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OPTIMALITY CONDITIONS AND DUALITY IN THE CONTROL
OF PARABOLIC VARIATIONAL INEQUALITIES
by

Dan TIBA

1. INTRODUCTION

In this paper we discuss the question of the first order necessary conditions

for the control_problehn

(1.1) | Minimize f(]) { gly) + h(u)} dt

subject to u ¢ L2(O,1;U) and y €:W]-’2(0,1;H), y(t) € C a.e. [0,1], such that:
(1.2) Ay Ay B, g =)< 0 ¥vecQ,

(1.3)  y(0) = yé ,

(1.4) u( €U, ae.[0,1].

Here we consider U, V, H three Hilbert spaces with norms, t«ly;, 11y,

L+ 1 and inner products (.,.)yys (oo)yys (4y.)y+ The pairing between V and V* (the

H

dual space) is denoted by ('")V'xv* and we have VcHcV* with compaet

imbedding, H=H*, U=U*,
We assume that:

- C €V closed convex subset, 0 & C;

= Ua CU closed convex subset;

d

-g:H =R, is convex, continuous;




-h:U =» R, Is convex, continuous, coercive

(1:5) h(u)Zch?%J T
~B:U =» H is linear, continuous;

- A:V =» V¥ is linear, continuous, symmetrie and ecoercive

(1.6) (Ay,y)Zwiys%«@;gyg%, w > 0;

2 yo& C.

Under the above conditions, it is known that the variational inequality (1.2),
(1.3) has a unique solution v é\f\’l’z(O,I;H)ﬂL?‘(O,AI;V). Moreover, it is easy to show
the existence of at least one optimal pair [y*,u*]in \\71’2(0,1;}{) X L2(D,1;U) for the

control problem (1.1) - (1_.4)_, Barbu [1], Ch. 5.

)

The literature concerning numerical and theoretical results for control

problems governed by variational inequalities or free boundary problems is very

rich and we quote only the survey of V. Barbu [1] and its references. Recently, Shi

- Shuzhong [13] derived a more complete set of optimality conditions, in the elliptic

case, by means of a new argument based on Nikaido's minimax theorem [11]. We
extend this approach to parabolic problems, thus generalizing the results available
in the literature. ﬁowever, it seems that it is not pbssihle_ to apply directly the
method of Shi in the parabolic probiem and we reduce it to the elliptic situation by
a semidiscretization procedure. For a general discussion of the discretization and
approximation of variational inequalities, we quote the books by R. Clowinski, Ji1
Lions, R. Tr‘emol_ieres [8] and by C.M. Elliott, J.R; Ockendon (7). A similar
semidiscretization method was used by C. Saguez [12] i‘n ‘the control of two-phase

Stefan problems.
Since the elliptic state system obtained by diseretization is nonstandard and
the- method proposed by Shi is very recent, we briefly recall the main steps in

section 2. In section 3 we obtain the bptima]ity conditions for the problem (1.1)-

(1.4).



It turns out that these necessary conditions are exactly the same as in the

-

case of state constrained control problems governed by linear evolution systems, V.

Barbu, Th. Precupanu [2], Ch. IV. In this way,'ﬂwe strengthen the idea of the
relationship between control prbblems governed by variational inequalities (without
state constraints) and constrained problems, which has already appeared and been
used in various forms'in the works [4], [5], [9], [10], [14]. |

As an application, in the last section, we discuss a possible form for the
dual of the problem (1.1)—(],.4) and we give an example.

Finally, we note that, if [y*,u*] is an optimal pair for the problem

(1.1)-(1.4), then it is the unique optimal pair of the problem:
_Minimize j'(l) {g(y) +'h(u) + 3 Ju - u*| %}dt ’

subject to.(1.2)-(1.4). This is related to the "adapted penalization method", Barbu

[1], and enables us to get a characterization of all the optimal pairs of the problem’

(1.1)-(1.4). In the sequel, for the sake of a simpler notation we study the problem

(1.1)-(1.4).

9. THE DISCRETIZED PROBLEM

Let n be a given natural number and consider the problem
s st :
(2.1) Minimize n iz:'() {g(yiﬂ) + h(ui+1)}'

over the set of all u€ U7 .y €C", such that

(2.2) (y;yq - yp/n F AV +alolye) 2Buyy s 10,0001,

where I~ is the indicator function of C in V and @I is its subdifferential.

For y €V* and v€C, we denote

lylg = sup {(y’p)v X Vq*" 5 pé(C - V) 1 Bv}



with By being the closed unit ball in V.

Then, (2.2) is equivalent with y. »1&(‘ and

C T
~Ny. - A l-Bu 4nv =0, o= Ontsiiie ok
b=n¥ieg = AVing +1 %y1+1 tHecs

We may define the penalized problem

(2.3) Minin‘wize% i 1:; [g(\r+1)+ h(ujy )] + n_ E'ON \- “nyieq = AViey ¥

+Bu,, 4 * Ny, éc

i+]

i °

Yi+1
where N_ s such that Np/n=»eaforn -» o0.

We remark that the functional G (v,u) which appears in (2.3) is continuous
by the properties of g, h and of the mapping - { S To clgmfy the last assertion,

we take}

LeVRIC B JH =sR,

n=l w
flpyysu) = .}:’0 (Pyy1,mn¥iaq - AVisg * Bujeg * 0¥y x v
1= )

y ' n _, rN
N:(CxU '»BV’

ad)
1

: n-
W(y,u) = 1
i=0

(C = Y1+1)f\BV
The function f is continuous with respeet to the weak topology on vI and the
strong topology on (C and)n, while the point-to-set mapping W has nonvoid,
compact values in the weak topology on BQ, and it is continuous too. The Berge
maximum theorem [3] proves that the application
nrl

~ v ‘ C
max f(p,v,w) = Y I-ny: ;- Ayipq + Bujep * ny; bg
p€W(y,u) ’ i=0 e i i TS

is continuous in the strong topology on (C x Uad)n and the multifunction



n2“11\”](vu =gp%lB f(p,y,u) =  max fpvu)}
i=0 3 : i pEW(y,u) j

s . . . n s
is upper semicontinuous with respect to the strong topology on (C x Uad) and the
wealk topology on By, and has closed, bounded convex values.

Since G is ¢ontinuous and positive we may use the Ekeland's variational

principle [6]. 10[‘ any €,>0, thG‘I e is (vn,un) ech x Uad’ such that:
0<inf G < Gplyp,up) <inf G + &

f 9 3
. (2.4) G (y,u) > G(ypsup) - Ex(Ty - yn83n *iu = ug lUn) y  Viyu# (yn,un) ‘

| i i+1 +1y @ %
Letserll (C -y ), WK. 1] (U e U ). For t >0 sufficiently small

i=0 i=0 N ' e

v +ts€c,u +t,w €U, and we have ' f
“n it n k" ad

X
2

Gn(.vn i tksy Un + th\')> Gn(yn,’ un) - éntk( :S i2n.+ EW ,én)

We consider anv p

nk Ve M (v + s, u t w) where M = N M. By a detailed

computation, we obtain

-1 ¢ i sw,i+l -
(2.5) n ]}:0 (n5i+] + ASi+1 - BWi+1 nSl, pnk )V* xV < - ; ‘
= . . = !

11)

i+1 . | i+1 n
_]nil[g(yn s E(V h(up ~ * Yewieg) = hlujeg)

+ Yo |
t _ - tk , i

Obviously (pi‘{(‘“’) is bounded with respect to k in VI and we may assume

pi‘g i piw weakly in VT, Bv the upper semicontinuity of the multifunction Mh, ve

QV\

get Pp (Vn’“ ). Passing to the limit k - 0 in (2.5), we infer



- B -

i+1

(2.6) —1?" [gz'(vl l Si47) * h ( ,V\]H)]
"1%;1 : 1
By (S, + Asjeq - Bwiyg = sjs P Ty g2
1
>- ¢ 2 ' 2 N2
2 n(ESEVn,+ gMU”) ;
: n-1 t =1 z
+ ] +
for alls¢ [ (C - V]n h, we iig’o (Uad » u; 1y,

i=0

Here g', ' are the directional derivatives of the convex mappings g, h.

We introduce the auxiliary saddle function

n-1 i+ n-1
7: T (C-v7)x T (U

i+1 /
i=0 i wp 207 up ) X Mylypoun) = R,
' n-1 .
- +1 +1
Z(s,w,p) = o }_ g ;1 Sipg) * h'(u;] sWo b+ g, (s Ef/n +
l n-1 .

As m ( ol ) is weakly compact, the Nikaido minimax theorem proves the

existence of p & M (y,,u), such that

" inf Z(s, W.Pp, ) = inf max 7(s,w,p) .
S,W : S,W p&M (vn,u )

By (2.6), we see that (inf)Z(s,w,pn)Z 0. Therefore, we obtain:
S, W

n-1 . ‘ n=1 .
=1¢ i+1 -1 i+1
(2.7 n .2;-0 gr(yn Si49) = N i%{) (ns. 1 + Asjiq - NSj: P v ¥ x i Enislvn,

s =0, qu"ﬁ (C—V‘ 1y
i=0




i 7 -
(2.8) n“lg‘i]h’(um W)+ _1%;‘1<13vv L W A
g f=0 FRa L i 1__;0 TRl pn VAV 2 F '-:'nEV\ !Un 3

i+1
n ).

These are the approximating first order necessary conditions for the

- problems (2.3) or (2.1), respectively (1) - (1.4).

3. OPTIMALITY CONDITIONS

We start with several basic estimates for the system (2.2). First we remark

that, by (2.4), we have

(815 0L Gty Y G () - 8

for all u & Ugd and such that y, & ¢ is the solution of (2.2) corresponding to u. Then

n-1

[l 1) + hi 1]+ n LY N ]y - Ay gt

=1
= n

N n
(Rl oy ,
i=0 i=0

n-1 | : '
< n"l }: [g(y:;}l) & h<U1+])] 4 ans C’t .

4G
+nyt |~
LLNER =0

n

Since g is positive, we get

Rl
=1 i+1 :
il i}:_o hu ) < ct.

B

and, by (1.5), we see that

1 A :
i+1 g 2
Oiun !US d.'“

P 0|
(3.3) n7l

™

T!.

_The choice of N, implies that




Taking into account the definition of f§- E\C;, the relation (3.4) may be

rewritten as

i+1 xR G 8 TS | D, 1 i+1
(3.5) (nyn + Ay Bun ny{s 2 -V, )V*x Z‘én

A

for all z €C, suech that z - y;‘:'l € BV .

= i+ - i+1y & i+
Let 6= max(1, Iz - y;] 1y v); then @ Yz - y‘n 1)&vi§(c - .V:] 1 and (3.5)

is'valid for all z € C, in the form

(3.6) ‘(nyi:r]' + Ay;ﬂ - Bu]i]H - nyip g yf;’l)\/*xvz e 65'3:1 o >
sk J]i]-r.lﬂ_ @y;Jf-]E iy V}l}*lg i
We fix z = 0 in (3.6) and we infer
?};{:(‘ny;ﬂ ¢ ny,i}', yfwﬂ)ﬂ i ?g;(Ayxiwﬂ’ yfwﬂ)v*x\/ﬁ ETO] d ;ﬂ 2

By the equality
(3.7 (w-vuwy = dlwlf - 1t + dlw-vid,

we obtain that | y; is bounded for all i and n and

§ H




T

“lixreg il o2
n & 1 et ¥, :
I .

L O )

},,, Evn e yn SH S’Ct- YR /RS

Now, we take z = ‘v; in (3.6):

D= D= 1 . p=1 . '
2 IH llxﬁ g] * }”() (AyH]’VH & Ynlyxy < }««0 {f;:l .
i=0 = =g

pzl . s p=1 . .
i+l i 1+1 i+l i+l
; by & ‘? (Bun Yy

e
“n~ ¥n g Lar You -

We remark that, by (3.7) and (1.6)

Pzl Pzl 1
o I i - gl oz il 70y
ié‘O (A‘Vn ¥ n)V*xV”ié-O (& Y AY 2 Uply =
“] 1 .
e Sope?l Lo 4 2 lp_ 7,it]1 Tl 2
LATyR by - HlaRy Ly + 2330 La%yy s = A%y lg >

’ . e
1 4 i+l 2
;(A‘Vg’yg)V*xV ¥ %(Ayo’yo)v*x\’ +€“2% i-zb !‘Vn ‘VHV =

v

Pl s e .
R Bl o a2
2 iéﬂ %‘Vn yn gH q

Combining the above ineaualities and the previous estimates, we see that

“y;T?VSCt" Vnii: 0,1,-..,]1 = 1,



o ]0 o
n';l . ¢
i Bl cati,
1=

Let v, u, be the step functions obtained in 10,1] from the veetors (y;.]), (u}q)

and ‘(} be the polygonal functions obtained on [0,1] from the vector (y;). That is, on

08 |
5 e we lieve

Ya®) = yi Bupe) = ot

i+ 1 i+1] .

Y0 = L gl 4 -yl

On a subsequnce, we get that y - ¥ weakly™ in L%(0,1;V), §n -«»37

strongly in C(0,1;H), Q}]@f\“ﬁweakly in Lz(o,l;}-]), unw'ﬁ' weakly in LZ(O,],;U). The

fact that v and §n have the same limit is a consequence of the following equality:

ig]/_;l)/ngi]\ (t) - yn(t)E 5 ggl/‘;])/n(l +1 - nt)2iyi_§_] =5 VIEIZ_]

= 2
o (]/3”);.\,li+] = yig I_¥ &

Turning back to (3.6), we infer

1+]

V
(3.6) Z L ity

n-1 . . .
-1'¢ B C I o R |
» Yn . ‘RN 2— (A‘“n 'Y ool

=0 n vExv S

—]2. (BUH’] l+1 1+1)

-1 1+1
& Y pe g }’ cf {1 +et.) .

i=0
Here z €L%(0,1:V) AW 2(0,13v%), #(0& C ae. [0,1], 2(0)=y_ and z_is @
semidiscrete approximation.of z given by the vector (z;)é(ﬁ“. We rewrite this

inequality in the form




- 11 -

1 1
(3.8)  foFnvn ~ Zpydt + folAVn,Yn - Zplykgydt <

< i Jpdt + A £ 4 et
S JolBup,vy = Zplpdt +n gf f >t .

Passing to the limit in (3.8), we see that ¥ is the solution of (1.2), (1.3)

Al

‘ ~e .,
corresponding to u, since:

R 1 “M.
l;ﬁlg‘ go(Aynv_Vn)V*xvdtZ fO(Ay,y)v*det.

Now, we return to (3.1) and we make n - e». Then, we obtain that V.4l is an
- optimal pair for the problem (1.1) - (1.4). Moreover, it is quite standard to infer

that
A(3.9) lim g(]')h(un)dtz f(l)h(ﬂ')dt.
N e sC

By (3.9), we get

LEMMA 3.1. Assume that h is an uniformly convex function. Then unmsﬁ'

strongly in LZ(O,I;U).

REMARK 3.2. In function spaces, it is enough to assume striet convexity and

some growth conditions for h, according to Visintin [15].

LERRMA 3.3. We have
strongly in LZ(O,],;H) .

B -y
.Vn A b a6 b s

Proof

; A N ~d .
Since Y, is convergent in C(0,1;H), we see that yg =¥,(1) = y(1) strongly in




-.12 -

e % v o
H. But (yg) is bounded In V, s0 yg et "y(]) weakly in V, on a subsequence.

_ : S :
We reconsider (3.6) with z; 1 = y:,] and we pass to limsup:

i+1 &9
M=l oign T 1
(3.10) ﬁf’ﬂ;‘;{ﬁp n = E z __,D..__T_E%H SN 7EI§Y!EY?f(AV“9Vn) %(A\onyo)
n ~& o0 i=0 N
-1 7i+1 = Vi

NoE el (Bui*? . R

LR ‘}AO L v”"“":‘l‘“)f_ E(Ayo,yo) - 3(AV(1),¥()) + j' (BU,y)dt ,

Nn-=en 1= n

by the above estimates.

We know that ¥ is the solution of (1.2), (1.3) corresponding to U, that is:

T+ AY + 21.(9) 2BU in [0,1],
WO =,

We multiply by ¥ éLZ(O,T;H). By the chain rule, we get

T2 + HATF) - HAFOFO) = [ LBt

and (3.10) gives

1+1 2
limsup n 1} } < fo

N «» oo

By a wellknown criterion for strong convergence in Hilbert spaces, we infer

the desired conelusion.

LEMMA 3.4. We have



e

vy - y str ongl v in LZ(O 15V) .

Proof

Let m be another natural number. We divide [0, 1] in nm subintervals and on
cach one we fix Zn"w“y;"n in (3.8), next we reverse the indices m andn. Adding the two

inequalities, we obtain

Lo & g 1 .
go(y;n = Ymo¥n ~ -Vm)I—If go(Ayn = AVpa¥p - ¥m) < _

' n-1 . m-1 .
1 -1 pitl -1% i+1
T8 fo(Bun = Bl Y= Yt B i>:"0 ¢ (1+ect)+m ig_o Jm (1 + et.).

The properties of (J;) and (1.6) finish the proof.
Now, we are able to give some estimates for the adjoint state P, and next to
pass to the limit in'(2.7), (2.8).
; -1+ i+
We. reecall that P, € M(v,sup),  therefore Nn] P; lec - .V; Lo i,

i=0,1,...,n - 1. We may choose s = pnN;l, in (2.7) and we get:

=1, i+1 ] +1 i B ]+] TN L 1 i+
(3:11) n lzog'(v N ) 2” (nN + N Ap, nN pn’pn ) >

R =1
e e

Summing by parts, we infer

2 Tl R o Wy g R
(8.12) 1 fg(v ,1 )-n ):O(Apl e

-7V - pi, plyg - n Dol > - Enlpl
& e T e nePrt 2~ EnlPn yn
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Sinee g is finite on H, it is locally Lipschitzian and (3.12) becomes

y -] . A
il 5 PN S IR TS
noeblo s o e Y (Ap "D g &

nlyn t'ingpngvn_i’-‘ & n Pr vExy
+ n“lgull(ﬂ(pi 1) ply h 2

e R

By (8.7) and the diserete Gronwall inequality. we obtain

. LEMBRIA 3.5. We have:

1,2(0,1;

for all

ip;!I,Igct., Vo, i=0,1,...,0-1,
n"lflg ipmé\?}gct;, Vo,
i
E‘ o= et ¥ n
The step funetion P, b_ui_lt from the vector (pin) satisfies p,, -» 'f; wéakly in

V) and weakly™ in Lw(O,] ,H), on a subsequence.

To pass to the limit in (2.7), we rewrite it in the form

n-1 ; . n-1 ; .
-1 uygitl i+1y _ -1 i+1 |
o i‘- g(yn %141 = Vn )-n 2: (Apn 2i41 = Vn )V*XV =
=0 i=0
1 _ i
o QR SECE RS . I
‘Zn_l(l S n,plﬂ) 3~ &l =¥ 3
i=0 L. i T n2-Enl ‘ni\/n '

n Pon,
Z @ C 7 BN e .
‘ ’ZO .\O e

Consider any 7 €1.2(0,1;1NWT2(0,1;v%), Z(1) €C a.e., HO) =y, and let 7,




- 15.,

be a discretization of % given by the vector (z;)@sv“. We put z_ in (3.13) and, by

the above lemmas, we can pass to the limit to get

o

(3.19) [lo@z -9 - [Ma5E-9- {3FF -6

for any z with the required properties.

Similarly, we may pass to the limit in (2.8) and we have

(3.19) fhwii- W+ (HB*ET - D20

for alt ¥ €L2(0,1;0), W) € U, q 2 [0,1]

THEORERM 3.6. Assume that h and g are Gateaux differentiable. For any

optimal pair [y*,u*] of the problem (1.1) - (1.4), there is p*e LZ(O,I;V)I’\LM(0’1;}--1)’

such that
] W C..o_ % ] R . 5 1 % e
E‘O(gyg(y )7 = y*) + [O(Ap“‘,z—y*)* jo(p",z‘—(y*)‘)zos
e e v NG e e e e O
fo(‘@h(u )V -~ u*) fo(B p*¥,v-u¥)>0
for all 7, V as above.

Proof

We use the remark from the end of the Introduction and we denote p* = —E'.

REMARK 3.7. In order to see the significance of the optimality systsem
given by Theorem 3.6, we assume that p* is in wls2(0,7:v*) and p*(T) = 0.

Integrating by parts and using the definition of the subdifferential, we get

(p*) - Ap* - 3l (v*) > wvglv™),

5



B*p*e CIN (™) + v h(u™),

“ead

where

9

€ = { vEL2(0,1;V)Nn Wh2(0,T5v*); y(t) € C t&[0,11, y(0) = yo}

% .= {uerX0,1;05 v €U, ae. 10,11} .

ad
This is just the optimality system deseribed by Barbu and Precupanu [2], Ch.
IV, in the case of state constrained control problems governed by linear evolution

systems.

REMARK 3.8. The positivity and the differentiability assumptions on the
mappings g,h are stronger than necessary and are imposed for the sake of
simplicity. The same is valid for the condition 0 &€ C. It is also possible to take the

right-hand side of (1.2) of the form Bu + f.

4. REMARKS ON THE DUAL PROBLERM

First, we see that

n-1 . n-1 : : ; i
L R | }-- i+l _ A i+l 4 py,itl e - _
e O i=0 \-nyp = = Ay Bug ny”‘vi"r1 d

i=0 Yn

n-1 . : . .o
Ll Skl i+1 1+1 1 i+ B
P iéf)( " Ayn i Bun * MY hsPp )V*xV =

i1 i

n-1 y ==y . . .
o] i 2N n. i+l 1+1 pitl _
=n '2_,0 (-~—~—'—~~—~n_1 g Bun ,‘Pn )V* CV =

1:

] A ) 1 o, o~ ~F g
25 (”Y'n = Ayy, + Bup,P )y = ydt --Pj (-y' - Ay + BU,P)V* e
0 0

as n -»ec . Therefore any optimal pair of (1.1) satisfies:

1
] b



T

where v¥¢ l-(y™) ace., v¥ = ~(y*) - Ay* + Bu* .
For the sake of simplicity, we assume that Yo = 0. We define the dual

problem by:

(4.1)  Minimize §{ (G +1,)*(-w)+ (F + L, )E(B*p) b
: 54 Uag . o

over all the pairs [p,w] €L2(0,1:V) x Z*, such that:
R ;
(4.2) ;OQm G Az)},xv*dt =W, 2)g% vy, ¥ z€Z,
z{0) = 0

and under the state constraint
1
(4.3) [Ty yxat> 0.
o)
Here, we denote:
~z = L2(0,1;V)Aw12(0,1;v%) |

: 1
-G(z) :g g(z)dt ,

D
-F(u) =){ h(u)dt

o
and (G .+I%,a,)*, (F + I‘?.£ )* are the Fenchel conjugates of the mappings G +I%.
5 ad
Bl on the spaces Z x 2™ and Lz('(),l;U) repectively.

Uag

LERIMA 4.1. For any w& Z* there is a unique p €1,2(0,1;V) such that (4.9) is

satisfied.

Proof
The equation

z'+ Az =, o o20) =0

has a unique solution z€8 = {zﬁZ; z(0) = 0 } for all q€L2(0,1:V¥). The mapping
J¥: z = q is bijective and bicontinuous between S with the induced topology and

LQ(O,];V*). Therefore &1 : LZ(O,I;V*) =+ 7, is linear, continuous and one to one.
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The equation (4.2) may be rewritten equivalently

i

o R
Py yuet =, Dy g0
The right-hand side defines a linear, continuous functional on By ena

we obtain the existence and uniqueness of the solution p € 1,2((},];\/), as claimed.

; 5 i s 2
REMARK 4.2. In fact p = (&7 1)w and, since # Lis one to one, with closed

range, then (A 1)* is onto. So; the adjoint optimal state p* is the solution of (4.9)

: for some w*& Z*. It also satisfies the state constraint (4.3), therefore it is an

admissible state for the problem (4.1).

THEOREM 4.3. The pair [p*, w*] is optimal for the problem (4.1) - (4.3) and

we have

(G +1,,)*(-w*) + (F + y*(B*p*) = ~-G(y*) - F(u*),

I‘Z‘fud
for any optimal pair [v*,u*] of the problem (1.1)-(1.4).

Proof
We have:

¥ + (B A)*(B*p)+(‘,(y*)+f%§(y*) + F(U*)”*Iﬁ (u*)?_

(C +1
: Q'ad s

%
% 1 1 l. R " ] .
& (-w, y ’)7* i +5(B*p’ u*) = '}'(P: (y’f‘)f + Ay"‘) +5 (Bu*;p) = .
&1 fd O ) O O
1
’

1 .
= ~}f (py(v*) + Ay* = Bu*) ={(p, v¥ >,
o 0 .

for all the admissible pairs [p,w] of the problem (4.1)-(4.3).

On the other side, the optimality conditions f¥e » the Theorem 3.6. give

I y Bt
Jvely™)z - y*)+{(p*, 2 + Az - (y*) - Ay*) 2 0
0 ‘ % o

forall ze € , so
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(4.4)) -w*& wG(y*) + (V*) = 3(G +I )(V”)
Similarly, we obtain

5 AS)  BEprEwEuE kel - (U )- 3(F &1 Yu™) -~

e Uag Uqg

Then, by (4.4), (4.5) we have equality in the inequality of Young and we infer

L@V w R (E L - Tt ClyY)# 1]

@ Uaq () e B ) =

G- %ad

; 1
("W*_.V*)'_' i (Bﬂ’ ® U*) at
SRl ;:O Py LZ(O’l;U)w

1 . ‘. . 0 1 D s
_}’ (p¥,<y7ﬁ)r o Ay:g. o Bu*)dt :f(P*,V¥)dt =0.
o 3

REMARK 4.4. In the case y_ # 0, we assume that Ay &H and we introduce .

the unknown state y - v . The general dual problem has the form

' 1
! i) 1 \ *(B¥* 3 -
(4.1 Minimize 5 (G + I(g -w ) +(F +1 ad) {(B*p)+t (w,yo)z* <7 fo(Ayo,P)dt

subject to (4.2), (4.3).

Now, we assume that B :‘ H -» H is the identity operator and Cdl{ié a
closed convex cc;ne. Moreover we ‘ask that ﬁ:H - ] -o0, +e0] i$ nom decreasing
with respect to the order on H induced by the cone CO (the polar of C), where we

redefine hby h -+ h + ILE , in order to include the control constraints.
ad _—

LEMMA 4.5. Under the above assumptions, the problem (1.1)-(1.4) has at

least one optimal pair [v*,u™] such that 0 = v¥* = i;IC(y*) =u* - (y*) - Ay*

Proof

We remark that wé& 21(y) iff (w,y) = 0 and (w,2) <0, ¥ 2z€C, since C is a

!
i
é
]
i




‘cone. Therefore alc(,\r)c’;CO for all y&H. |
Let [y*,u*] be any optimal pair for (1.1)-(1.4) and v¥e '}IC(Y*){:CO,
vi=u® - (y*) = Ay®, .
. Then, the pair [y*,u* - v¥*] is aéivmissible for the problem (1.1)-(1.4) and
g(y*) + h(u* - v¥) < g(v*) + h(u*) by the monotonicity assumption. So [y*,u* - v¥*]

is an optimal pair with 0 & 'BIC(Y$)~

COROLLARY 4.6. Under the above assumptions, the dual problem is given

by (4.1)', (4.2) since (4.3) is automatically fulfilled.

REMARK 4.7. In this special case, the dual problem is unconstrdmco and its

definition is self contained.

REMARK 4.8. It is known by a result of Bonnans and Tiba [5], that any

optimal pair of the problem

(P)  Minimize % {g(;\r) + h(w)} dt,
. o

V't Ay=u, y(0) =y

v(t) €C in [0,1], u(t)& U,q a.e. [0,1],
is also optimal for the problem (1.1)-(1.4), under the above asstjmptiohs. By Remark
3.7, since the necessary conditions for the problem (P) are also sufficient, we see
that the form of the necessary conditions for. the problem (1.1)-(1.4), given by
Theorem 3.6, is quite sharp. |

We close this section with the following example

]
(4.6) Minimiz ej 3y - Vg }2{1‘2!11! } ,
0

(4.7) Vi - Byve ply)du a.e. Q,
v(0,x) = 0 a.e.f1,
Cy(t,x) =0 ol DR[0T

fult,x)f<1 a.e. Q.
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Here H=U-= Lz(ﬁ.), 0 =101 xfL (L1 is a finite dimensional, bounded

domain), y ; € 1.2(Q) and

i "m.so] Yig 0,
fiy) = 0 ‘ y> 0,
@ vt 05

It is possible to apply the same argument as in Lefn ma 4.5 and to see that

any-optimal pair [y*,u*] of the problem (4.6), (4.7) satisfies f(y*) = 0 a.e. Q. Since

we also have vy =0, the dual problem is given by (4.1), (4.2). We

explicitly for w € LZ(Q):

Bl e el nfasars oo b B ol
%aq [n(t,x) <1 (0131

(G+1_)*(-w) =2 j(V —w)?dxdt~ 3 }f VZ
¢ ol Q"

Therefore, for wé LZ(Q), the dual problem of (4.6), (4.7) is

Minimize { 3 §’ (yd = w)_%,dxdt + 3 { pdedt +

{p(t,x) <1

+ i b- 3 bdxat ¢,
zp<t,x);31§: st }

subject to
Py t&p = -w a.c. Q,
pF =0 a.e.fl,
pltg)l=49 a.e. afl x[0,7],

compute it

since the unique solution of the above equation is also the unique solution of (4.2).

In the general case, by the Fenchel duality theorem, we have

(G +1,)*(-w) = - 3 éyg +min { % (f) (vg-plpew+ €yaL@y,

where ‘@O is the polar cone of ¥ in Z x Z¥, and the state equation should be

considered in the form (4.2).
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