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0. trntroduetlon

The present paper is a continuation of t l l  from whieh we borrow our ideolog5z,

terminology and conventions (with one harmless technical modif ieation, ef. the Remark

1 at the end of this introdueii .on). The aim of [1] was to ,develop a (nonabelian)

eohomological approach to the existenee problem of f ields of moduii for various

algebraie struetures sueh as:

a) polarized f initely presented algebras

b) cornplete loeai algebras

c) r igidif ied algebraic groups

for lvhich the method of Matsusaka and Shimura [6] does not seem to apply. However,

our method (as developed there) did not permit us to reobtain the original results of

Matsusaka and Shimura on potrarized nonsinguiar projective variet ies nor to deal with

more global objects (rather than with vai" ious kinds of algebnas).

In the present paper we f i l i  this gap by further developihg our cohomologieal

tool in order to deal with:

d) polarized (possibly singular) projective variet ies

e) polarized function f ields

f) poiarized (non neeessary i inear) algebraic groups.

Our eoncepts of polarizations in each of the cases above wilt  be explained in { f  where

we also state our main results. Note that in ease d) our polarizations are

"inhomogenc>us'r .  In case e) we get our results only for funetion f ields admitt ing

minimal models in the serlse of Mqri 's program; so if  the "minimal model conjecture" [91

is true, we get a good picture for e) in the case of non-uniruled function f ields. As for

ease f) our polarizations are eombinations of the classical ly defined poiarizations of

abeLian variet ies an<J "r igidif icationsn of l inear algebraic groups as defined in i1l.
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We ciose our introduetion by making two rernarks on terminoiogy.

fternark 1" in [1] we denotetl  by B the dua] of the eategory of f ield extensions of 
'

sorne f ixecl f ield l<. To avoid eertain log' ical dif f icult ies i t  is eonvenient to sl ightly

mocJify this definit ion of B. We shall  f ix a f ieid extension k*f l  withf l  algebraical ly

elosed and tr. deg. Q /k uneountable, By an embedded f ieid we wil l  understand any

intermediate f iekl K between k andJf strch that tr.  deg.{)/I( is uncountable. Now we

denote by B the dual of the ful} subeategory of the category of f ields whose objects are

the embedded f ieids. Everything i,vhich was said in [1] holds for this new B instead of the

old one. Bi-lt here we harie the advantage that for any K e} B we have a eanonical way to

assoeiate an algebraic -closure of i t  I{" € B (namelY Ka = algebraie elosure of K infL)

and an embedding K.; Ku. This wil l  make things easier at a certain point.

Remark 2, By a trvariety over f ield Krr we witt always understand a

quasi-projective geometrieal ly integral scheme over K.

1" Folarizations. ltlain result

(1"1) It  wil l  be eonvenient to make an 'rabstraet'  preparation on polarizations.

So let C be a f ibred eategory over B; recali  that C is defined by categories C^(K5B),

covar iant  functors Cr :  C* * rCK,  ( for  any f ie id  homomorphism u:  K-*+K' )  and

isomorphis,ro Cu,u, Cu o Cu*, Cuu. Reeall also that the funetor B*-+ S( = eategory of

sets) defined by KF* Cnliso wil l  be st i l l  denoted by C; i t  is cal led the rtmoduli

f  une-torrt. . ,

By a polarization on C we wil l  understand any "f ibred functortt t( z C-> S i.e.

the giving of the fol lowing data: contravariant funetors f in : CO*+ S (for ai l  K 6 B)

and morphisms \ :  
i .K*>(K,  o C,  ( for  any f ie ld  homomorphism u:  K*- )Kr)  sueh

that whenever V : Kf --+Ktt is another f ield homomorphism we have

fuu = f11,,(Cr,u) n ?'u(Cu) . ffu For any A C CI(, the eiements of fr(A) = ?-X(A) wiii

be ealled polarizations on A; note that the group G(A) = G(A,C) defined in [1] (2.13) aets

(on the left) on {i'(A).

Given C and f as above one ean define a new fibred category Cfr a, follows.

For  any K G B the objects  of  Cr ,  are pai rs  (A,1)  wi th  A €CI<,1e? ' (A)  whi le  morphisms

in C6, the funetors Cu and the isomorphis*r Cr,u are defined in an obvious way.

(1.2) In [1] we implieitely used polarizations in the above sense. For instanee

(tfre f iUreO groupoid strueture of) PAL t l  Q.2) is obtained frorn the f ibred groupoid of

f initely presented algebras and the f ibred functor 1i '  associating to any such K-algebra

A the set of f inite dimensional l inear.subspaces P of A for which the natural map

n(t) *> A is surjective and has a f initeiy generated kernel.
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(1.3) Another exarnple is providecl by the f ibred groupoid AHAr t1L (2.?) whieh

is obtained from the f ibred groupoid AHA and the f ibred functor f i-  which tal<es any

linear a.igebraic K*group L into the set of al l  i ts r igidif icetions t1l (2.?)"

(I.4) $ssume C and i i  are as in (1.1). We say that ' iT- is diserete i f  l i -u is an

isomorphism for any f ielcl homomorphism r., t  14--9I{t for whieh I( and Kr &re

aigebraical ly elosed. In example (1.2) f i  is not discrete while in example (1.3) i t  is.

(f.S) A functor C: B.-*> S is said to have property (p) (minimaiity property) i f

for  any universal  f ie td K€Bu and any g6C(K) the set  D(5,  C)  of  a lgebra ieal ly  c losed

members of D( t ,C) ( i"e. of algebraical iy ciosecl f ields of definit ion of f  ) fras a smallest

element (recali  that D( F ,C) does not have in general a smaliest element even for very

nice C's). Property (p) should be viewed as a rrsltadowtr of the modular pro-$ert ies

discussed in i1l.  The foi iowing (tr iviai) lemma indieates i ts eonnection with property

(dr) from Ii ]  ano with polarrlst ions.

(r.o) r,nnnmA. Let C : B. S be a funetor- Then 
t:

1) If  C has.property (dr) i t  also has property (U),

Z) If  C is the "moduli funetor" of some fibred category C and if  there existS a

discrete polarization K on C sueh that C? has property (U) then C itself has property
i>-

(F).  More precisely for  any K €Bu and (A,7)€:  CTwe have D|(A,y ) ,  
" t - )  

= D'(A,C).
. L t

Next we introduce the three f ibred categories we shail  be dealing with in the

present paper. For anY f ield K let

PROK = groupoid of projeetive K-variet ies

FUFK = groupoid of function f ields over K

AGRK = groupoid of algebraic groups over f lr  ,

and let PRo' b'uF' AGR denote the corresponding f ibred groupoids over B (and aiso the

corresponding moduli funetors B--+ S).

Note that the objects of FUFn are the regular f initely generated. f ield

extensions of K while base change in FUF is defined by the formula FF-: Q(F&nK'):for

any f ield homomorphism K -> K' and any F 4- FUFK, where Q denotes "taking quotient

f ieId".

We wil l  also eonsider a remarkabie f ibred subeategory FUFm of FUF: for any.

K€ B, FUFf wil l  be the. ful i  subeategory of FUFK whose objects are those funetion

fields F/K such that F&KKa/t{a has a Q-faetoriai (terminal) minimal model in the

sense of tgl"

In what fol lows we shall  define natural discrete polarizations f ion PRO, FUFm,

AGR and prove

n -  ^ N  &

tf .Zl ff lEOnEru. tf char k = 0, the functors PRO " , FUFtrr'. ' / , AGR " are



co&rsely representable by birational sets of f initely generatcd type (i"e. have property

(m) in the terminology of t l l  (1.4))" Moreover the funetors PRO, Fr.UFrn, AGR have the

minim al i ty property (p).

To prove theorem (1"?)  we wi i t r  prove that  PROI ruu '^ 'T,AGRTsat ls fy  the

proper t ies ( " "XsX. f r ) tJ ' r ) tcr )  f rom t1 l  (1"4)  ancJ apply  T l reorem (r .5)  f rom [1]  and the

Lernma (1.6) above" As in t1l the only non-tr ivial propert ies to be checked witt Ue ( <fr)
. a\ 

/\r

and (Eo). Note that the.assert ion on PRO " i ,  *r**., t iat ly due to IVIatsr.rsaka and Shimura

t6 l.
Finally our assertion r:n FUFm having property (lr) can also be deduced using our

theory in  [2 ] ,  Chapter  2,  ; i  1 .

Now letts consider coarse representabil i ty of certain (non-polarized)

subfun'ctors of FUF and AGR. Let FUFS be the subfunctor of FUF eorresponding to

function f ields of general type (i .e" for which the Kodaira dimension equals the

transcendence degree). Moreover iet AGRp be the subfunctor of AGR corresponding to

I'purel algebraic groups; here an algebraie group f-1 over K = Kr_ is called pure if it is

connected and both Aut(P)/Int(P) and Aut(A) are f inite groups, where P is the 'rreduetive

partrr of the "I inear partrt L of ja t l l  (2.?) ancl A = | /L is the "abelian part i l  of l  ;  i f

K = Kur i l  is cal ied pure i f  f6)Ku is so.

) . .  ( i .e)  THEOREM. I f  ehar  k= 0,  the functors FUFg and AGRP are eoarsely

representable by some birational sets of f initely generated type.

We now coneentrate ourselves on defining poiarizations. First we have an

abstraet prolongation proeedure; indeedone ean easily prove the fol lowing.

(1.g) LEMMA. Let C be a f ibred eategory over B, Ca its t 'restr iet iont '  to Ba &nd
'it': Ca**:S a fibred functor. Then there is a unique fibred funetor stiil denoted by

\' i i : C . - > S ( c a i l e d t h e c a n o n i c a l p r o l o g a t i o n o f l i " ) s u e h t h a t f o r a l l K e B a n d A € C N

we have

,rr(A) = r.,, (ou)*(nu / r<)

where Au is  the image of  A v ia  the functo*  CK* 
"no"

(1.10) Let's define a polarization rr on PRO as being the canonical proiongation

of rr ' :  PROa-+ S defined by tett ing 11"'(X) be the set of ample eiements in the

Neron-Severi group'ff i(x) = Pie(X)/Pico(X). Clearly our ' i i -  is diserete.

( i .11) Let 's define a polarization - i t-- on F'UFm" First some terrninology. Let I{ be

a f ield of charaeterist ic zero and F a function f ield over K. By a model of F we

u n d e s t a n d a p a i r ( X , e ) w h e r e X i s  a  K - v a r i e t y a n d  g : I < ( X ) * )  F  i s a  K - i s o r n o r p h i s m ;
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when there is no cianger of eonfusion we simply say that X is a model of F. For K = Ku

denote by m(b') the set of Q-faetoriai minimal models of F; recali  that i t  is conjectured

ttrat m(F) # {: whenever F is not uniruled [9]. Note also that in order to avoid logical

diff icuLties lve worl< in a universe such t lrat rn(F) is really a set" Now assume K = Ku,

F € F'UFIf ;  we shail  define in what folk:ws abeiian groups Ct(F), CIo(F), Cftpl. We neecl

several rernarks"

Rernark tr.  (essentialty cf. [4]; sanre proof as in [4] p. 33). tdt (Xi, d i) € m(F),

i = Lr2 and consider any diagrarn

(diagram 1)

where c(t = trt i t ,  X, is smooth and p, are projective birational with exeeptional ioei

Ei of pure condimension 1. Then E, = Er(eall  i t  E). In part ieular P, and p, induee

isomorphisms Ci(Xr) :  P ic(Xr \E)  v  Cl (Xr) .

Remark 2. i{ i  i th the notations above p1 and P2 induce isomorphisms

p i .o (X t ) ;  p ieo (X l ) :  e i co (X r ) .

Indeed we ffay assume (by making a base change) that K is uneountable.

Consider the diagram

(diagram 2)

Since c( and f ar" injective so is p! .  To prove that pl is also surjective i t  is

sufficient to prove that M = coker p! has countable rank (as an abelian group). But this

fol lows from the faet that o,F,{8 al l  have kernels and eokernels of eountable rank.

Remark$ 1 and 2 impiy that .we have isomorphisms

cl(x1)/eie"(X') cl  Fl i {xrrs)a.cl(x2)/Pie'(x2) and
I ; I

where EJ are the irueducible components of E.

pGtxrrE) g PG(x3)/: atnJl

Remark B. The isomorphism Cl(Xr) :z Cl(Xr) from remark 1 does not depend on
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the choice of X3, p1, p2 but only on (X1, t),  (Xz, €-i.

As a consequenee of remarks 1,-3 vre !1'ay define Cl(F) = g CI(X), Cl '(X) = 
Ig P!eo(X),

Cil f l  = 
UgCI(X)/Pic'(X) 

(vuhere Xgrn(F')); note that in the l imits above al l  morphisms

are isornorphisrns,

An element ) 6 Cltf l  wi l l  be called ampLe if  there exists X€ nr(F) suih that the

coffesponding elemen, )" dCl(X)/Pieo(x) is in Pic(X)/Pie"(X) and is,ample. Now define

a f ibred funetor ' i l ' :  FUFm'a -*, 5 (and f inalty take its eanonical extension to pUFm) by

lett ing'0'(F) be the set gf ample elements in di(p). Clearly our f i  above is diserete ,

(1.i2) Letrs define a polarization .1|on AGR as being the canonical extensi<ln of

t, :  AGRa*-+ S defined below. For K = K" and I.e aCn* let L be the iargest

eonnected ctrosed iinear subgroup of I and A = ( /L; then put ?(f) = if (L) >.. ?(A)

where

"}f (A) = set of ample elements in Fic(A)/Pic"(A)

{f (L) = set of isomorphism elasses of faithful representations of LlRu(L)

(where Ru(L) is the unipotent radieal of L). Sinee L/Ru(L) is reductive i t  turnus out that
'li ' defined above is diserete.

2. Cohomology of G-algebraie groups

For teehnieai reasons it  is eonvenient to introduce some elementary definit ions

related to group aetions on sehemes.

If C is a categ"ory and G is a group, by a left (respectively r ight) G-object in C

we mean a pair consist ing of an objeet A of C and a group homomorphism C .-+Aut"(A)

( respect ive ly  a homomorphism f rom the.opposi te  group CoP' to  Aut" (A))  whieh we

denote by sr-esO (se C). A morphisrn f d:Hom"(A,B) between two G*objeets is cal led

a G-morphisrn i f  sU " f 
= f o sO for al l  sGG.

So we wil l  speak about ieft G-sets, ieft G-groups, left G-rings: these are simply

left G-objects in the category of sets, groups, r ings.,

We wil l  also eonsider r ight G-sehemes ( = r ight G-objeets in SCH, the category of

schemesh if  K is a left G-f ieid then Spec I( wii l  be a r ight G-seheme. By a r ight

G-scheme X over a r ight G-scheme Y we wil l  mean a G-morphism X--+Y between two

right G-sehemes. Furthermore by a r ight G-variety over a left G-f ield we mean a r ight

G-scheme X over Spec K such that X/K is a variety. Finaiiy by a r ight G*algebraie

group over a left G-f ie}d K we mean a r ight G-scheme I ovet Spec I( which is an

algebraic K-group such that the mult ipl ication p : f  ^K f -> f1 and the unit

g : Spec N *r ir  are C-morphisms (herei note that i f  X and Y are r ight G-sehemes over

r ight  G-seheme Z then XxrY'  has a natura l  s t ructure of  r ight  G-scheme; in  par t icu lar

our I n,,P has one).
l\



- 7 *

I

Of course the main point wit lr  our G-variet ies X (and C*algebraie groups) is that for

s C G the automorphisms sX are not I 'over Kr!, but Ortlyttover K"'t t .

Note that. i f  X is a r ight G-scheme or/er a r ight G-schente Z then fon any right

G*seheme Y over Z the set X(Y) = I{omor-r, (YrZ) has a natural '  structure of left C-set
" " ' -Z  l

def ined as fo l lows :  for  c(6 X(y) ,  s6 G) put  ?x(v) . ,<  
= s ; ' "a i  "  sy.  Moreover  i f

Z = Spee K and X = Ia is a right G-algebraic group over K tlren il(Y) is a left G-group;

in part ieular one ean speak about n1(c, r(K))" Dist inguiJ5d elements in FIl  wil l  always

be denoted by L" Furthur*or" i f  c1 isra subgroup of G and L<!/K.is an extension of Jeft

Gr- f ie lds we have a natura l  map Ht(G, f (K))  *>Hr(G1, f " ' (Kr) )  compat ib le  wi th  the

natural exact sequences relating Ho and H1'

From now on we shall  omit the words I ' leftt t  and t ir ightrt when we refer to

G*bbjects; it will be understood that ttalgebraie" objeets (sets, groupsr r:ings) are 'rleftrf

and ,,geometrietf objects (sehemes, variet ies, algebraie groups) are t 'r ight" '  
.  .  .  

'n 
^

Our main teehnical result is the fol lorving improvement of t1l (3.3) (see [11' !  3

for teminology):

(Z.1).THEOREM. Let K be a G-fieid, I  a G-algebraic group over K and

2.H1(c, l - (K))  a  f in i te  subset .  Then :

1) There exists a cofininite subgroup G, of G and a eonstrained f initely

generated extension of Gr-f ields KI/K sueh t lrat Z maps to L via the map

r I

Hr(c ,  p  1x) ) ->  H ' (G 1 ,  r (K1) ) .

2) if [t it connected there

G-fields KJK sueh that Z maps to 1

The theorem above is better than its analogue in [1] for at least two reasons:

1) [ '  need nct be defined over KG

2) la need not be linear-

Both these features wil l  be essential in what fol lows. On the other hand it  is

reasonable to conjecture that i f  K = Ku then any. l- as in the theorem is defined over

(KG)a (for f [near, this was proved in [1] (0.+) wrri te for l- an abelian variety this wil l

be observed below, cf (5.2)).

To prove (Z.t) we need the fol lowing

(Z.Z) LEPIIL{A. Let K be.a G-field, X a G-seheme of f inite type over N anO X(G)

the set of (non-neeessary elosed) points p of X sueh that the group St(p) = [ t  t  
Hi

1
sx(p/ = P J 

contarns a cofinite subgroup of G. Then for any maximal element p1 of X'- '

the extension of St(pr)-f ields K(p.,)/K is eonstrained (here X(Or) = residue f ield at p1)'

S t ( p r  )  , a  n \  : L
proof .  Take a6K(pr)" ' t " t 'as in  [1 ] ,  proof  o f  Theorem (3.3) ;  i t  is  suf f ic ient

prove that a is algebraic over I(.  Let GrcSt(Rr), Gt cofinite in G' Now suppose a

exists a regular finitel5r generated extension of

v ia  the 'map H1(c, f  (K)) - - -+ I -11(G,  t . .  (K1)) .

to

is
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transeenclental over K, let Y denote the affine i. ine $pec K[a] wit.h its obvious structure

of Cr-scherne and Let Z be tire eiosure of pl in X, v' i l t ich has a naturally indueed

struet,ure of GO-scheme of f inte type over 1(. [4oreover tlre e]ement a induees a rational

map stit l  denoted by a: Z,---aY" Let ffcZxuY be its closed graph" Clearly f ir 
"

cr-subscheme of Zx*Y and the proj** i i "ns f  : 'X- '*z and YrZ,--uy are

Gr-morphisms" Exactly as in [1] loc. cit., Y possesses a elosed point m fixed by some
- 1  .  .  - 1 .

cof in i te subgroup C, of .  G (GrcCr) such that V- ' (m) l f  .  fnen the scheme 9- ' (m)

has a natural strueture of Gr-scheme. Letting G, be the kernel of the representation of

G, into the permutation group of the set of irreducible eornponents of V-r(m) we get

that there is a point C e f-r(m) fixed by Gg henee so wil l be Y(q), Since Y is birational,

Y (q) is not the generie point of Z, this contradicting the maximaiity of p1 in X(G) anC

we are done. 
r

Proof of (2.1). By induction it is sufficient to assume that X eonsists of one

elementl tet f : G -+ I '(K) represent it. We first construct a G-scheme X over K

starting from f and f as follov,rs. As a seheme, X wil l be lt i tseif while the'action

s.F+sX of G is defined by the formuLa

* x = t r " R f ( r )

r  - . -  n r*r  , f  is  the r ight  t ranslat ion wi th f (s)  e f (K) and s, . -  comes from theWnere l t f (S)  :  I  - - t  ranslat lon Wltn I \ :  
I

structure of G-algebraie group of [1; to check that (st)-. = ty.o s\z one is led to cheek
- 1  -

that Rs(f(t)) = rft '  Rf(t) " sa which fol lows from the eornmutative diagrarn

(diagram 3)

Now rrye e la im that  i f  *X€X(Y),  c{ " :Y-- }X is  any Gr-morphism of  Gr-sehemes (wi th

Gt*C) over  K and i f  we denote by dr :  Y -+[" .  i ts  image in  t ' (Y)  and by f (s)"  tne

image of f(s) under the map t"(K)--+ I"(Y) then

f(s)" = *i i tr ,- (") *" for al l  se G1

(equaiity holding in the group |.(Y)). Indeed the formula above is equval.ent to

f ( s )  o  d r  =  t |  "  ( r  o 'Y

i .e"  to  sX odX = dX "  s ,  which is  s impl5r  the condi t ion of  f  be ing a Gr-morphism, Now

i f  we take o(" :  Spec K(nr) -JX as above wi th  O,  a maximal  e lement  of  X(G) as in
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Lemnra (z .Z)  we get  s tatement  1)  in  our  theorem. F inai ly  i f  Ia  is  eonnected,  tak ing

o(. ' .  :  Spec K(X) --+X we get statement 2) in our theorem. +
/\

3" $plitting pnojeetive G*varleties and G*funetiori fields

In this f *" prove Theorem (t.f) for PROIP and FUFffi 'v and we also prove

Theorem (1"8) for FUFg. We start by providing Pieard schemes of projeetive G-variet ies

with G-aetions:

(3"1.) LEMh,iA" Let K = K" be a G-fieid and X be a projeetive G-variety over K.

Then PicIrr. is a G-algebraic groups in a natural way. Moreover Pie(X), Pieo(X), f f i tXl
1\/ r\

are G-groups and'i l f(X) is a G-set (n'being the poiarization defined in (1.10)),

Proof. For se G let 0-= Spee sn be the corresponding automorphism of Spec

Spec Kr be Spec I{ i tself viewed as a seheme over Spec K via r and
= XSfif"  ̂ Spec Ka. Then s* induees a i(-isomorphism f": X---o Xa

indueed isomorphism 3;r F 
t= 

Pico"c76d- --> Pico"r* = 1-. i  Let ,f

def ined as * f  =  -X"(S;) -1 where.  
* r - . \ f -  

is  the natura l  pro ject ion.  One

ehecks that s r-) s- gives the desired structure of G-algebraic group on ft.  Same

construction in the remaining eases.

K ,

Iet

an

let

x a so we get

z  - -+ l

(3.2) LEMMA. Let K = K" be a

G-funetion f ield over K (i .e. a function

m(r) * f  .  Thun for any x 6m(F), Pico"rn
Moreover Ci(F), Cio(F), Cftel are G-groups

(1 .11 ) ) .

Proof .  Same game as in  (3.1)  (use Remark 1 in  (1.11)) .

(3.3) LEfrIII'IA. Let K be a G-field of charaeteristic zero (non neeessary

algebraical ly closed), F a G-function f ield over K and X a model of F such that X@Ku

6 m(F@K"). Then Cl(X) has a natural strueture of G:group. Moreover, i f

L€Pic(X)n(Cl(X))G then P = P(Ho(X,L))  has a natura l  s t rueture of  G-var ie ty  over  K.

Proof. The G-group structure may be defined by considering a diagram as in

Remark 1 from (1.11)" If  we view elements of Ci(X) as isomorphism classes of reflective

sheaves of rank 1 on X then the G-aetion on Cl(X) may be describecl as fol lows. For s 6G

let  0*r  I ( - ,  Xt  bu u,  in  (3 .1) ;  eorresponding to  sF tve get  a  rat ional t " "Ofx l  X-- ">Xs-

x*i- xo 5 txr)oixir-x

where Xo, (Xa)o are nonsingular open subsets of X and X- respectively, whose

complements have coclimension ) 2 and p is the canonical projection. Then oCt(X) i t

be

G-field of characteristie zero and F a

field which is a G-field extension) with

is a G-algebraic group in a natural way.

and rf(F) is a G-set (T being defined as in



- 1  0 -

defined by tl, lF*+ ti*(fx)*j*p*cLl. Now if L is invertible

isomorplr isms T, :  Lt l  i * (3*)*  j *p*L for  a l l  s€G (note

multiplieation with some nonzero element of K). We get

scalar rn ult iplication)

and G-invariant there are

that T^ is unique up to
D

isomorphisms (naturai up to

H "(x ,L)  *  I - t  o(X r ,p*  L)  g  H' ( (xa )o, j *  p*  L)  v  H o(Xo,( iy1x3x p*  L)  r

. *  Ho(x, i * ( f " )o  j * t  ) :  Ho(x,L)

These isomorphisms incluee a structure of G-variety on P.

(3.4) The fol lowing definit ion wii l  play a key role in what fol lows (as i ts

algebraie analogue played in [1]). A G-scheme Z (respeetively a G-function f ieid F)

over a G-field K wii l  be called spli t  i f  there is a K-isomorphism" Y z Zv Z,a&X *if-,  Zo

a KG-seheme ( respeet ive ly  a K- isomorphism Y:  FraQ(Fo@K) wi th  Fo afunct ion f ie ld

ove r  KG; . such  tha t  we  have ,  9osZ"Y-1  =  i des*  ( resPee t i ve l y  Y ,  sF  " ' ( -L  =  Q( idAs r , ) )

for al l  s€G. A Y as above wil l  be'cal led a spl i t t ing of X (respectively of F).

(3.5) LESIMA. tet K be a G-field.

1)  Let  Xo and Yo be KG-sehemes and

struetures of spi i t  G-sehemes over K. Then

form Yo@K where ?o is morphism Xo--+Yo.

D Let X be a G-scheme over K and assume we have a

open G-invariant subsets sueh that al l  intersections Ui-^ Vi^^
I ' 2

and spli t .  Then X itself is spl i t .

3) Let X be a spl i t  G-seheme and Y a closed G-invariant subseheme X. Then Y

with i ts indueed G-seheme structure is spti t .

Proof. First one proves 1) for Xo, Yo affine (by just noting that
C C

K[Xod? K]- = K"[Xo]). Then one proves 2) using the aff ine ease of 1) to g]ue the

different spl i t t ings of the U,rs. Next one proves 3) for X aff ine by noting that the ideal

I cKlXl which defines Y is a KlGl-submodule of the spli t  KIGJ-module K[X] henee by [11

(3.4), I  i tself is spl i t .  Next one proves 1) and 3) in general by reducing to the aff ine case

via 2).

(3.e ) LEMMA. Let K be a G-field and Z a projective G-seheme over K. Assume

KG is a f ietd of definit ion for Z and that Autrl* i t  quasi-compact (equivaiently of

f inite type). Then there exists a cofinite subgroup G, of G and a f initeiy generated

constrained extension Krl i{ of Gr-f ields such t l ' ratZ&K, is a spi i t  Gr-variety.

If  in addit ion AutrlX is connected then the same conclusion holds with Gt = G and

K 
I/K 

ttregulartt instead of t tconstrainedrr.

let Xo@K and Yo&l( be given the natural

any G-morphism between them has the

covering fur l of it with

-- ' '  Ui (p ) 1) are aff ine
p
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c
Froof"  Let  Y zZ.^+Zo&L< I ie an isomorphismrwith Zo a K"-var iety.  Then the

assoeiation 
1

1  - 1 .
s r-+ f(s) = y o sz o y ',. ( id@s[')G Aut(zo&K/t<)

1
defines a elass in H'(G,f '(K)) where ta= Aut" /xG. Now applying Theore.m (2.t) to $ris

"o"'

class we may assume (after replacing G and I( by G', and K., ) that
- r  - 1 .  -  

- t  r

f (s)  = o(- 'o  ( id@s,r )oc< "  ( idOsr . ' )  for  some K-automorphsm o(  of  Z^&K.  Then o("  g'  
K '  ' - -  - - K  O -

wilfa splitting for Z.
,1r€.

Now let 's pass to the proof of Theorem (1.?) for PRO and FUFm and their

'rpolarized'r versions. With the terminology of t1l i t  is suff ieient by t1l (1.5) to prove that

pRo1r, FUFm'fr have propert ies ( 
{) ano ( 

4). This immediately fol lows from the

statement below:

(3.?) THEOREM. Let K be an algebraical ly elosed G-field. Assume X is a

projeetive G-variety and )err '(X)G (respectively"assume F is a G-function f ield of

iharaeterist ic zero over K with m(F) I d and )€ f- (F)G). Then there exists a eofinite
r  - lsubgroup G, of G,'a f initely generated constrained extension I<IIR of Gr-f ields, a

spl i t t ing Y:  X@Kr--+ Xo@K, ( respeet ive ly  a sp l i t t ing Y :  Q(F@X1)*  Q(fo@ I {1))

and a polarization )oe A-(Xo) (respeetively )oe 1i '(Fo)) such that the images of )o

and )  in  ?r (X@K,)  ( respect ive ly  in ' ] i - (Q(F@K., ) ) )  are the same.  Same statement  holds
I - - l

with G., = G and K1/K rrregulartt instead of | teonstrainedtt. Moreover one ean take )o
I I

above to be represented by some element in Pic(Xo).

Proof. We shall eonsider onlv the ease of G-funetion fielcls (the ease of

projective G-variet ies being similar unO 
"uriur). 

Assume ) gt(p)G is ample on some X,

and let ) be the image of ) in H1(G,Pioo(x)). By Theorem (2.1) one ean f ind a cofinite

subgroup G-' of G and a f initely generated constrained extensionK.,/K of Gr-f ields such
" ' - I - "

that  r ,O)  = L in  the d iagram below:
I

(diagram 4)

where  we  have  pu t  To  =  P ieox  / l < ,1=  C l (X ) ,  P ,  =  C I (X ' ) ,  X1  =  X&Kr .

Same statement holds with G, = G and K'/K I 'regularrr instead of ' lconstrained".



1 -- t z -

^  G r
A d iagram chase shows that  i ( ) )= nr(xr )  for  som" * '€Ci(Xl ) - t .  \ {e  c ia im

that  x . ,  6  Pie(X. , )and i t  is  ample;  indeed we have a eommuatat ive d iagram "
I J

(diagram 5)

and by hypothesis )= p(x) . with x6Pie(X) ample so Rr(xr) = Rr(r(x)) hence

x, - r(x)e f 
' (Kt) vrhieh implies our claim. Note moreover that the image)of ) in

t '(Q(F6Kr)) is well  defined and is "represented'r by x1. Let L, be a l ine bundle'on X,

corresponding to x, and let n ) 1 be such that both ,r*n ano r,r@(l+1) 
"r" 

very ample.

By Lemma (3.3)  Zr= P(Ho(x1,L1@n))  and Zl  = p(H"(Xl ,L l€(nn1)) )  have naturat

structures of Gr-variet ies. Appiying Lemma (1.0) we may assume (upon modifying G,

and I ( r )  that  both ZrandZtrare sp l i t .  Let  Y,  and Yt ,  be the images of  X,  in to Z,  and

Z!  respect ivety . .By Lemma (3.5)  Yr .and Y ' ,  are sp l i t  Gr-var ie t ies henee X,  is  sp l i t .

Now corresponding to Y, and Yi we have two spli t t ings Y: Xr--+ Xro@X, and

Y' r Xr-+ (xro)'6x, and ample l ine bundles L; on Xro and (Lonr) '  on (Xro)r whose

inverse images v ia  c f  and Lf l '  are t  r@n ano r , re(n+t) .  gy Lemma (g.b)  ? ,o Y = yo@K,

for some Yo: xro-=("ro)'. eut Llal = f i((lf+r)'). Ttren ), rnay be represented as the

differenee in Cl1Xr1 of the images of Ll+1 anO Ll. Our theorem is proved.
In the.next $ we shall  use a si ightly amplif ied version of (3.?) for projective

G-variet ies (whose proof is the same), namely:

(3.8) Amplifieation. Assume in (3.?) that K is not algebraically closed anymore

but assume instead that there exists an algebraicaliy closed G-subfield Kr of K such

that X anO ) are deduced via base change from some G-variety Xt over Kr and some

)'€' i i -(X'). Then the conclusion of (g.Z) st i t t  holds.

b' inal iy note that to prove Theorem (i.B) i t  is suff ieient to prove the fol lowing:

(3.9) TIIEOREM. Let K = Ku be a G-field of characterist ie zero and F a

G-funetion f ield of general type. Then there exists a cofinite subgroup G, of G and a

finitely generated eonstrained extension of Gr-f ields K{K sueh t lrat Q(F&Kr)/K, is a

spl i t  Gr- funct ion f ie ld .  Same statement  wi th  G,  = G and l<L/ I< ' r legular f  instead of
trconstrainedtt.

Proof. .  Let X be a smooth projective model of FlK and R =@Rn,

Rn= Ho(X,wX/K€n) . i t ,  canonica l  r ing.  One sees immediat ly  thqt  i t  has a s t rueture of
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C-ring. Clroose n such that the n-canonieal map 9n of

and let Il* be the K-subalgebra of R genrated by

KlGl-algebra with po]arization given by Rn. We eonducle

X is birational onto its image

Rn. Then It* is a polarized

by [1] ,  Theorem (4.2).

4" SPI,TTTtrNG G-ALGHBR,ATC OBOUPS,-

In  th is '$  *u prove T 'heorem ( t .Z)  for  AGR' t  and Theorem (1.8)  for  AGRP.

First let s give a corresponding definit ion forrtspi i t t ingsr'  :  a G*algebraic group

f vri l l  be calied spli t  i f  there exists a K-isotnorphism of algebraie groups

Y r tt  *, I- @ K ( 
[ .some 

Kc-atgebraic group) whieh is a spl i t t ing in the sense of

(3.4). Our main result is:

(4.1) THEOREM. Let I 
' 

be a G-algebraic group over an algebraieally elosed

G-field I( of eharacterist ic zero and iet L be the largest l inear eonneeted closed

subgroup of G and A = f /L (clearly L and A inherit  natural struetures of G-algebraie

groups). Assume there is a maximal reduetive subgroup P of L whieh is G-invariant and

there exists a polarization (t ,) ) e i i '  ( f . l)G with f coming from a faithful

KlG]-representation W of L/R'(L). Then there exists a cofinite subgroup G, of G and a

eonstrained extension Kr/I l  of Gr-f ielcls such that f& K, is a spl i t  Gr-algebraic group

over Kr. Moreover i f  f@Kl fo 6K, is a spl i t t ing, there exists a polarization

(yo , )o )e  i ] ' ( i - ?o )  sueh  tha t  (  yo , )o )  and  (1 , ) )  huuu  the  same image  in  i i - ( n6 l l ( l ) .

Same statement holds with G, = G and I<I/I< "regular" instead of treonstrainedrt.

Proof. We use an approach similar to that in [3]. For simpiicity we slral l  assume

in what fol lows that I is conneeted.

Step 1 (skew equivariant Chevalley eonstruetion). By [11, Theorem (1.6) there

exists a cofinite subgroup G, of. G and a f initeiy generated eonstrained extension l lr /K

of Gr-f ields (respectiveiy G2 = G and Kz/K regular) such that L&KZ is a spl i t

Gr-algebraic group and I{€K, is a spl i t  Kr[Grl-module. l{e claim that there exists a

K-linear subspace V of I{[L] having the following properties:

1) V is Gr-invariant

2) V is L-invariant (L acting via r ight transiations)

3) (VnM)KtLl = M (M = ideal of the unit)

4 )  d imnV <  @

Indeed one ean f ind a spaee E wi th  proper t ies 2)r  3) ,4) .  Next  note that  for  any s(G,  sE

wi l l  s t i t l  have proper t ies 2) ,3) ,4)  [ for  2)  use the d iagram in the proof  o f  (2"1) ] .  Put

y =fsE where s runs in Gr; clearly V satisf ies propert ies 1), 2), 3). To check it  satisf ies

also 4) note that

dimnV = d imn^(v@K2) = d imu.  t f  t r tneNo) l )^ 2  o  n z ^

But the latter number is f inite beeause there exists a f inite dimensionai
G c  G ,

K,  
' -subspace 

Eo of  K,  " [LoJ (where L&Kro* Lo@Itr )  such that  E&Krc EoeKZ.  l , {or  1et
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d = dim(Vn M), P = P(n V), po = P( A (Vn M)). There is a naturaliy indueed Gr-actions on

F letting po fixed. The action map L)< F -.-+ F, (b,p)t-+ bp is then a Gr-morphism.

Step 2 (skew equivariant version of [2] p. 96). Recall our construetion in [2] p.

96: we start nrith actions T : Lx(r- * p) *+ f '>< F, -u (b,(g,p)) = (gb'-l, bp) and

Sr fo ( i - *P) -+  [ ' *P ,  0 (x , (gop) )=(xg ,p) .  Both  r  and 0  are  Gr -morp ] i i sms.  As

shown in loe. eit. there is a eartesian diagram

(diagram 6)

with w projectiver u & principal bundle for (L,T) and 0 deseending to an action

6: F* Z-+Z sueh that the isotropy of zo = u(l,po) in f is the identity. One cheks

that Z inherits a structure of Gr-vart iety , u, w, F are Gr-morphisms and zo is f ixed

by GZ.  Conseguent ly  the immers ion Y: i -  +  Z,  x l - - -> xzo is  a  Gr-morphis t l i "  The

closure [- of the image of this immersion in Z wil l  be a Gr-subvariety of Z hence its

normalisation f '  wi l l  inherit  a strueture of G,,-variety. We have a diagram

(diagram 7)

A A
Let  D= la \Y( l ' ) ;  i t  has pure eodimension l "  because v is  a f f ine so we v iew D as a

redueed ef fect ive Wei i  d iv isor .  We agree to  put  XZ= X@KZ for  any K-scheme X and

uZ = uEKZ for  any 'morphism u of  K-schemes.  So in  par t ieu lar  we have a d iagram as

above with l ' ,  V, A, .." replaeed by 12, u2, A2,...

Step 3 (Spli t t ing) First by applying (3.8) ' to (Ar, )r) there exist a cofinite

subgroup G, of G2," f initely generated eonstrained extension Kr/K, of Gr-f ields

(respect ive ly  G,  = G,  and I<L/KZ regular) ,  a  sp l i t t ing AreAo@Kt and a l ine bundle

Lo€Pic(Ao)  sueh that  Lo and L (where LGPie(A)  represents )  )  nave the same image in

f f  (A i ) .  S ince the graph of  the mul t ip l icqt ion map is  a Gr-subscheme of  Ar><Ar ' "<A1 i t

is  the pul l -back of  a  subseh"E? of  Ao><AooAo (by Lemma (3.5))  so Ao is  seen to be an

abelian Ko-variety, Ko - I(1 and the spli t t ing of A, is a spl i t t ing of Gr-algebraic

groups (not only of Gr-variet ies). Now choose divisors n.1,.. . , t- l ]  in totu very ample
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'  
i  , f l N f  _ -  I

l ineor  svstem lL-* ' ' *  I  such t l ra t  FI^ l^  " . .n l lm 
= $ analet  FI ,J  be the i r  pu l l -backs on A. t ;

r l r v u !  " . y " " . " , , ,  l - - O  I  " * " . ,  : , ' * -  ^ - O .  .  ' - - ,  , - - O  t -  I  
-  

i f  i * t
1  ^ .

clear ly H., ,  are t lxed by Cr.  Now for any mult i index I  = ( i1, . . . , i r )  put  I { i  = nl ' *" ' *FI t ' ;

then the open subsets of I defineC try

'  r I = u . - l ( A ' . \ H J )|  1 -  r  r  r

are Gr-invariant and affine. consider the cartier divisors ErI = il 'ftHil on

any n ) l consider the subspaces of Kr[ {-rIJ oefinec ny

[a and for

h,l = { rer<rtfJ, I (r) i ,  n nuf * nD1 } o }n  L  
-  

,  
'  r -  J  

n
T

Cteariy wln are finite dimensional'Kr[Gr1-submodules of the function field K1(11) ano

U*|= Kit fJl. so there is an integer n ) 1 such that for ail I,.K1[ Fjt it generated as

a Kr:algeLra ny WI; . eppfying several t imes [1] Theorem (4.2),we may assume (upon

modify ing G, anO'Xr)  tnat  Kl t f l l  are spl i t  Kt [Cr1-aigebras.  By Lemma (3'5) we

csnclude grai 
I i tsetf is a split Gr-variety. This splitt ing is automatieally a spiitt ing

as a Gr-algebrai* gtoup (use same reasoning as for Ar). Our theorem is proved'

. (a.z) Let's explain how one ean deduee Theorem (1.?) (for AGR 
f}. 

) from our

Theorem (+.t) above. We must prove that AGRY has properties ( {l "nO 
( Jrl. l ,"t

K€Ba, t te ACn, and Tl=(f  , ) )e l r ( l )  anO denote as usual  byL and A the l inear part

of fa respeetively the complete part A = [t /L.We elaim that one ean define a group G

aeting on K and a structure of G-algebraic group on f sr-rch that the following hold:

1) Im(G--+g(I())  = 9( l - l '1)  (ef  t i l  (1.3))  r
- Z) There exists a maximal reductive subgroup P of L which is G-invariant,

3) y is represented by some l(lG]-representation of L/Ru(L) "

Our claim and Theorem (4.1) clearly imply (r 'Z)' On the other hand the elaint

follows by an argument similar to that in the proof of [1] (6.9).

(4.8) proof of Theorem (1.8) for AGRP. It is sufficient to check that AGRP lras

propert ies (dr)  and (dr) .  Take n: tu.

Ctraim L" If L € AGRI? is . l inearthere is a polarization y e fi (L)'

y :L/R'(L) + c5(l() sueh 
' it lut 

whenever f-€ g(K) and uoz L*+ Lr is &

K-isomorphisrn *. nou" 
f "inU 1'n^, representations (i.e. the two terms are equai

moduto an interior automorphism of CL*(K); here i lo- : L/R,(L)+ (Unu(l))r is

induced by uo-). This was shown in t1l (6.10) (note that we tacitly assumed there that

one can taf<e:y such that f** f for all re g(Kh this can be done by ehoosing our b

there to be such tha! ara g f.or a1l rs'& g(K); for instanee one can take I to be the sum

of a system S of representatives for the set of isomorphism classes of eonjugates of a
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given faithful representation €o. Since

wil l  be f inite).

€o is defined over an algebraic number f ield' S

Cl.airn 2"It A€AGR,? is an abelian variety there is a polarization )e i f(A) suen
* F K o -

t frat vo( )" ) = ) for al l  o-6 g(K) and any isomorphism vo-: A-9A" . IndeeO by [?l n.

140,  t l re  degree nrap f  : l r (A) /Aut(A)-+ W, (Y ( )  )= top in tersect ion nunrber  of  )  )  has

f in i te  f ibers.  So i f  Aut(A)  is  f in i te  we ehoose d&E such that  V-Lta l*  f  and le t

)e f ( l)  be t lre sum in pictel of al l  polarizations of degree d; this ) answers our

elaim"

Now elaims 1- and 2 together. with rheorem (t.?) elearly imply Theorem (1'8) '

5.FURTIIER COhlMENtd enp SUESTIONS

It is reasonable to make the foltowing

(s.f) Con3eeture. ACR has property (Sr) (henee by [1], Theorem (1.5) also

propert ies (d1), (91)).

Indeed it  iol lows from It]  that AGRlin ( = subfunetor of AGR eorrespoinding to

l inear groups) has pr.operty (. lr) i f  char k = 0. Let 's also remark that we have:

'  (S"Z) PROPOSXTION. If  char l< = 0 the funetor AGRab( = subfunetor of AGR

eorresponding to abelian variet ies) has propertV (dl).

proof .  Let  K6 Ba,  A€AGRI?b,  G = c(A,ACRab) ( " r  t l l ,  (2 .13)) .  we want  to

prove that A is defined over (KG)u. To see this we eoiqtruet a subgroup H of G sueh

that Im(H ->g(K)) eontains a cofinite subgroup of Im(G *> g(K)) and such that there

exists a polarization )eti ' (A)I{. I f  this is done one can spli t  the H-variety A as in (3.?),

and we are done. Let ' i fo(A) be the set.of polari2ations in Tl(A) of degree d, pick a d ) L

sueh that  td(N/{ ,  note that  G aets on the set  /= t t -d(A) /eut (A)  and put

H,  = ker(G*+Aut(X)) .  Hence H,  is  normal  o f  f in i te  index in  G ( )  Ueing f in i te  by t? l  p .

140). Norv piek any )e n "(a) and iet H be the subgroup of G consist ing of those 5 € G

which f ix  )  ;  then Im(Hl-> g(K))c im(H -+ g(K))  and we are done.

'  (b.3) Using [8] instead of t?l p. 140 one can cheek that the subfunetor FUFK3 of

FUF eorresponding to K3-surfaces has property ( f f  ) and hence propert ies (dr), (f  
r).  i t

is reasonable to conjeeture that the subfunctor FUF2 of FUF eorresponding to function

f ie lds of  t ranscendence degree 2 has proper ty  l8r l . ' ln  any case i ts  analogue FUFl  is

even coarsei5r representable by results of Matsusaka and Shimura.
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