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BIRATIONAL MODULI AND NONABELIAN COHORMOLOGY, I

: A. Buium
Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bueharest/Romania

0. Introduction

The present paper is a continuation of [1] from whichhv\re'borrow our ideology,
terminology and conventions (with one harmless technical modification, cf. the Remark
1 at the end of this introduction). The aim of [1] was to develop a (nonabelian)
cohomologiéai approach to the existence problem of fields of moduli for various
algebraie struetures suéh as:

. a) polar'i‘zed finitely presented algebras

b) complete loeai algebras

¢) rigidified algebraic groups
for which the method of Matsusaka and Shimura [6] does not seem to apply. However,
our method (as developed there) did not permit us to reobtain the original results of
Matsusaka and Shimura on polarized nonsingular projective varieties nor to deal with
more global objects (rather than with various kinds of algebras).

In the present paper we fill this gap by further developing our cohomological
tool in order to deal with:

@) polarized (possibly singular) projective varieties

e) polarized function fields '

f) polarized (non necessary linear) algebraic groups.

Our coheepts of polarizations in each of the cases above will be explained in %1 where

we also state our main results. Note that in case d) our polarizations are

"inhomogenous" . In case e) we get our results only for function fields admitting :

minimal models in the sense of Mori's program; so if the "minimal model conjecture" [9]
is true, we get a good picture for e) in the case of non-uniruled function fields. As for
case f) our polarizations are combinations of the classically defined polarizations of

“abelian varieties and "rigidifications" of linear algebraic groups as defined in [1].



We close our introduction by making two remarks on terminology.

Remark 1. In [1] we denoted by B the dual of the category of field extensions of

some fixed field k. To avoid certain logical difficulties it is convenient to slightly
modify this definition of B. We shall fix a field extension ke (L with (). algebraically
closed and tr. deg.() /k uncountable. By an embedded field we will understand any
intermediate field K between k and ) such that tr. deg. ) /K is uncountable. Now we
denote by B the dual of the full subcategory of the category of fieldsﬁ whose objects are
the embedded fields. Everything which was said in [1] holds for this new B instead of the
old one. But here we have the advantage that for any K& B we have a canonical way to

associate an algebraic -closure of it Ka & B (namely Ka = algebraic closure of K in (0.)

Remark 2. By a 'variety over field K" we will always understand a

quasi-projective geometrically integral scheme over K.

1. Polsrizations. Main result

(1.1) It will be convenient to make an "abstract" preparation on polarizations.

So let C be a fibred category over B; recall that C is defined by eategoriés CK(K &R

covariant functors CU:CK = CK’ (for any field homomorphism u:K-—>K') and -

isomorphisms Cu,v : Cv o Cu - Cvu' Recall also that the functor B—> S( = category of

sets) defined by K= CK/iso will be still denoted by C; it is called the "moduli
functor".
By a polarization on C we will understand any "fibred functor" %: C—> S i.e.

™o CK‘W? S (for all K & B)

the giving of the following data: contravariant functors - K*

and morphisms /n‘; ’R’K — ’R’K, oG (for any field homomorphism u: K—3K') such

that whenever v:K'—» K" is another field homomorphism we . have
’n’vu = T'/K"(Cu,v) 0 ﬂ*v(Cu). o T e For any A & Cy, the elements of W (A) = ?’K(A) will
be called polarizations on A; note that the group G(A) = G(A,C) defined in [1] (2.13) acts
(on the left) on W(A). I

Given C and R~ as above one can define a new fibred category C/“v as follows.
For any K & B the objects of C;g are pairs (A, ) with AECK,WZE__'H“(A) while morphisms
in CK’ the functors C , and the isomorphisms Cu,v are defined in an obvious way.

(1.2) In [1) we implicitely used polarizations in the above sense. For instance
(the fibred groupoid structure of) PAL [1] (2.2) is obtained from the fibred groupoid of
finitely presented algebras and the fibred functor | associating to any such K-algebra
A the set of finite dimensional linear subspaces P of A for which the natural map

K<P> ~> A is surjective and has a finitely generated kernel.




(1.3) Another example is provided by the fibred groupoid AHAT [1], (2.7) whieh
is obtained from the fibred groupoid AHA and the fibred functor 7" which takes any
linear algebraic K-group L into the set of all its rigidificetions [1102:0) :

(1.4) Assume C and T are as in (1.1). We say that T is discrete if i, is an
isomorphism for any field homomorphism u:K—3K' for which K and K' are
algebraically closed. In example (1.2) W is not discrete while in example (1.3) it is.

(1.5) A functor C : B—> S is said to have property (1) (minimality property) if
for any universal field K& B" and any £ & C(K) the set D(§, C) of algebraically closed
members of D(% ¢,C) (i.e. of algebraically closed fields of definition of £ ) has a smallest
element (recall that D(§,C) does not have in general a smallest element even for very
nice C's). Property (p) should be viewed as a "shadow" of the modular properties
discussed in [1]. The following (trivial) lemma indicates its connection with property
(dl) from [1] and with polarizations.

(1.6) LEMMA. Let C: B S be a functor. Then

1) If C has property (dl) it also has property (p).

9) If C is the "moduli functor" of some fibred category C and if there exists a
discrete polarization W on C such that CTr has pr'operty (p) then C itself has property
(u). More precisely for any K & BY and (A, Z € L we have D ( ,?), " ) = (A (‘)

- Next we introduce the three fibred categories we shall be dealing with in the
present paper. For any field K let

PROK = groﬁpoid of projective K~varieties

FUFK = groupoid of funetion fields over K

AGRK groupoid of algebraic groups over K,
and let PRO, FUF, AGR denote the corresponding fibr ed groupmds over B (and also the
corresponding moduli funetors B—> S).

Note that the objects of FUF . are the regular finitely generated. field
extensions of K while base change in FUF is defined by the formula Fi= Q(F @KK‘)‘for
any field homomorphwm K—> K' and any F < FUFK, where Q denotes "taking quotient
field". : :

We will also consider a remarkable fibred subcategory'FUFm of FUF : for any
K& B, FUFI
fields F/K such that F@ Ka/Ka has a Q-factorial (terminal) minimal model in the

will be the full subcategory of FUFK whose objects are those function

sense of [9].
"In what follows we shall define natural discrete polarizations Ton PRO, FUr™
AGR and prove ' ' ‘

‘ " - - o m, T i :
(1.7) THEOREM. If char k =0, the functors PRO , FUF ", AGR are
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coarsely representable by birational sets of finitely generated type (i.e. have property
(m) in the terminology of [1] (1.4)). Moreover the functors PRO, F-UFm, AGR have the

minimality property (u).

v : } il ; .
To prove theorem (1.7) we will prove that PRO ‘ . FUFm’q‘: AGR " satisfy the

properties (w }s)( fl)( (5"2)({13) from [1] (1.4) and apply Theorem (1.5) from [1] and the
Lemma (1.6) above. As in.[1] the only nor);trivial properties to be checked will be ((’01)
and (52). Note that the assertion on PRO Yis essentially due to Matsusaka and Shimura
[61. : . |
. Finally our assertion on FUF™ having property (1) can also be deduced using our
theory in [2], Chepter 2, 5;\ & '
Now let's consider coarse representability of certain (non-polarized)
subfunctors of FUF and AGR. Let FUF® be the subfunctor of FUF corresponding to
 funetion fields of general type (i.e. for which the Kodaira dimension equals the
transcendence degree). Moreover let AGRP be the subfunctor of AGR corresponding to
"pure" algebraic groups; here an algebraic group |7 over K = K, is called pure if it is
connected and both Aut(P)/Int(P) and Aut(A) are finite groups, where P is the "reductive
part" of the "linear part" L of [ [1] (2.7) and A = /L is the "abelian part" of { e
K=K, ["is called pure if T@K_ is so.

(1.8) THEOREM. If char k =0, the functors FUF® and AGRP are coarsely

representable by some birational sets of finitely generated type.

We now concentrate ourselves on defining polarizations. First we have an

abstract prolongation procedure; indeedon e can easily prove the following. -

(1.9) LEMMA. Let C be a fibred category over B, c? its "restriction” to B? and

T: C®—-8 a fibred functor. Then there is a unique fibred functor still denoted by
N !

s C—> S (called the canonical prologation of @) such that for all K€ B and A &€ CK

we have

w(A) = ’n’(Aa)g(Ka/K) ;

where Aa is the image of A via the functor CKW> CK .

- a

(1.10) Let's define a polarizatién 7 on PRO as being the canonical prolongation

of W:PRO%—5 S defined by letting w(X) be the set of ample elements in the
Neron-Severi group Pic(X) = Pie(X)/Pie®(X). Clearly our T is discrete.

(1.11) Let's define a polarization 7" on FUF™, First some terminology. Let K be

a field of characteristic zero and F a function field over K. By a model of F we

undestand a pair (X, ¢ ) where X is a K-variety and ¢ : K(X)— F is a K-isomorphism;




=5=

when there is no danger of confusion we simply say that X is a model of F. For K = Ka :
denote by m(F) the set of @-factorial minimal models of F; recall that it is conjectured
that m(F) # ij whenever F is not uniruled [9]. Note also that in order to avoid logical
difficulties we work in a universe such that m(F) is really a set. Now assume K = Ka’
F g FUFy
several remarks.

: we shall define in what follows abelian groups CKF), CI°(F), CH{F). We need

Remark 1. (essentially cf. [4]; same proof as in [4] p. 33). Lét (Xi, & i) & m(F),

i = 1,2 and consider any diagram
(diagram 1)

where o * = Slé '2'1, X3 is smooth and p; are projective birational with exceptional loci
Ei of pure condimension 1. Then El = Ez(call it E). In particular Py and Py induce-
isomorphisms Cl(Xl):: Pic(XS\E) o Cl(Xz).

Remark 2. With the notations above Py and Pg induce isomorphisms
Pic°(X1)::: Pic°(X3)’_‘: }?ic"(Xz).

Indeed we may assume (by meaking a base change) that K is uncountable.

Consider the diagram

(diagram 2)

Since &{ and X" are injective so is p’*l‘ . To prove that p*l‘ is also surjective it is
sufficient to prove that M = coker p"i has countable rank (as an abelian group). But this
follows from the fact that rx]{a,fié’ all have kernels and cokernels of countable rank.
Remarks 1 and 2 imply that we have isomorphisms :
CL(X,)/Pic®(X,) & PIe(X \E)~ CL(X,)/Pie®(X,)  and PTe(X,\E) & Pie(X,)/ S, ZIE]
~where EJ are the irreducible components of E. :

Remark 3. The isomorphism Cl(Xl) oz CI(XZ) from remark 1 does not depend on




the choice of X, Py, P, but only on (Xl’ {:”:‘1), (X, EZ).

As a consequence of remarks 1-3 we way define CI(F) = lim CI(X), C1°(X) = lim Pic®(X),
v—‘—’:‘}

SN

CKF) = }inf? CHX)/Pic®(X) (where X&m(F)); note that in the limits above all morphisms
are isomorphisms.
An element A & CUF) will be called ample if there exists X& m(F) such that the

corresponding element >\‘X € CHX)/Pie®(X) isiin Pie(X)/Pie®(X) and is ample. Now define

a fibred functor ¥: FUF™? — S (and finally take its canonical extension to FUF™) by

ietting W(F) be the set of ample elements in CI(F). Clearly our 7 above is discrete .
(1.'12) Let's def“ine a polarization fon AGR as being the canonical extension of

Y :AGR%—5 S defined below. For K= K, and ['& AGR

connected closed linear subgroup of [ ' and A = ["/L; then put ¥ (/™) = ¥ (L) > %(A)

let L be the largest

where

% (A) = set of ample elements in Pic(A)/Pic®(A)

A (L) = set of isomorphism classes of faithful repfesentations of L/RU(L)
(where R (L) is the unipotent radical of L). Since L/R (L) is reductive it turnus out that

T defined above is diserete.

2. Cohomology of G-algebraic groups

, For technical reasons it is convenient to introduce some elementary definitions
related to group ac;(ions'on schemes.

) If C is a category and G is a group, by a left (respectively right) G-object in C
we mean a pair consisting of an object A of C and a group homomorphism G —> Autc(A)
(respectively a homomorphism from the opposite group G 'to AutC(A)) which we
denote by s s, (s & G). A morphism fc»;HomC(A;B) between two G-objects is called
a G-morphism if sg° f=fo Sp for all s& G.

So we will speak about left G-sets, left G-groups, left G-rings: these are simply
left G-objects in the category of sets, groups, rings.,
We will also consider right G-schemes ( =right G-objects in SCH, the category of
schemes); if K is a left G-field then Spec K will be a right G-scheme. By a right
G-scheme X over a right G-scheme Y we will mean a G-morphism X—>Y between two
right G-schemes. Furthermore by a right G-variety over a left G-field we mean & right
G-scheme X over Spec K such that X/K is a variety. Finally by a right G-algebraic
group over a left G-field K we mean a right G-scheme [ over Spee K which.is an

algebraic K-group such that the multiplication p:P?\’KF —> " and the unit

¢ :Spec K— {7 are G-morphisms (here note that if X and Y are right G-schemes over ¢

right G-scheme Z then Xx’ZY‘has a natural structure of right G-scheme; in particular

our [ xK(” has one).
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Of course the main point with our G-varieties X (and G-algebraic groups) is that for
; 5 . : G
s € G the automorphisms Sy are not "over K", but only "over K n
Note that if X is a right G-scheme over a right G-scheme Z then for any right

G~scheme Y over Z the set X(Y) = Homg ~py (Y,Z) has a natural structure of left G-set
, Z - 5 :
defined as follows : for (& X(Y), s&£G,put s Sx(y) X = sxlmx o 8y. Moreover if

=Spec K and X =" is a right G a‘gobrmc group over K then | T(Y) is a left G-group;
in par ticular one can 5peak about H (G m(K)). leungumd elements in u! win always
be denoted by 1. Furthermore if Gy is a subgroup of G and K /K is an extension of left
G,-fields we have a natural map H HG, TUK)) — Hl(G l"(’{ )) compatible with the
natmal exact sequences relating H® and Hl
From now on we shall omit the words "left" and "right" when we refer to-
G-objeets; it will be understood that "algebraic” objects (sets, groups, rings) are "left"
and "geometric" objects (schemes, varieties, algebraic groups) are "right".
Our main technical result is the following improvement of [1].¢3: 3) (see [1], g 3

for teminology):

(2.1)'_ THEOREM. Let K be a G-field, [ a G-algebraic group over K and
o CHI(G,P(K)) a finite subset. Then :
1) There exists a cofininite subgroup G1 of G and a constrained finitely

generated extension of Gl—fields Kl/K such that 2, maps to 1 via the map

ni, r‘(K))-—~>H (G s (K )).
2) If ™ is connected there exxsts a 1egular finitely ocnerated extension of
G-fields K /K such that ) maps to 1 via the map H (G M(K)— H (G (K ))

The theorem above is better than its analogue in [1] for at least two reasons:

1) 7 need nct be defined over gY

2) ™ need not be linear.

Both these features will be essential in what follows. On the other hand it is
reasonable to conjecture that if K = K then any.| ' as in the theorem is defined over
(K GI) (for (" linear, this was proved in [1] (6.4) while for [ an abelian variety this will
be obberved below, cf (5.2)). :

To prove (2.1) we need the following

(2.2) LEMMA. Let K be a G-field, X a G-scheme of finite type over K and X(G)

the set of (non-necessary closed) points p of X such that the group St(p) = {séG;

(p) =p S contains a cofinite subgroup of G. Then for any maximal element p, of X

the extenslon of St(pl) fields K(p1)/K is constrained (here K(pl) = residue field at pl)

Stp1)
Pmo_f. Take aEK(pl) “P1 as in [1], preof of Theorem (3.3); it is SUfflCleﬂt to

prove that a is algebraic over K. Let G,= St(pl), G1 cofinite in G. Now suppose a is



-

transcendental over K, let Y denote the affine line Spec Kla] with its obvious structure -
of Glnscncme and iet Z be the closure 01 p1 in X, which has a naturally induced
structure of (21~schcmo of finte type over K. Moreover the element a induces a rational
map still denoted by a:Z---2Y. Let Ze A\{K Y be its flosed graph. Cleir‘iy 75 8

G,l"subscheme of ZXKY and the projections ¥P:Z-—yZ and Y:Z-—>Y are

Gl—mm phisms. Exactly as in [1] loe. cit., Y poa«m s a closed point m fixed by some

cofinite subgroup G, of G (G,=G,) such that v~ m) #¢ . Then the scheme ¥ L(m)
has a natural structure of G 2 cheme Letting G be the kernel of tl e ropreoentdtion of
G2 into the permutation grOup of the set of zrrecuqble components of ¥~ m) we get

that there is a point g ¥~ (m ) fixed by G3 hence so will be f(q). Since ¥ is birational,
* ¥ (g) is not the generic point of Z, this contradicting the maximality of Py in A(G)

we are done.

Proof of (2.1). By induetion it is sufficient to assume that >, consists of one
element; let f:G—> T(K) represent it. We first construct a G-scheme X over K
starting from [ and f as follows. As a scheme X will be [7 itself while the action

$ s, of G is defined by the formula

X
SX = sP © Rf(s)

where Rg "= (" is the right translation with f(s) & ["(K) and S comes from the

structure of G-algebraie group of [7; to check that (st)X wlars Sy one is led to check

that Rs(f’(t)) =5 e Rf(t) ° sr1 wh1¢h follows from the commutative diagram

I'“\

(diagram 3)

Now we claim that if c='KXfEX(Y), O{X :Y-—» X is any G1~morphism of Gfschenﬁes (with

Gy G) over K and if we denote by = p: Y~>[" its image in [7(Y) and by f(s)Y the

image of f(s) under the map ™(K)—> [7(Y) then

f(s)Y for all s G

-1
Hr P e 1

(equality holding in the group ["(Y)). Indeed the formula above is equvalent to

Ry 2 e iy

e, 10 sy ooy =Xy o8y which is simply the condition of f being a G 3y ~morphism. Now

if we take Kyt Spec K(pl)ﬁX as above with p; @ maximal element of )&(G) 5 in



Lemma (2.2) we get statement 1) in our theorem. Finally if {7 is connected, taking

oyt Spec K(X) —» X we get statement 2) in our theorem. -

3. Splitting projective G-varieties and G~functiow fields
In this g we prove Theorem (1.7) for PRO " and FUF™ ™ and we also prove
Theorem (1.8) for FUFE, We start by providing Picard schemes of projective G-varicties

with G-actions:

(3.1) LEMMA. Let K = Ky be a G-field and X be a projective G-variety over K.
Then Pic%/K is a G-algebraic groups in a natural way. Moreover Pic(X), Pie®(X), Pie(X)
are G-groups and W(X) is a G-set (% being the polarization defined in (1.10)).

. Proof. For s&G let 0 = Spec Sy be the corresponding automorphism of Speec K,
let Spec K" be Spec K itself viewed as a scheme over Spec K via o and let

ol XSS« Spec K® . Then s, induces a K~isomorphism ?{X : X— X7 s0 we get an

; : e B e : TR RO s e
induced 1somorph13m Sy ¢ I =Pie XT/KC —» Ple X/K"r’ Let SF’ =" be

X

defined as S = o( *) 1 where T ™5 is the natural ‘projection. One
checks that si— sr, glves the desired structure of G-algebraic group on [. Same

construection in the remaining cases.

" (3.2) LEMMA. Let K=Ka be a G-field of characteristic zero and F a
G-function field over K (i.e. a function field which is a G-field extension) with
m(F) #4) Then for any X&m(F), Pic® X/K is a G- algebralc group in a natural way.
Moreover CI(F), C1°(F), CI(F) are G- -groups and (F) is a G set (¥ being defined as in
(1.11)). :

Proof. Same game as in (3.1) (use'Remark Lan=CL. 1 1%

(3.3) LEMMA. Let K be a G-field of characteristic zero (non necessary

algebraically closed), F a G-function field over K and X a model of F such that X® Ka

€ m(FQK ). Then CI(X) has a natural structure of G-group. Moreover, if
LEPlc(X)m (Cl(k)) then P = P(H°(X,L)) has a natural structure of G-variety over K.

Proof. The G-group structure may be defined by considering a diagrém as ‘in
Remark 1 from (1.11). If we view elements of Cl(X) as isomorphism classes of reflective

sheaves of rank 1 on X then the G-action on CI(X) may be described as follows. For s £G
let o, ,KG_, X" be as in (8.1); corresponding to s o

I‘ we get a rational map sx:. X--->X

hence a diagram

. 3 ’b“’r s L .
?(_4-1- X 2 (XO-)O__LXU:,B.\,,X
where X, (XG-") are nonsingular open subsets of X and X7 rebpectlvely/whose ;

complement:, have codimension > 2 and p is the canomcal projection. Then bCl()\) is
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defined by [L]=>[i, (Q' y*¥j*p*L], Now if L is invertible and G-invariant there are
isomorphisms e L"’l*(b )¥j*p*L for all s&G (note that T is unique up to
mu]‘uphcatlon w1th some nonzero element o K). We get isomorphisms (natural up to

scalar multiplication)

HO(X,L) = Ho(X ¥ ,p*L)~HO((XT ),3 pELYxH X L )* j*pEL) &
2 HO(X,1, (S *1*L)= HO(X, L)

These isomorphisms induce a structure of G~variety onP.
(3.4) The following definition will play a key role in what follows (as its
algebraic analogue played in [1]). A G-scheme Z (respectively a G—function fiel_d F)

over a G-field K will be called split if there is a K- 1bomorph1bm ez Z & K with Z
a KG-scheme (respectively a K-isomorphism Y : Fx Q(F & K) with F a functlon fleld
over KG)‘ such that we have. ¥» S ¥ Al = id® Sk (respectlvely o Sp (f’ al Q(xd@sK))
for all S€G. A ¥ as above will be called a splitting of X (respectively of F).

(3.5) LEMMA. Let K be a G-field. ;

1) Let X'O and YO be KG--scixémes and let XO@K and _YO®I< be given the natural
structures of split G-schemes over K. Then any G-morphism between them has the
form A ®K where “P is morphism X ~—-—~>Y :

2) Let X be a G-scheme over K and assume we have a covering {U { of it with
open G-invariant subsets such that all intersections Uiln Uizn ~nlU; (b > 1) are affine
and split. Then X itself is split. p

3) Let X be a split G-scheme and Y a closed G-invariant subscheme X. Then Y
with its induced G-scheme structure is split.

Proof. First one proves 1) for Xo’ YO affine (by just noting that
K[XO® K]G = KG[XO]). Then one proves 2) using the affine case of 1) to glue the
different splittings of the Ui‘s’ Next one proves 3) for X affine by noting that the ideal
I cK[X] which defines Y is a K[G]-submodule of the split K[G]-module K[X] hence by [1]
(3.4), I itself is split. Next one proves 1) and 3) in general by reducing to the affine case

via 2).

(3.6) LEMMA. Let K be a G-field and Z a projeétive G—séheme over K. Assume
KG is a field of definition for Z and that Auté/K is quasi-compact (equivalently of
finite type). Then there exists a cofinite subgroup G1 of G and a finitely generated

" constrained extension Kl/K of Gl—fi’elds such that ZC‘Z)K1 is a split G —variety.

1
If in addition AutZ/K is connected then the same conclusion holds with Gl = G and

Kl/K "regular” instead of "constrained".
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)

" Proof. Let ‘{7 ->Z @K be an isomorphism , with ZO a K(J-variety. Then the

association

sl-> f(s)=yo Sy 0 7l (id@sél)eAut(Zo@)I{/I{)

defines a cl_ass inH (G,f"(K)) where T'= Aut g G- Now applying Theorem (2.1) to this

z/
class we may assume (aftet’ replacmg Gooande Kby /G
£(s) = o{nlc (id®SK)
will a splitting for Z.

1 and K ) that
oo o (jd®sK ) for some K-automorphsm < of Z @K Then o @

‘Now let's pass to the proof of Theorem (1.7) for PRO and FUF™ and their
"polarized" versions. With the terminology of [1] it is sufficient Aby [1] (1.5) to prove that
PRO", FUF™ "

statementA below:

have properties (5\1) and (d°2), This immediately follows from the

(3.7) THEOREM. Let K be an algebralcally closed G-field. Assume X is a
projective G-variety and XC’V(X) (respectlvelv assume F is a G—function field of -
~ characteristic zero over K with m(F) #¢ and )Q’?’(F) ). Then there exists a cofinite

4 subgroup G, of G, a finitely generated constrained extension Kl/K of Gl—flelds, a |

splitting “(’1- X@K —» X (X)K (respectively a splitting ¥ : Q(F(‘Z)Kl)——a Q(FO® Kl))
and a polamzatlon 7\ ew(X ) (respectively \ e (F )) such that the images of )O
and ) in T(XQK,) (respectlvely in 7 (Q(F@Kl))) are the same. Same statement holds
with G1 = G and KI/K "regular" instead of "constrained". Moreover one can _take )0

above to be represented by some element in Pic(Xo).

Proof. We. shall consider only the case of G- function fields (the case of
_ pPOJectlve G-varieties being blmlla[‘ and easier). Assume Aé i (P) is ample on some X,
and let) be the image of ) in H (G Pic°(X)). By Theorem (2.1) one can find a cofinite

subgroup G1 of G and a finitely generated constrained extension Kl/K of Gl—flelds such

that rl()) = 1 in the diagram below:

(diagram 4)

t) o 1 =2 " e
where we have put- e Pic® X/K? FM=@HX), 7, 2 (Ll(Xl), X1 = X@Kl.

Same statement holds with G, = G and Kl/K "regular” instead of "constrained".

1
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: i G
A diagram chase shows that T()) = pl(xl) for some x]é_Cl(X ) ¢ e claim

that X, & Pie(X

il

1) and it is ample; indeed we have a commuatative diagram ~

(diagram 5)

and by hypothesis A= p(x) . with x€Pic(X) ample so pl(x1)= pl(r(x)) hence
Xg - r(x)GX""(Kl) which implies our claim. Note moreover that the image)iof ) in

P (QIF® Kl)) is well defined and is "represented" by X1 Let L1 be a line bundle on Xy

corresponding to X4 and let n > 1 be such that both LI@}n and L1®(n+1) are very ample.
By Lemma (3.3) 7, = P(H°(X1,L1®n)) and Z) = P(H°(X1,L1®(n+1))) have natural

structures of G1-varieties. Applying Lemma (3.6) we may assume (upon modifying Gy

and Kl) that both Z. and Z‘l are split. Let Y. and Y‘1 be the images of X1 into Z, and

il 1 1

Z7 respectively. By Lemma (3.5) Y,-and Y} are split G,-varieties hence Xl'is split.

Now corresponding to Yl and Y‘1 we ha\lze two splittings ‘{’.: le\f X10®K1 and
. Xl-——-‘7 (Xlo)'@K1 and ample line bundies Lg on Xlo and (Lgﬂ)' on (Xlo)' whose
inverse images via & and L?' are L1®n and Ll@(nﬂ). By Lemma (3.5) ¢ 'o \f_l =7, 0K,
for some '\170 Xlo‘“? (X 0)'. Put LO B kF*((Ln+1) ). Then _)1 may be represented as the

difference in C1(X X;) of the images of b o Ln' Our theorem is proved.

n+l
In thexnext g we shall use a slightly amplified version of (3.7) for projective

G-varieties (whose proof is the same), namely:

(3.8) Amplification. Assume in (3.7) that K is not algebraically closed anymore -
but assume instead that there exists an algebraically closed G-subfield K' of K such
that X and ) are deduced via base change from some G-variety X' over K' and some
A'e W (X"). Then the conclusion of (3.7) still holds. :

Finally note that to prove Theorem (1.8) it is sufficient to prove the following:

(3.9) THEOREM. Let K = K, be a G- field of characteristic zero and F a
G~ functlon field of gener al type. Then there exists a cofinite subgroup G of G and a
finitely generated constrained extension of G, -fields K, /K such that Q(F&’)Kl)/K1 is a
split Gl—-function field. Same statement with Caie G and Kl/K "regular" instead of
"eonstrained". _ :

Proof. Let X be a smooth projective model cof B/K and R :@Rn’

Rn = H"(X,UJX/K@n), its canonical ring. One sees immediatly that it has-a strueture of -
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G-ring. Choose n such that the n-canonical map QPn of X is birational onto its image =
and let R* be the K-subalgebra of R genrated by Rn‘ Then R* is a polarized
K[Gl~algebra with polarization given by R . We condude by [1], Theorem (4.2).

4. SPLITTING G-ALGEBRAIC GROUPS :
In this %\ we prove Theorem (1.7) for AGRW and Theorem (1.8) for AGRP.
First let s give a corresponding definition for "splittings" : a G~algebraic group
" will be called split if there exists a K-isomorphism of algebraic groups
P wv,r'O@K (l/‘O some KG~algebraic group) which is a splitting in the sense of

(3.4). Our main result is:

(4.1) THEOREM. Let ™ be a G-algebraic group over an algebraically closed
G-field K of characteristic zero and let L be the largest linear connected closed
subgroup of G and A ={"'/L (clearly L and A inherit natural structures of G-algebraic
groups). Assume there is a maximal reductive subgroup P of L which is G-invariant and
there exists a polarization (f,?\ )(i?’(r“‘)G with ¢ coming ‘from a faithful
1 of G and a
constrained extension Kl/K of G1~fields such that '@ Ky is a split Gl—algebraic group

K[G]-representation W of L/Ru(L‘). Then there exists a cofinite subgroup G

over Kl' Moreover if \"®K1~——-—> F‘O (9] K1 is a splitting, there exists a polarization’
.(fo,)o)é’ﬁ’(lw’o) such that (,J"O, 20) and (/’,)) have the same image in % (I"@K

Same statement holds with G; = G and K, /K "regular" instead of "constrained".

il

éroof. We use an approach similar to that in [3]). For simplicity we shall assume
in what follows that [ is connected. ,

Step 1 (skew equivariant Chevalley construction). By [1], Theorem (1.6) there
exists a cofinite subgroup G2 of G and a finitely generated constrained extension KZ/K
of Gz-fields (respectively Gy =G and K2/I< regular) such that LQZJKZ is a split

Gz—algebraic group and W&K, is a split K2[G2]—module. We claim that there exists a

2
K-linear subspace V of K[L] having the following preperties:
1)VisG,
2) V is L-invariant (L acting via right translations)
3) (VAM)KI[L] = M (M = ideal of the unit)
4) dimy V < 0o

Indeed one can find a space E with properties 2), 3), 4). Next note that for any s& G, sE

-invariant

will still have properties 2), 3), 4) [for 2) use the diagram in the proof of (2.1)]. Put
\% =ZSE where s runs in Gz; clearly V s.atisfies properties 1), 2), 3). To check it satisfies

also 4) note that

. et . = . b AT
dim V = dlsz(V<Z)I(2) = dlmK2( L[S(EQ)KZ)])
But the latter number is finite because there exists a finite dimensional

G

2 Gy P
K, "-subspace EO of Kz [LO] (where LOK,= LOC@K

5 2) such that E@ch: EO@)KZ. Now let
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1 - d . ,
d =dim(VAM), P = P(AV), p_=P(A (VA M)). There is a naturally induced G,-actions on

P letting P, fixed. The aptlon map L<P —s P, (b,p)\—> bp is then a G_,~morphism.

2

Stcp 2 (skew equivariant version of [2] p. 96). Recall our ‘construction in [2] i
96: we start with actions T :Lx("=<P) —> <P, T(b,(gp)) = (gb 1, bp) and
G:M<({M<P)— <P, 6(x(g,p)=(xgp). Both T and ¢ are G

shown in loc. cit. there is a cartesian diagram

2~mor§hisms. As

(diagram 6)

with w projective, u a principal bundle for (L,T) and ¢ descending to an action
§ : "= Z—>Z such that the isotropy of B u(l,po) in [T is the identity. One cheks
that Z inherits a structure of G2-vartiety , u, w, B are G2~morphisms and Z is fixed
by G Consequently the immersion Y :{"— Z, X |—> Xz is a G —morphism. The
closure ™ of the image of this immersion in Z will be a Gz—subvarlety of Z hence 1ts

normalisation r' will inherit a structure of Gz—vamoty We have g diagram

(diagram 7)

&
Let D= 7\v(IM); it has pure codimension 1 because v is affine so we view D as a

reduced effective Weil divisor. We agree to put X2 =XQ® K, for any K-scheme X and
u, = u®K2 for any morphism u of K-schemes. So in particular we have a diagram as
above with {7, v, A, ... replaced by ’2, Vgs Agyecs -

Step 3 (Splitting) First by applying (3.8) "to (AZ’ )2) there exist a cofinite
subgroup G, of Gz)a finitely generated constrained extension Kl/Kz of Gl-fields
(respectively G1 =G, and KI/KZ regular), a splitting Al".:’iAO@Kl and a line bundle
L& Pic(Ao) such that L | and L (where L& Pic(A) represents ) ) have the same image in
,’iI‘(Al), Since the graph of the multiplication map is a Gl—subscheme of Alx A17< A1 it
is the pull-back of a subschexé]§3 of AO>< AO>< AO (by Lemma (3.5)) so Ao is seen to be an
abelian K0~variety, Ko: Kl and the splitting of Al is a splitting of Gl—algebraic

m

groups (not only of G,-varieties). Now choose divisors I-lol,---,HO in some very ample

1
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% £ ?‘, A- . 7 ; - * : .
linear system ‘LO“’N( sueh that Holnl.r.. nHLn = g/) and let HlJ be their pull-backs on Al;

i ip
I o'l I

clearly HlJ are fixed by Gl' Now for any multiindex I = (il’“"ir) put H1 1 +...,+H1 -

then the open subsets of r; defined by

1 -1 i1
Fl = v, “(Ay\H))
A

are _G1~invariant and affine. Consider the Cartier divisors EII = w1 (Hll) on [™ and for
any n > 1 consider the subspaces of K, I T"ll] defined by

I

el e L
W= %fC{KlH 1]1(f)r., +nE,

1
Al ) A
Clearly W; are finite dimensional Kl[Gll—submodules of the function field Kl( r’l) and

+nD1_>_0 Ag

UWi{: K.l[ lﬁll]., So there is an integer n > 1 such that for all I, Kl[ FII] is generated as
a Kl—a}gebra by w}] . Applying several times [1] Theorem (4.2)/we may assume (upon
modifying G, and Kl) that Kl[\"'ll] are split I{ILG1]~alge'bras. By Lemma (3.5) we
; c,onclude that rll itself is a split Gl—variety. This splitting is automatically a splitting

as a Gl—algebraic group (use same reasoning as for Al)' Our theorem is proved.

(4.2) Let's explain how one can deduce Theorem (1.7) (for AGR ﬂ/) from our
Theorem (4.1) above. We must prove that AGRW has properties ((91) and (52). Let
ken?, \"éAGRK and ) = (f , Ne (") and denote as usual by L and A the linear part
of |7 respectively the complete part A =1"/L. We claim that one can define a group G
acting on K and a structure of G-algebraic group on i Such that the following holds

1) Im(G—>g(K)) = g([ ) (ef (1] (1.3)),

2) There exists a maximal reductive subgroup P of L which is G-invariant,

3) g isrepresented by some K[Gl-representation of L/RU(L) 2

Our claim and Theorem (4.1) clearly imply (1.7). On the other hand the claim
follows by an argument similar to that in the px‘oof of [1] (6.9). V

(4.3) Proof of Theorem (1.8) for AGRP. It is sufficient to check that AGRP h‘as
properties (d;) and (d,). Take grep®
Claim 1. I  LEAERP

K
£ :L/RU(L) — GL’N(K) such that whenever U & g(K) and u_:L— |l T

is _line'ar' there is a polarization pé& T (L),

K-isomorphism we have f "-{l-cr & fras‘ representations (i.e. the two terms are equal
modulo an interior automorphism of GLN(K); here i'f(r 3 L/RU(L) -3 (L/RU(L))O“ is
induced by uG,,). This was shﬂclwn in [1] (6.10) (note that we tacitly assumed there that
one can take £ such that f’zf'for‘ all "€ g(K); this can be done by choosing our &
there to be such th_a‘g“_z‘ry ¢ for all a"é-.Ag(K); for instance one can take &£ to be the sum

of a system S of representatives for the set of isomorphism classes of conjugates of a
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given faithful representation: go. Since ﬁo is defined over an algebraic number field, S
will be finite).

Clajm 2. If A& A(:R}? is an abelian Qariety there is a polarization A er(A) such
that v_ (} =) for all ¢"¢ g(K) and any isomorphism v st A——«-?A(T! Indeed by [7] p
140, the deglce map ‘f:T(A)/Aut(A) - Z, (Lf’() ) = top intersection number of J ) has
finite fibers. So if Aut(A) is finite ~we ‘choose déZ such that \(’—1(d)%§$ and let

e 77(A) be the sum in Pic(A) of a'lllpolarizations of degree d; this A answers our

~ claim.

Now claims 1 and 2 together with Theorem (1.7) clearly imply Theorem (1.8).

5. FURTHER COMMENTS AND QUESTIONRS

It is reasonable to make the following

(5.1) Conjecture. AGR has property (CCI)" (hence by [1], Theorem (1.5) also
properties (d,), (g;)). -

Indeed it follows from [1] that AGRlm ( = subfunctor of AGR correspoinding to

- linear groups) has property ( Pl) if char k = 0. Let's also remark that we have:

(5.2) PROPOSITION. If char k =0 the functor AGRab(= subfunctor of AGR

corresponding to abelian varieties) has property (cs‘l).

Proof. Let K&B®, AEAGRED, G =G(A,AGR®D) (cf [1], (2.13)). We want to
K

prove that A is defined over (KG)a. To see this we construct a subgroup H of G such

that Im(H —>g(K)) contains a cofinite subgroup of Im(G-—>g(K)) and such that there

exists a polarization ) e.—‘ﬂ“(A)H. If this is done one can split the H~variety A as in (3.7),
.and we are done. Let "ﬂ‘d(A) be the set of polarizations in TW(A) of degree d, pickad> 1

such that w9A)# @, note that G acts on the set 37 =7 %A)/Aut(A) and put
H, = = ker(G —> Aut(Z)). Hence Hy
140) Now pick any e 7 (A) and let H be the subgroup of G consisting of those s€G

is normal of finite index in G (2 being finite by [71 p.

which fix ) ; then Im(H = g(K))=Im(H —» g(K)) and we are done.

K3

(5.3) Using [8] instead of [7] p. 140 one can check that the subfunctor FUF ™" of

FUT corresponding to K3—su1faces has property (5\ ) and hence properties (d ), (bl)"

- is reasonable to conjecture that the subfunctor FUF2 of FUF corresponding to functlon

fields of transcendence degree 2 has property (é\ ‘In any case its analogue FUF

even coarsely representable by results of Matsus&ka and Shimura.
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