988

'BUCURESTI  /



POTENTIALS IN STANDARD H-CONES
OF FUNCTIONS
by
N. BOBOC and Gh. BUCUR

February 1988

*) University of Bucharest, i%{:ulty of Mathematics Str.
Academiei 14, 70109 Bucharest, ROMANIA.

- ) Department of Mathematies, The National Institute for
Scientific. and Technical Creation, Bd. Pacii 220, 79622

Bucharest, Romania.



(&

POTENTIALS IN STANDARD H-CONES OF FUNCTIONS

N. Boboc and Gh. Bucur.

0. Introduction. The aim of this paper is to clarify the relation between

different classes of potentials which where considered in a standard H-cones of
functions S on a Set X. |

Some of them like natural potential and fine potential are studied in the
theory of harmonic spaces and they are related with the initial topojlogy df X or
with the fine topology on X. The existence of a strictly positive fine potential on
X is equivalent with the fact that any universally bounded element of'S is nearly .
continuous i.e. a sum of a series of universally cartinﬂbus element of 5). In
the frame of harmonic spaces the existence of a strictly positive fine potential
is eguivalent with axiom D. It.is proved that if p is a finite continuous potential
on X or p is a finite fine potentlal on X then p is nearly continuous. (Dther
classes of potenplals are related with the "harmonic carrier" or "fine harmonic
Carrier” and we establish the "equivalénce with thé preceding ones for the case
of superharmonic (resp. fine superharmonic) elements of S.

A particular study is devoted to the classe of Gréen potentials. If X
is a Green set associated with S then any fine potential is a Green potential.
The converse assertion is true iff the finme tepology on X is smaller th@n the
cofine topology on X.

- Other results concern the classes of pu18 potentials and universal]y po-
tentials. It is shown that any pure potentLdl.l\ nearly bounded and any nearly
5ounded is universally potential.

~ Also if any universally bounded element_of S is nearly continuous then

any universalily potential of is nearly continuous.
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1. Pure potentials and nearly bounded elements in an H-cone .

'In the sequel § will be an HQCQne and we prove some properties concerning
the pure potentials and the nearly'bounded elements of S.

As in [l] we say that an element he¢S is o subtractible if for any se S such

that h¢ s we have h 4 s where X is the symbol for the specific order in S.

‘An element pe S is termed pure potential if zero is the only subtractible
minorant of p.

Theorem 1.1. Let u be a weak unit in S.and let s be an element of O

Then the element

/\ R(s-nu)
neN

is subtractible. Particularly if p& S ia a pure potential then

/\ R (p-nu) = 0
neN
Proof. The last part of the statement follows from the first one since

the element C} R(p-nu) is subtractible and specifically dominated by p.
T z

We denote by fn the positive element of S-S defined by fn:=s~85\nu and
by Bn the balayage on S given by

te S = B t:= \/R(tANL)
ne N :

Obviously Bn(R(s-nu)) = R(s-nu) and therefore
Bn(R(s-mu) = R(s-mu)

for any meN, my n. If we denote snzzR(s~nu) we have Sn’5 s and therefore

-
& ! '(;.‘i o
5=8, %5 ,5n¢ S

Obviously the sequence (s_)_ is decreasing and the sequence (s')_is increasing
s n’n iR

with respect to the natural order. For any m> n we have’

h':=%’sn-we get

If we puf h:=ps
et pe

i
n




- t 'A‘_ : . '
s = h+h', an = Bnh 4 Bnh s

& S L i
Bs=Hh+ Bnom » h o+ Bnh

and therefore Bnh h for any n&N. On “the other hand by the definition of

B, we have Bu < 15, Hence A\ B.u =0 and therefore, using ({13, Theorem 1)

n
neN
we deduce that h is subtractible.

Definition. Suppose that S possesses a weak unit. An element s €S

is called universally bounded if for any weak unit of S there exists «K> 0

such that s ¢« u. An element s & S is termedl . nearly brwnwded if there exists

a family (Si>if 7 of universally bounded elements of S such that s = = 5«
e iel

Theorem 1.2. If s¢ S is nearly bounded then

/\ R(s-nu) =
né&N

for any wéak unit u < S.

Convér5611y, if there exists a weak unit v of S which is nearly bounded
then any s & S. for which/\R(s;nu) = 0 is nearly bounded.

Poriloulally, in thlz case, any pure DOLLﬂLlal is nearly bounded.

Proof. Suppose that sec 9 18 noarlyoounded and let (s. >lc I be a
family of universally bounded elements of S such that s éil si. Then for

iel
any weak unit u of S and -any finite subset J & I there exists . & N such that

;7 ¢nu and therefore
ded ' ' fies o
7 : R(s-nju) & ;L:_Si’
/\ R(s-nu) ¢ 7N 30 5; = 0
n Jel L¢J

Let now v be a weak unit of S which is nearly bounded and s & S be such that



il

AR(s-nv) = 0
n

We denote

Sn:=R(5~ﬂv>

gifice Sn;£ s and §-8, < NV we get thaﬁ-s—sn is nearly bounded. Since As_ = 0
we deduce that \”(s»sn) = g and therefore s is-nearly bounded.
n
Corollary. 1-3 If S is a standard H-cone then p & S is nearly bounded

iff for any weak unit u of S we have

R(p-nu) = 0
n

Particularly any pure potential is nearly bounded.
~Proof. The assertion folleows using the fact that there exists in 8 a
weak unit which is hearly continuous and therefore a nearl%bounded element of 5.

_ 5w e V.S )
l'Hweorenl 1-4, Suppose that the dual S of S is reprezented as a stan -

dard H-cone of functions on a semisaturated set Y. Then an element seS is nearly
bounded iff s is én H-measure on Y which does not dharge any polar subset of Y.

| Proof. Suppose that s is an H-measure on X which does not charge any
polar subset of X and let s' be a specific minorant of s such that s' A, q =0
for any nearly bounded element g.

We want to shaw that s' = 0. If s'(A) = O for any semipolar subset of Y
then using ( i?j, Proposition 5.4.2) it foliows that s' is nearly continuous
and therefore-szﬂ.

Suppose that there exists a semipolar\sﬁbset A of Y‘with Sf(A) = 0., Obvi-
odsly we may suppose that A is a Borel subset of Y. As in ((le], Theorem {40 we
may construct a nearly bounded element fﬁwé~fs which is an H-measure carried
by A and such that a Borel subset B of A is’polar Bl /U.(B) = 0 Frbm the above
considerations we deduce that the.measure ™ on AAgiven by

KM = 8" (M)
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is absolutely continuos with respect to ‘¢ and therefore there exists a posi-

tiye Borel function f:A«w¢>}:Oymﬁ) such that M “flék° Since /AL is nearly Jgids.
}_/

& 5 . ~ . ] e
‘Bounded  then i also nearly bounded. Since s' we get =0,

s'(A) = A (A) = 0
wich contradicts the assumption s'(A);f“O.
4Suppose now s neérly bounded. Then s is an H-measyre on the saturated set

Y, of Y. Since s = > 5h wheﬁe s, 18 universally bounded for any n & N then
n :

s does not charge any polar subset of Yl'
Indeed in the contrary case there exists n, & N and a Borel polar subset

A of Y, such that s_ (A)s Dy

* . 0O A
Let téfﬁf be such that t= &< on A. We have the contradictory relations

ksno(ﬁ\) L Sno(t) < oo (v) ke N

2. Potentials in a standard H-cone of functions on a topolo-

gical space.

Let S be a standard H-cone of functions on a set X and let ¢ be a

topology on X which is smaller than the fine topology ’Zfl on X. We denote also

by the natural topology on X.

Definition. An element p ¢ S is termed @ 77 ~~90'ter1_it:~ia1 if for any

increasing sequence (Gn)n of ¢ such that G, G

\J Bn = X we have /\ BX\_Gﬂp = 0.
e n A

el for any ne N and such‘that

If g =%, (resp. © =Z;l> then a {5 - potential will be called poten-
tial (resp. fine potential) ori X..

Obviously the set of all 75 -potentials on X (denoted by %;(X) is a con-
vex subcone of 5 which is solid with respect to the natural order and for any

sequence (pn)n from »RC (X) such that il P, € S we have 3 p_ ¢ RC(X).

~

e e



e
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We cememeber ({4, 761 the ‘following definition. An element p & S, is .

called quasicontinuous if there exists a decreasing sequence (Gn)n of open

subset of X such that
A Bed= 0
v 5

and the restriction of f to any.subset X\Gn is finite continuous.

Theorem 2-1. 1f p& S is a potential on X wich is bounded and quasi -

continuous then p is nearly continuous.

Proof. First we remark that for any p'&€S, p' f 0, p') p we have

car;;< p' = 0. Indeed, p' is obviously a bounded potential oﬁ X and therefore

carr. p";y/ . If carr_ p' =.0  we deduce, using the relation carr_p' =
= . e s ; e X
= Am carr p', that' carC_ ple X% X Let (Gﬂ)n be a decreasing sequence of open

/
i

subset of X such that Gn 5 G, for any né&Nand (YGn = carr p'.
. n+l - <

Hence

p' = BGHK\X p' = Ban\Xp: for any ne N. On the other hand the sequence.

(Dn)hvof open subset of X defined by On = X\NG_ - is increasing to X and

therefbre, p' being a pdtential on X, we have the contradictory relation

Y O G\ '-'T‘\/| t
0= A g0, A BB S K - P

.

Hence Carg_p'lﬁgf ‘
AN
.

Further for any Borel subset A of X we denote by Pa the element 0L 5
defined by

“,

N ‘\,f.; p| K closed, keAY
{see [@:L % 3-4). Since p is quasicontinuous there exists an increasing sequence

gfn)n od closed subset of X such that the restriction of p to any Fn is comne-
tinuous and

N

From the last relation we deduce that p(”\(X*\Fn) = 0. Indeed for



any closed subset F of /\ (X\F ) we have .

P = B Pe S «B F”] wh&ze BB ¢ on X and therefore

o7 0, p/\(X‘an) o
Hence p = \f"pF . To finish the proof it will be sufficient to show that
Pr is nearly contlnuou% for any n<;N; For this we prove that pF satisfies -

n
the dominmation principle, i.e for any specific \Tt‘nnrant q of pF , and any

s ¢ S such that s > q on carr g we have s > qon X (7], < ¢ 2). e

Let g ¢ S be a specific wugnorant of pF and let s ¢ S be such that

M.

o

s » g on.carr g. Obviously carr q:: carr pF & F for any mc N, m 2

t

Since the restriction of p to F is LDﬂtlﬂUOUb we deduce that the rebtrlctlon
of g to Fm is also coptinUDuS and -therefore there exists an open subset Gm of
X such that | |
P il = (s> q]'mF
If c{é: R is such that p e on X and tC_o is such that t > 1 on X\RF then
5 + oL t> g-on the open set GmLJ(X\.Fm) and therefore'(see§i9], Proposition 3.4.3)
s ¥f(t;a q. The element t being arbitrary we get s s8N My > g for any mzn
and therefore s 2 Q.
Since Pe satisfies the domination principle it follows (EYJ, Theorem 2-6)
that Pg is mearly continuous.
Remark. In the previous theorem we can'not replay the condition "bou nded"
by the condition “finite”. Indeed in the case of harmonic space asociated on

w2

R2 to the heat operator, the functlon s equal to ;; eivg 1f t"> 0
H . . { -

-

and equal zero on t < 0 is a finite potential which is alsoc quasicontinuous
and on the other hand it is not n@arly contlnuous

- Cerallary . 2; 2, Suppose that there exlqts a strictly p051tlve potential

on X. Then the following assertions are equivalent



1) S satisfies the axiom of‘hearly continuity

'2) Any element of S is guasicontinuous

3) Any universélly bouﬂdedveleﬁent of S is quasicontinuous.

EEEEE@. The assertion 1)&%?2) follows from [&} , Theorem 1.7. The asser-
tion 2)=>3) is obvious and the relation 3)=31) follows from the previous

theorenm.

Theorem 2.3. Let p be an element of S any let Y be the set [ipih@}.
Then the convex cone SY of all restrictions to Y of the elements of S is a .stan—'
dard H-cone of functions on Y such that:

a) én.element séi S such that s = 0'on XNY is nearly continuous
(resp. nearly boundgd) iff the function S/Y is a nearly continuous (resp.
néarly bounded) element of the H-cone Sy

b) an element se S)such that S;U on X~Y and such that s is continous,
is a potential in S iff s/Y is a potential in SY. -

fjgggjLL The fact that Sy is a standard H-cone of functions on Y follo ws
from the faét that SY is isomorphic with the solid subcone in S>of all element

s ¢ S equal zero on X\Y. The statement a) follows immediately.

(s

b) We suppose now that g is a potential on X such that a‘géntinuous ard

q/X‘~Y = 0. We show that the element q':=q/Y is a potential on Y.
Let (Dn)n be an increasing sequence of open subset of X‘such that D =Y.
For - any &£> 0 let (Gn)n be the sequence of open subset of X given by Gn:=

1= DnLJ[h 4:&}. Obviously (Gn)n is increasing and \J Gn = X. Hence we have
i e

/\ 'BX\ bn& <A BX\Gr\p - 0
- Y
SR &

'\‘?ﬁg'\f\\bmr.i _;//’B 2 \’\\r < (3‘7 Z & €'> l\\r ]

o R
. 3 ; . ) }



The number & being arbitrary we get

i N ~ VD"\‘\ /
7l e N
G .

P

Theorem. 2.4. Let p be‘a:poténtial on X. Then the following assertions

are equivalent:
l) any universélly boundeq element of S which is dominated by p is nearly
continuous |
2) any element s < S suéh that
s :':{'(s/\np)
is quasicontinuous
3) any universally bounded element of S which is dominated by p is

- guasicontinuous.

Proof. From Theorem 2.7 we deduce that in the standard H-cone of fu nc-

tions SY of all resttictions oY ::{?‘70} of the elements of S there exists a
strictly positive potential. |

Using Theorem 2.% we deduce that the assertion 1) is equivalent with the
fact.that any universally boundéd glement of SY is nearly continuous. Tﬁe as-
sertions 2) and 3) are equivalent with thé fact that any element of SY, respec-
tiveiy any.universally bounded element of Sy, is quasicontihuous. from the shove

remarks we finish the proof using Corollary 2.2 for the H-cone SY.

Theorem 2,3, Let E;,be a topology on X such that ’ETOC:'QJ C:2;1 and

let p be a Z:Fpoteﬂtial which is finite and. "% -continuous. Then p us nearly
continuous.

Praf. Let (sn) s be  an increasing sequence of universally continuous
elements of .é? such that '?ffsn =p. For any &> 0 and any né&N we denote
by Gn the elemeﬂt‘of “C given by -

g

Gn = | s + s >p].

Py >Y




S} e

where 5 = éim

il EeR o
Obviously Gnem Gn+l for any n and ::5 Gn = X. Since p is a "(, -potential

we have
N BX\an =0

e

and therefore, from .

K o

S
R(p- b ) m,g;; +-BX \G”p

R aad ”:..7

we deduce

/\R(DS) < 85, /\R(DS)
ch

Using ([9] proposition 5-6-1) we gu%“p is nearly continuous.

" Cororllary. 2.6. Any potential on X which is finite and continuous

is nearly continuous. is

Cororllary. 2.7. Any fine potential on X which is finite\nearly co n-

tinuous.

3. Potentials and superharmonic elements in a standard H-cone

0of functions.

In this section S will be a standard H-cone of functions on a nearly
saturated set X.

Definition. An element s « S is called superharmonic if for any open

subset G of X the function BX‘\g>is finite and continuous on G.
Remark. It is shown (193 Proposition 5.6.14) that if s is bounded then
s is superharmonic.

FBFO[MJSiti(NW 3.1. The set of all superharmonic élements of §is a

solid (with respect to the natural order) convex subcone of S.
Proof. Let s,t €5, s 4t be such that t is superharmonic and let U
e an open subset of X. We cons 1ger X0 @ U ana V an open neighbourhood of

><O such thatlvndiu.
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X\ V.

Since B 5 EQBX\\Vt we deducefusing ([3j I, Theorem-2.1.6) that
3 N

: : U
where zfu is the symbol for the specific order in the standard H-cone S'(U).
Since the natural topology on U given by the H-cone S'(U) coincides with

the restriction to U' of the natural topalogy on X and since the function BX"Ut_

is finite and continuous on’V'we deduce that the function BX‘\U s is also finite
and continuous on V. Hence BX\IJS is continuous in X

Theorem 3.2. Suppose that p is a superharmonic element of 5. Then p

is a potential on X iff for any open covering (Dn)n of X we have

%

X Diy gX* Din

X .:B
(TIPSR TR

X\D‘hp 216

ProbjLL‘The "if" part is obvious. Suppose that p is a potential on X o
‘and let (Dn)n be a countable open covering of X. If we put

X \DL,BX‘\DLL XA Dh,p

( L'\-s L‘E )-“(/Y\‘)

-

we deduce that h is a finite potential on X. MorGOVer, for any element DnO of
the Coverlng (Dn) Re’ we deduce that

B /\ BX\ Dﬂo(BX\ DL, BX DL; . BX\ DL)‘p)
L('i ’Lz )*“{,‘!'\\

XN Diy gX\ Dey XA Dy

.a-B .p)(‘:’j,i.a);..-(\")

and since the family (B
is decreasing we Jet that the family

A ng(BX Doy gX Dz gX e 1 )<1

O

19L2’ Hly)

is specifically decreasing 1in S'(Dn ¥

From Proposition 3.1 we deduce that h is continuous on Dh and therefore
o

h is a finite continuous potential on X .

If we denote Y :]jb‘yof} and we consider the standard H-cone SY of all
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restrictions to Y of the elements of S as in Theorem 2.3 we get that h/ is a
potenttal on Y with suspect to the H-cone JY and

e e e v T )
= Yo (K E}L»,)_ Y Yo ( ¥
h./gx 5 /\ ; B (HY':)
C"};LI_)*‘LWA") 3 f
Since Y is semisaturated with respect to the H-cone SY we deduce that h/Y
has an empty carrier in Y. Hence, using Theorem Z,S-h/Y is a nearly continuous
eiement of SY. since any nonzero nearly continuous e1ement of a standard H-cone

of functions on a nearly saturated set has a non empty carrier on this set (sse

7], Theorem 2.4) vie deduce that b/, = 0 and therefore h = 0.

¥
Theorem 3.3. a) Suppose that X is semisaturated and pe S. If for any

element g S such that g ¢ p and carr g = yf‘we have g=0 then p is a poten-
)\

“tial on X. Convers ely if p is a superharmonlc potential on X then for any g&S
such that g < p and carr,q =/D we have g=0. |
b) If there exists a strictly positive potential on X then a superharmonic
element p¢ S is a potential iff for any g ¢ S such that g 2P and Carrxq;;gue

have g=0.

Proof. a) We suppose that for any q &35 such that g < p and Carryq = /ﬁf

we have g=0. Let (Gn) be a %eqaence of open subset of X such that C CG i
. for any n L N and k 6Gn = X. '

If we denote g:= /\ BX\ an we deduce that for any n,me N, n < m wé have

g% \Bn gX\ Bn, . gX\ Ty

Since X is semisaturated we deduce that for any x € X there exists a

b XN Gng
X

' on X\Gp such that & = B MOns(x) for any x¢ X.ard

measure
.any s¢g S. On the other hand for any nfé;N the sequence (B n,is
specificaly decreasing in S'(Gn) and therefore fér any gEebn f\[b‘éow_} we have

e —



e

X\ G XA \ :
B Mg(x) = é_i o U B \C”( nt8* NOmoy - g (fi \G”ch\Gmg):

WY YL 42" MY f .E

= inf kx b”

e

i s |
Hence the Plawcnt e g COlﬂF}dEb with the element q outs;de a semipolar

Bix) = glx)

subset Of X and therefore B~ an = g. The number neN being arbitrary we geg
using the hypothesis, ETU. |
. Conversely, sumpbsp now that p is g superharménic potential on X.
Let q e - S be such that g ¢p and Ldlrxq = 0,and let (Gn) be an open covering
of X for whicn ‘
BX\quzq (¢) neN
Sinée‘q is a superharmonic potential on X, using Theorem 3.2 we get

q = A% BX\GD

nenN

q=20

b) We suppose that tnere ex1sts a strictly positive potential on X
and let p be a superharmonic element of S such that for any qe¢S
for which gL p and carr ? = U we have g=U. We snow that p is a potential on X.

Let (b]) be sequence of open supbset of X such that

G, C By O neN and G =¥

RS
: ; . = XN Gn il . et s
If we denote g =: /A B P, by a similar argument as in the proof of assertion
at 5

a), we get
XN Gn
B q=q V) ng )
and therefore q 1s finite continuous. Hence the function p-q 1s iower semi-
N
continuous, obﬁpiy finite on'X ano tor any x& X ano any natural neighbour-

hood V of x there exists n & N such that x ¢V qu . We have, for eny open neighbour-

hood W of x with w CcVnG s
. -
\“h(p~q) (x) £ p{x)-g(x)

and therefore using ({47, Theorem 3.5) we get p-g & S, g3 P, g=0
Definition. An element s S is called finesuperharmonic if for
a2 v ot RN
_.any fine open set G of X the function Bx Gs is finite on G

Theorem 3.4, A fine superharmonic element p& S is a fine potential

B AT S N NI



s

iTf for any covorlnq (b )

161 of X with fine open subset we have

wt

fX\U“B> N\ G,

Lz
e

B i s

(11, Losenil ). P

PROOF. Tne "if" part of the statement is obviuos' . We suppose now tha|t
Lauur, | i

o«

p is a fing. potential on X and.let (Gn) y @ sequence of fine open subsets

of X such that bf C:b i for ny néN and  such that o G LEY}O } The
: : nen "

seguence (Un) of fine open subset of X defined by: Dn = GH&J[‘pzﬂhl has

the following properties -

Bt =B u[p=0jeD ,; (%) neN
\.M/Dn T 4 .
n &N '

and therefore

A BX N an -0
nen

If we consider the Standérd H-cone of functions on the set Y = Ep“}é)giveﬂ

by the rO”LLLctlon to Y of the elements S (see Theorem 2.3) we deduce that
/ N 3 \
i (T SV () neN

and therefore p/Y is a strictly positive fine putentld] on Y. Let now (G, )1CiI

be a fine open covering of X. Obviously the family (D ) defined by: D; =

i€l

= Gjr\ Y for any i€ I is a fine open covering of Y. If we put
s A g B . M

(L’\\L’z,).-. l’h')

we have
aly = A Vg Do 8" B VB Doy

D

ot

Since Y is semisaturated with respect to the H-cone SY we deduce that for any

io c I, any x € Bl and any fine open neighbourhpod V of x such that’@f q;DL
g v 0



we have ' . ' -

L v(q/Y) = 0y

"Hence the fine carrier of q/Y on Y (with respect to the H-cone SY) is empty .
On the other hand q/Y is a finite fine potential on Y and therefore, by
Corollary 2.7, q/Y is a nearly continuous element of Sy. Sinpe any non zero
universally continuous element of a standard H-cone of functions on a nearly
saturated set has a non empty fine-carrer on this set we get q/Y =0, g=0.

Theorem 3.5. a) Suppose that X is semisaturated and p&S. If for

any element g S which is dominated by p and has an empty fine carrier in X
we have' q=0 then p is a fine potential on X. Conversely ?f p is fine superhar-
monic and is a ~fine potential on X then for any q}g-Sewhich is dominated by
p and has an empty fine carrier in X we have g=0

b) If Xiis sﬁslinean and there-exists a strictly positive fine potenfial
'on X then an element p&E S in é fine potential on X if for any 9 & S speéifically
dominated by p and having an empty fine carrier in X we have g=0.

Proof. a) We suppose that p&S is such that.fof any element g & S whi ch

is dominated by p and has an empty fine carrier in X we have g=0. Let (Gn)n

s

a seequence of fine open subset of X such that Gn

Fod Gn+l for any n& N and such

that U Gn = X. We put
o XN G

goa=i\ B My

Since X is semisaturated and since for any x€[p<&e= | we have q{x) =
. ; 3 . XNG
= int 8% th(x) we deduce that for any ngN we have B Nq = g and therefore
R g .
. g has an empty fine carrier in X. Hence, using the hypothesis, we get g=0
i.e p is a fine potential.
" Conversely we suppose that p is a fine superharmonic, . fine potential on X

and let q<§.5 be such that g ¢ p and the fine carrier of g in X is empty. For



a0 9
: . Lat. o : e L i e : SO X\‘GBC
any x ¢ X we choese a fine nelghoour“aud G of x such that B g=q.
The family (G, ) -is a fine open covering of X and thercforp, g being a fine

superharmonic, fine potential on X, we have by Theorem 3.4,
y\[ \\C X\G’
giE i B OIS P L T P g 0

(xl,XZ,.,ﬁ,xm)

b). Suppose that Pe S is such that for any element g of S having an empty
fine carrier in X and q2p we have'q=0. We want to show that p is a fine poten-
f

tial on X. Inceﬂd if (Gn) ) is a fine open covering of X such that G - Gngl
for any ng N and if we put /N B>\\Gn = g we deduce that
N )
BX Gr]q =1 (&) ne

Using ( [6], Theorem 2.6) we get g% p and therefore, from hypotheéis q=0. Hence
p is a fine potential on X. | |
3 _
R° k. In R” any Newto =2
Remark. In any Newtonian potential x S e y‘Q/g i)where e is a
nonatomic measure carried by a polar subset is a fime potential with an empty

oy . . 3
fime carrier in R7.

4. Potentials and fine p0Lent1 ls on a Green set

In this section S will be a standard H-cone and X is.a Green set associ-
ated with S . We denote by G the Green function on X %X associated with S and
S (see { 9], 5.5,[5]) %

We rememeber that an element p of S is a Green potential if there exists
. ¢ :

a measure/M on X (which is uniquely determined) such that

p(x) = & G(x,y)da (y) () xgX
Since § and S;;are_simultaneously standard H-cones of functions on X then
there are four remarkable topologies on X: ZT (the natural topology induced
by S S ), ?f] (the fine topology conduced by S), 'E (the natural topology indui-

¥ Li/
ced by S; hl(h ‘called the conatural topology ) and Cﬁ (Lhe fine topology

induced by S which is called the cofine topology). We have the following

relations:



= L7 = :
o T e R L B e )

: : ¥
In {5} Theorems 4.4, 4.8. we proved the followings result: Any ¢ -potential
9 1 st < G E

p &S is a Green potentisl; if there .exists a strictly positive

b e
G ~potential p&S on X then any Green potential is a C,-potential,

Also we have shown that generdlly a Ce-potential peS is not a

Green potential on X (see fS],I%mmrle7,-b)

_ . e e
Theorem 4.1. Any fine potential is a Green potential. 167 g 2 €.

then any potential is a Green potential.
Proof. The assertion follows immediately from the above consideratio ns.

: i n . . #
Theorem 4.2. Suppose that X is semisaturated with respect to S and S,

- Then any Green'potential on X is a potential and any Green copotential on.X is a
. ] ¥ : » : : .
copotential (i.e “Gw «.potential). Particularly there exists a strictly posi-
tive potential and a strictly positive copotential on X.

Proof. Let p be a Green potential on X and let /mv be a measure on

X such that 3
p(x) = 5 G(x,y)Q/«(y)
Let now g € 8)615 p be such that Carryq =¢. Since X is semiI;aturated
with respect to Siﬁ then q is also a Green poﬁential on X (8@8[?53 , Theorem 1.1)
Hence there exists a measure V' on X such that
a0 = § 60x,yday (1)
On the other hand we have Garryq = suppy and therefore Y = 0.

From Theorem 3.3 we get that p is a potential on X.

Theorem 4.3. Suppose that there exists a strictly positive fine poten~.

tial on X. Then we have:
S : ' *
a) X is semisaturated with respect to § and 5
i )
b) 8 and S satisfy axiom. of polarity '
e

¢) There exists a strictly positive cofire copotential on X (i.e a €. -po=

tential).
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@

Proof. Since there exists a strictly positive fine potential on X th&@n

any universally bounded element of S is a fine potential and therefore from
; ®
Corollary 2.7 it is nearly contirnuous. Hence S satisfies axiomt of polarity.

Particularly X is semisaturated with respect to Sﬁ'. On the other hand since

there exists a strictly fine pofential on X then X is semisaturated with

respect to 5. From the above considerations we deduee that any semipolar sub-

set of X is polar and therefore S satisfies axiom of polarity or equivalently
+

S satisfies axiom of nearly continuity. Hence there exists a strictly posi-

tive fine copotential on X.

Theorem 4.4. Suppose that there exists a strictly positive fine potential
on X. Then the following properties are eguivalient:
- a) any Green potential in'a fine potential

BT e C’l‘#'

Eroof. a)=%b) let a¢ X and VY be an fine open neighbourhood of a. .
We consider now a sequence (Un)n pf neighbourncod of a (in the natural topology)

suchn that

et

| L%P%Un“(v) neN . y R _

and N\ U = ga'k ' :
R .

Let now (Vn)n be an increasing seguence of fine open subset of X such that

. i s - :
ae V< Vﬂ&fWHi e ) OUN

and such that o/ V. € V.

We put, for any n& N

Dn i Vn'u ‘ Un,

e havafun is fine open, .

=T k
= v e
Dn < Dn+1_ (V) né& N

and \W D_ = X. Since G(«,a) is a tine potential then

~h



Bl e

D

X ; '
2N B/ Al a) =)
e S

<

and there  exists noﬁ; N such that

XN

et gy et g

From this fact i1t follows (Seelm9]. Proposition 5.5.13) that X\ D_ 1s cothin
4 n :
@

at a and tnerefore Dn 1S a corine neignoournood of a. Since Vn 2 B F\'Un
0 : 0 o o]

©and since Un is cofine open we deouce tnat \/n and therefore V is a cofine
O o ‘

: L A -
neighbourhood of a. b)=Sa). Suppose tnat 6,1614151 ano let p €S
p(x) :gG(Xzy)d/b\(y) (p) X
be a Green potential @n X.

Let (Un)n be an increasing sequence of fineopen subsets of X sucn that

j and such tnat'_/ U_ = X. we consicer tne element
n n+1 - 0

q:=/\BX\ub“

AN
Since X is semisaturated with respect to S, we nave.

#\U%::Q (¥) neN
On the other hand, X being semisaturated witn respect to éﬁ and since
0&p.gis-a Green poténtial. We have
gix) = S Gx,y)d 2(y) L) EC ;><«
Let now ¥ be a measure on X sucn “that 4 Charges ény_cofine SQDset

of X and such that the copotential
*6 (0 = SG(y,x)d3’(y)
: * o Cor S e
is nearly continuous with respect to S . We have 3 G dj= S§ qdy? =
S o A Rk
=SBX\UWJGV“ S B

, % o B | —
Since G ]szgq it follows that Un is cofine open and therefore (seej_/J ,

"B Ay

Proposition 5.5.13)



> XN e sl
; , i e e on U

A

rom tne preceding relations we deduce that > does not charge the set

U, Sancel/ b it follows that 7 =0, g=0.

5. Universally potentials on_stangard H-cones.

In the sequel S will be standara H-come.

< . Definition. A representation of S as a standard H-cone of functions
on a topological space (X, ) where G 1s a topology on X which 1s smaller then

tne fine topology 7TL on X and greater then tne natural topoiogy Z?O on X is

carlea P-representation if tnere exists a strictly positive ‘G -potential on X.

If there exists at least a P~yepresentation of S then S is callea a P-stan-

dard H-~cone.

Definition. Let S be a P-standard H-cone. An element pe S.is termed

universaily potential if for any P-representation of S on a topological spac

4 P 3
(X,%), p is a & -potential on X.
element of S 1s an. universarty potential,

Probiem. Is any universally putential or S a nearly bounded element of 67

Theorem 5.1. The following assertidns are eguivalent:
a) S satisfies axiom of nearly continuity
b) any representation ot S on a topulogical space (x,7%) where X is sem~
saturated and WSGC"@/CTQ4~ is a P-representation (77 1s the naturat topology;
3]
T, is the fine topology)
/ . | . . R .
5) any representation of S on a topolugical space (X, ) where X is sem-
! o
- = C)
N saturated and“ﬁ;is the natural topology is a P-representation
c) there exists a P-representation o S on a topulugical space (X,‘a)

wnere 7;4 is the fine topoiogy on X.



o

proot. a)é>b)&> c¢) tollows trom (7 6] , Theorem 2.3 The assertion
bJ=» ') is ocbvious.
b'-> a) Let now P be an unxversall? bounoea element of S and let u be a
weak unit on S sucn that P2 u. We denote by X the saturated set with respect
to 5 such that u = 1 on X. Since by hypothesis, tnere exists a strictly positive
potential on X (i.e a Q;—peteﬁtlal}. ﬁhen p is also a potential on X. From
Theorem 2.5 we deduce,fv Eeing finite continudus, that p is nearly continuwus.

Theorem 5.2. Suppose that S satisfies axiom of nearly continuity.

Then an elementvof S will be universally potential iff it is nearly continuous.
Proof. The if part follows from the fact that and nearly continuous

element of S is nearly bounded and therefore it is an uﬁiversally potential.
Suppose now that p is an universally potential of S and let u be a

weak unit of é such that pzu. We consider a representation of S on the topo-

logical space (X,f;) where X is‘saturated, u=1onXand G is the natural

topélggy on X. Since there exists a strictly positive potential on X, then

p is also a potential on X and therefore, being finite ano continuous 1t is

neariy continuous (see Theorem 2.5)
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