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On certain automorphisms of reduced
. Crossed products with discrete groups
by

3

M. Dddarlat and C. Pasnhicu

¥
For a,C -algebra A and a discrete group G acting on A by

automorphisms, we let AutA(Aﬁx G) denote the topological group
e

of all autcmorphisms,ﬁ of the reduced crossed product A x G, such
o, r

thatﬁ(A) = A,

The analogue group in the framework of the von Neumann al-
gebras was stﬁdied by L.Misinger [13] -, H.Behﬁcke Milnd G,
Zeller-Meyer [i7]. Inspired by their work we give a description

of AutA(A ® G), under certain assumptions on the dynamical
o, r

system (A, G,%) (see Thms. 2.6, and 2.8,) . This is done in the
first part of the paper.
In the second part, we analyse the topological group

AutA(A ¥ G) from the homotopy point of view, in the case when
<, r

A = C(K), where K is a compact connected topological group and G
is a dense subgroup of K acting on K by left translations. Using
some facts of cohomology of groups we compute the homotopy groups

of AUtC(K) (C(K) ® G) in terms of the homotopy groups of K,
oG r

AutG(K) = {,OYEAut(K) : G (G) = G}'and some "amenable" algebraic
objects built from G and K (see Thm. 3.11). The computations are
more precise when the abelianized of G'is either free or a torsion
group. These situations include the cases of the irrational ro-

tation algebras and of the Bunce-Deddens algebras (see 3;14),



Automorphisms of the above type have been recently considered
by O.Bratteli, G.A,Elliott, D.E.Evans, A.Kishimoto [2] , B.Brenken
3] and A.Kumjian Ll §j

Throughout this paper G will denote a discrete group with

neutral element e,

If K is a group, then K0 will denote the opposite group.

Recall that for a compact connected commutative topological
group,its Pontrjagin dual is torsion free ([6]).

If K is a locally compact group, there is a natural structure
of topological group on Aut (K) := the group .of all cenEinuous auto-
morphisms of K (see [6], §26). If G is a subgroup of K, we let
Aut. (K) denote {0’6 Aut (K) : 0 (G) = G} . We endow AutG(K) with
the topology given by : 53_—9 o in AutG(K) Jff G‘i—a G in
Aut(K) and (G&IG) = (GjG) in Aut (G).

If L is a topological group we let L0 denote the path
connected component of the identity. The homotopy groups of L are

. denoted byyﬂL(L), where the base point is the identity of L.

For a unital C*—algebra A we let U(A) denote the unitary
group of A and Z(A) the center of A.Aut (A) := the group of all
¥ —automorphisms of A is considered with the topology of pointwise
norm convergence., Given an action o : G — Aut (a), Z1 (G,U(n))
is by definition the space of all maps m:G —>U(a) satisfying

thé identity;
mwm)=m@%%ﬂMM);grhEQ

We let Zl(G, U(A)) have the product topology induced from 1} U(a).
g €G

We denote by k(G;A) the set of all the maps from G to A having

finite support,




§2.

Under certain assumptions we shall give a description of the

(A x G).

topological group AutA
; o5, ¥ :
Consider an injective ¥ -representation /7 :A —» B(H). We

shall identify A with its image by /7 and A ®» G with the norm
: Xy T

closure of (;fx U) (li(G,A)) in B(lZ(G,H)) ; where:
(7@ f) () =705, (@) f (g)

(v, F1(@) =7 (ag)

for any a €A, g, h €G and }"6’ lz(G,H)( see. L 88 Thm 77 5.) .

We shall need the following

2,1 LEMMA . There is an unique linear, injective and contrac-

from A x G to loo(G,A) which extends the
<, r

tive mgp X — (Xg)gGG

natural inclusion li(G,A) —_ loo(G,A). For any x,y€ A 1 G we have:
<, r

bf) —cd (x 7] and (wy)==Z XH“hw )

g g g"'€L 9 i hee h_ig

(strong convergence in B(H)). Moréover, the map E : A ® G — A,
oLy

given by E(x)*= Xgr is a faithful conditional expectation and
»
for any x €A » G and g €G6G, xg = E(ng).

oG ¥
Proof, See ([1.7], Thm,  4.42) .,
2.2 DEFINITION., We say that G acts properly outer on A, if

eachOCg, g # e, has the property : if a €A and a—O%(x) = Xa

for all x in A then.a = 0,




}2.3’ REMARK S

a) Let G x X — X, (g,x) — g-x, be a continuous action of
’G on the compact space X. The corresponding action G —> Aut(C(X))
is properly outer iff : for each g # e,{x€X : g-x = x§J has no
interior points,

b) Let L be a discrete ICC-group and G -—?'Aut'(L) an action
of Gon L by' outer automorphisms. Then the induced action
<: G~ Aut(Cr*ed(L)) is properly outer and

Z(C:ed(L)) = ¢ (see T16], 22.'12)‘

2,4, LEMMA, Suppose that G acts /properly outer on A or on Z(a)

and that the spectrum of Z(A) is connected, Consider v€U(A x G)
oG, Y

»*
such that v A v = A, Then, there are a €U(aA) and h €G, unique with

the property that v = a Uh'

Proof, Let (Vg)geG the map associated with v, by Lemma 2,.1.
Fix a €A, Then b:= vav*eA and va = bv, Hence, for any

* Pa ¥ o
G e - = b = ol = & oC = —
g € Vg q(a) V&) v g(a) vav vg( YV Vv g(a) av v =)

< g

x o X : % x %
ocg(a )vg*v = v_va ¢) ng(a )vg*vh = vgvho(h(a ), for any h € G, Hence :

g
x s b : (1
CWoup vgvhoglg_1 (¢), c€en, g, h €G, )
Since vaV = A, by (1) and Lemma 2.1. it follows that :
vgvg* e Zin), get (2)

From ('li and (2), we deduce :
: *
c‘vgvg*- thh* = vgVy4 vhvh"‘ochg_1 (e) ch(A) 39, e G, (3)
By the hypothesis, (1) and (3), it follows that :

"q"q’é"h"ﬁ'6 = 0ig g het, (&)




But :

R v* = 4 (strong covergence in B (H)) (5)
geG g9

¥
since vv = 1 (see Lemma 2.l1). Using (4) we deduce that each
ngg* is a projection in Z (A) and hence it must be trivial ; but

by (5), only one is nonzero, say thlrf‘ (=1), which implies v = Vi Up,

(see Lemma 2.1.).

2.9, Assume the hypothesis of Lemma 2.4, Let B:= A x G
ol,r
and consider /3 EAutA(B) . We shall describe all such automorphisms,
By Lemma 2.4., there are bg € U(A) and a map ¢ : G- G such

We shall need the following :
LEMMA, 0 € Aut(G).

Proof., a) ¢'is injective.

o *
Suppose G (g) =7 (h), Then f3 (35 ) =/1 (Ug)ﬁ (Uy) = bby € A,

Since /3‘€AutA(B), it follows that U _1€A, and Lemma 2.1, implies
gh
_that g = h,.

b) ¢ is surjective,

Suppose (3) g€ GNC(G). Then, for any x €A and ¢ e“G,

¥
E (/3(XUg) Ugo

hence E(ﬁ(b)Ug*) = 0, for any bGB, a contradiction,
0 :

= 2 -1
) = B(F(x)by Uy gz ) =0 CAEID.E I a(glgy” # e)

c) G (g-h) =G (g)G(h), for g, h €G.

bgh Uo.(gh) =/3(Ugh) =ﬁ (Ug)ﬂ(uh) = bg Uo,(g)~ by, Uem) =

= by X og)®n) Ve (q) Yrm) = Pe%g) ®Pn’ Ye(g)om)
Using Lemma 2.1., we obtain the desired identity.

]




By the above computations, we also obtain :

a5h = ag-o{g(ah), for g, heG

where, by definition, a_= Db € u(n).
= L ey

Notice that for any gé¢ G and a€ A :

;o * ® A
f (4 (@) =AU A(a) BN = agg) Upgpla) Upgy agg

Hence we can define a map :

?’ : Aut, (B)—> @7 (G, ua)) x Aut(a) x Aut (G)

where ‘f: ={((cg),f 1 G) ,=§°ch = ad co‘(g)° OCO'(g)oy ' gGGB by :

FP = (@) ppne).

We have the following :

2‘.6. THEOREM, 55 is a homeomorphism,

Proof : By the above computations it is clear that 55- is
*
well defined and injective (B = C (AUUG)C B (lz(G,H))) . To prove
the surjectivity of ¢’, take ((cg) ' 0 G)e ¥ . Define

1 2 0 1 2
/9: 1°(6,28) = B (1ec,m)), by/B((xg)geG)--— é:eGg(xg) o Yolo)

3 () U (xg)) - Usinl =
iy gZEG\If %g) Co(g) Yoigll¢ g%G IS g+ Il S1g) Yoo !

=2 s s I (Xg)geGHf“’O . it Follows that/3 @ lc.n)cn.
geG

* ; ;
We have C (/J(lﬂ'(G,A))) = B, By ([!L?], Prop,2_7.),/j’13 a unital
representation of l1 (Gaad Since B o Bi=d A= O], E(b) = be’
is linear, positive and faithful, and since
= 4,22
Ecﬁ |k (G,A) /} ° E'k(G,A)' we can apply (['1_7], Thm.4.22,
equivalence (i){=)(iii), with 8 = E) to deduce that/ induces an

injective ¥ —homomorphism/3: B —» B. Hence /3 € AutA(B) and

g = (e, .0



f =L s obviously continuous and for the continuity offg,

J
observe that || E%’(Ug)ﬁ(uggt) Il :&: ggg; ;g,ggg

: ) ’
where /3 (resp./3) belongs to AutA(B) and G (resp. ) is the

associated automorphism of G.

2.7. REMARKS. a) Assume the hypothesis of the above
Theorem. I£f E : B—-> A is the conditional expectation from Lemma

2.4, .- and ifﬁ €Aut(B), then :

/)’eAutA(B)é::)/]oE = Eo/3 ;
b) Assume that G acts properly outer on A and that Z(a)

has connected spectrum. The above theorem easily implies that

the topological group of the automorphisms of A ® G which leave
e d'r

A pointwise fixed is isomorphic to Zﬂ‘(G, UZ R .

2.8, We have found a more precise description of the
topological group AutA(B) in the case when A = C(K), where K
_is a compact connected topological group and G ig a dense
subgroup of K acting on K by translations. (the induced ‘action
on C(K) is given byng(a) = a(g_?)). -

In fact, this example ig "generic" (at lest) for the case
when A = C(X), with X compact metrizable and G countable and
commutative, acting freely and minimally on X, such that the ;
action is equicontinuous relative to some metric d (i.e. Mevo,
(3) §=§ (€) Y 0 such that d(x,y)¢$é = dlg-x, g-y){& , geG).

For /SEAut (C(RK) = G) , Theorem 2.6. gives that:

oL T
/J(Ug) = ag(g) UG’(g)’ g€ G, where Geaut (G) and (3)7’€ Homeo (K)

C (K)

e : ;
such that ﬁ (). = @ /‘9 ‘, ae ClK)., The relatlonﬁoocg adac.(g) o
6 OCG'(g)o ﬁkA' g€ G, is equivalent with the condition :



0lg) P (k) =¢(gk), ) gee, (V) kek

which exactly says thlat :G6 extends to a map (also denoted by G')
belonging to Aut,(K) and 70(-) = C’(*)}ﬂ(e) :

Define the homomorphism of groups J : KO bt AutG(K) -
I

—-)Aut(Zi(G,U(A))) by J(k,0)(a ) = (a 1 ° G'"l('k—i))
=9 i) o
where the homomorphism I : AutG (K) = Aut(KO) is the inclusion

(CE®) » &) — zre,ucx)) = &° = Aut (K))

map. If%¥: Aut
3 o J I

C(K)

is given by}”(/) = ((ag) ,f(e), G’), we obtain the following :
THEOREM : fis an isomorphism of topological groups.

2,9, REMARK, Note that since ‘in the above case, A is masa in B

(see [17) , Prop. 4.14), we have Auty gy (C(K) u G) =
& x

z {/3€Aut (ClK): G = /5 (e(K)) & C(K)} .

& T



-9

.

In this section we shall analyse AutC(K) (C(K) = G) from
o, Y

the homotopy point of view. The hypothesis 1s  the same as in
2.8. , namely G is a dense gubgroup of K( = compact connected
" topological group) acting on K by left translations. As a con-

sequénce of Theorem 2., 8. we have :

(C(R) = G)) =7fn(z1(G, UC(K))) = (@;(K)x@(AutG(K))).,
o, X

7rn (AutC(K)

The semidirect product structure of‘ﬂ; (Aut (C(K) n G))
n C(K) - .
4

comes from 2.8. For n)1, this coincides with the ordinary direct
product (see faal Ch.l,_§6, Cor.. 10).

The analysis of Zi(G, UC(K)) requires some elements of
cohomology of groups. We shall recall some definitions and
standard notations.

Let M be an abelian group (written additively). We say
that M is a G-module if we are given a homomorphism G —> Aut (M) .
We let 9% denote the image of x é M under the automorphism given
by g€ G, If M and N are G-modules, a map £: M—>N is called a
G-homomorphism if it is a group homomorphism which preserves the
action ofGor’equivalently,if it is a homomorphism of G-modules.
For a G-module M, we denote by MG the submodule consisting of
the elements fixed by G.

Cohomology groups (of low dimension ) are easily described.



Sl

using standard n-cocycles Zn(G,M) and standard n-coboundaries

B" (G, M), for we have H"(G,M) = z% (e, / B™(G,M).

neds n%e =t Bllem)=0

R s Zi(G,M) consists of all the maps g-e-mg from G to M
satisfying mgh = mg 7 gmh. Bi(G,M) consists of the maps g - mg
in Zi(G,M) of the form mg = 9% - x for some x ¢ M.

, n=2 : ZZ(G,M) consists of all the maps (g,h)——a»mg h from
4

G x G to M satisfying

<) o = =

I ge & Bahige © 8o 7 Dgn =00

B2(G,M) consists of all the maps in ZZ(G,M) having the form

=9 -
b ook g tiby

m
g,h

for some map g ~9tg from: G to M,

Note that if G acts trivially on M then Hi(G,M) = Zi(G,M) =

= Hom (G,M) . For every exact sequence of G-modules :
0~H N 5P 50

there is a connecting homomorphisﬁ S : Zi(G,P)-9H2(G,M) such

that the seguence :
0-—#Zi(G,M)-—iﬁezi(G,N)——gﬁyzi(G,P)-ﬁLQHz(G,M)-jfaHz(G,N)

is exact. Moreover the connecting homomorphisﬁ depends functorialy
on the given exact sequence. Let us briefly recall the definition
of 5'. Let g-—;Pg be ‘a ;—cocycle in Zi(G,P). Since q is onto there
is a map g-—ang from G to N such that q(ng) = Pg foriall g in G.
As 93 pq is a l-cocycle we must have q(ng + gnh < ngh) =0

and so for any g,h € G there is a unique mg he M such that
i ?

1 = g =
j(mg’h) ng + ny ngh'



S

It is easy to check that the map (gsh) —m defines a

g,h
2-cocycle and moreover its class of cohomology [Ymg hﬂ in
= 4

HZ(G;M) depends only on the given /1-cocycle g-%»Pg. By defi-
nition § ((p)) = [(mg )] '

Let [G,G] be the commutator subgroup of G and let
Gy =€ /[G,G] the abelianized of G. Let

0o —[G,G6]—¢c Z—~>Gab———> 0
be the corresponding exact sequence. It is clear that for any
abelian group M the quotient map induces an isomorphism of
groups Hom (Gab,M)-—+ Hom (G,M). If g€ G we shall write many
times g instead of w(g).

We shall regard the exponential sequence

0 —1Z —-)RE-}EP; T—5 0 (exp(x):i= e2ﬁix)
as an exact sequence of G-modules (with trivial G-actions).
Therefore we have an exact sequence
0 <3 (e, By P (R ae, MY S (6, B B2 (G R,
We want to find the image of 5 This is an easy question,

however we record the answer in a lemma for later use,

3.1 LEMMA . The image of the connecting homomorphism 84

in the above sequence is naturally isomorphic to Ext% (Gab,Z).

Proof. The exponential sequence may be seen as an injective
presentation of Z, hence there is an exact sequence
U
0-—%Hom(Gab,Z)——}Hom(Gab,R)—;;Hom(Gab,TW-§Eth(Gab,Z)——;0.
Oon the other hand we have the obvious identifications:
A e,y —nt e, r) —22B8 2 ()

I I |

Hom (Gab , 2Y—Hom (Gab ,R)— Hom (Gab i)



a0

whence image 51 =~ coker (exg):i Ext%(Gapr).

Let szGab denote the second exterior power of Gab'

3.2 LEMMA There is a natural isomorphism
2 tare
e H (Gab,T) —3 Hom (AZGab,é')
which takes the class of the 2-cocycle (mé h) to the homomor-
4

his IA D Thie= # i e 8
PR Satealai e

Proof. Let M be an abelian group considered as G-module
with trivial G action. By ( [4] ,Ch vV, §6, Exercise 5) there is
an exact sequence

2

1 e 2
0—+Extz(Gab,M)-——>H M)-—?Hom(_/\Gab,M)—-—? 0

(N
The statement of the lemma is obtained by taking M to be the
divisible group T . o
Bl e ; normal subgroup of G the cohomology groups
of G, L and G/L are connected by the exact sequence of
Hochschild-Serre. We need the following case :
0~ HE (C/D ) -?Z)Hi (G (r, ) /L3, 42 (G/L,ML)-Z,:HZ (G,M)

(see TA21 ", pp.AL8) The mapSD;, pﬂare the inflation homomorphisms,

9.is the resﬁriction homomorphism and G is the transgression
homomorphism. For a very concrete definition of G see

(f151, pp.215). The action of G/L on H@(L,M) is induced by the
:following action of G on Zi(L,M)

Fi Im 1 ) for: every 1—coqycle m=(ml)1 in Zi(L,M).

(g-m)
1 g 1lg
Let us consider the above exact sequence in the case
L = [G,G6] and M =T with trivial G-actions.
* e S
1t 4= clear that‘)?{L : Hom(Gabfr)-—)Hom(G;T) is an iso-

morphism hence we get the exact sequence



Sy

#
G 2 !
0 —y Hom( [G,G],T) AL (G /T) .2_; 22 (G,F)
We are interested to describe the image of the transgression
homomorphism § . This can be better done via the isomorphism

exhibited in Lemma 3.2.

N
3.3, LEMMA Let }oeHom([G,G] ,'“E")G and let 7ﬂ€Hom(A2Gab,'T‘)
A
be the image of §" under the homomorphism/at 4 Thenj& is given by
the following formula
e z
“70 (gah) =70(gh g

1. .=1

ho) for all g, h&€G

Proof. Using the fact that f(g'i’ég) =@ (t) for all g€ 6,
te[G,Gl, it is easily seen that the formula :

#GaR) = ghg ™)
gives a well defined homomorphism )0,€ Hom(AzGab,T) . Choose a map
s .t Gab—->G such that s.(u) = 1 for each ue Gab and s(1) =1. The
description of the transgression homomorphism given in
(f25l, pp.215) can be used to. see that 3(79)6 HZ(Gab,’T) isi giyen
by the 2-cocycle )“u,v =>0(s(uv)_1 s(u)s(v)). Consequently

B tany) =5 i) @) =hy o = Ay = p (s () Ls (@ sty s () s () s (va))

=70(s(u)s(v)s(u)—1s(v)“'l) =707(u/\ ) ,. for alliu,v€ G pe

3.4 Let UOC(K) denote the connected component of identity of
the group UC(K). Each element in UOC(K) has the form exp(27ia) for
some a € C(K,R). Let us denote by exp the map a — exp(2mia). Since
K is connected,the.kernel of exp dis isomorphic to 2. If we let G
act trivially on Z and by left translations on C(K,R) and U,C (K)
we gét an exact sequence of G-modules

0 —3 Z5C (K B). —=55 U C(R)—50



-

Using the Haar integral we can relate this sequence to the expo-

nential sequence as described in the following diagram of G-modules:

0 y & > R >T 5 0
I {4 [
0 5 2 >C(K,R)m—-§»UOC(K)-~—'—>‘ 0

) M ¥

R 5 T —>0

o
v

o~
4

Here i and i’ are the natural inclusions, p(a) =_Sa(x) dx for
a.€ CiE,R) and p’(exp(a)) = exp(p(a)). Note that p? = :i.dR and
pil=ddin . :
A

We denote by KC UC(K) the (abelian) topological group of
21l continuous homomorphisms K—3'T. Recall that‘g is discrete
since K is assumed to be compact. (when K is abelian ,'Q is
exactly the Pontrjagin dual of K). It is a result of Scheffer a1
that each continuous map K —» F is homotopic to a unique homo-

A

morphism in K.

The arguments given inYﬁi} prove that one has the following:

3¢5 PROPOSTETON.. -het K be a compact connected topological
group. There is a split exact sequence of topological groups
] o ‘
0 —> UOC(K)‘-—-—-} UC(K) == K —0

<A

where gfa) (x) = p’(a(-)a(x y*) for a€ U C(K) and x €K, fj

The section s is given by the natural inclusion,§<_9UC(K),
If we let G act trivially on ? and by left translations on UOC(K)
and UC(K) then the above sequence ig an cxact sequence of G-modules.

Note howevar that the gection s is not G-linear.

The exact sequence in 3.5 induces an exact seguence of groups

S ~
0— 71 (e, u,c(®)) 382 (6,00 () 237* (6/K) 45 1% (6, U e (X))



L 0n -

If M is a topological group together with a G-action G -y Aut(M)
of the discrete group G we let Z'l(G,M) have the product topology

induces from L,
geG -

)

: A
Let FK o image gx = ker § cz (G, 1() = Hom(€,K) = Hom(Gab,K)

3.6, LEMMA There is an exact sequence of topological groups
Il 17 1s ~ 7 4 :
6 — 21 (G,U.C(K)) —32yzT (c,0C(K)) 25 65 0
with [k & totally disconnected,
4

Proof : The continuity of qy follows from Proposition 3.5,
A

2 K,G is totally disconnected since K 1s discrete. o
A more precise description of FK @ is provided by the
14
followings,

N

3.7 PROPOSITION Letaf“:q “'?bkg be a homomorphism from G to K.

Then J«Q—FK,G if and only if there is 7ﬂ€ Hom([G,G] ,T) satisfying

f(g’ltg) = p () for all g €G, te[G,C], such that :
by =Ygl = (b-ig h g“l) for all g, h€ G
g h J f = ’ 4 e
In particular, if G is abelian thén :

F.K,G ={§~efzom(c;,§) PP =) o))

A AN
Proof. FOr \)fve' Zi(G,K) = Hom (G,K) let us compute
5&"‘€ H‘(G,UOC(K)). If we regard ) as a map G —> Ue(K) (via the

Vo

section s in 3.,5) then q(fé) -and so

B n st W ol o G

mhis computation .also shows that the 2-cocycile (g,h)-—}a(‘“h(g =
takes values in TC‘.UOC(K) . Conseguently the connecting homo-

morphism § factors through the natural map H2(G,’T) _—}Hz(G,UOC(K)).



N ~N el
Moreover since K is abelian we have Hom(G,X) = Hom(Gab,K) and

so & can be factorized as in the following (commutative) diagram:

Hom (G, %) i RmeiED)
]
lg : TA;
2 i Tk 2o
r2(c,, 1) —— H(GT

! 1 S ) . ¥,
Here i; is induced by the natural embeding i :’fmyUOC(k), }D is

1 5
induced by the quotient mapy:G—) G_p, and (50’”)é . =a“h(g 1) .oAs
f

; =dd henc= f%;is injective. In
H(G,T)

this way we find that ker § consists of those elements )~ in

Vi
a consequence of 3.4 p,i

) J
Hom(Gfﬁ) for which Sgbelqarjb* or equivalently /bcébyGimageyuZ)
(see Lemma 3.2 and the discussion before Lemma 3.3)
Finally, using Lemma 3.3, we deduce thatéf%EI“K . ke $
[

iFf Z“h(g_l) = 5“~1(h) =>p(gh_g—1h—l) for some 7’6 Hom([G,G]}YWG.

g m
Having Lemma 3.6 and Proposition 3.7 we shall concentrate ourself

on 25 (G,U,C(K)) .

3.8 PROPOSITION . There is an exact sequence of groups

: .
o-»Hom(G,Z)—-;»zi(G,c(K,R))ﬁi_Ei*zl (G,U,C(K)) -—-SéExt%(Ga_b,Z)-——} 0

Proof. The commutative diagram from 3.4 induces the

following commutative diagram :

: ' )
Dy FRG B TG R Zi(G,T) il nie

| |ix \Li;f- : |
0 w3 Z1 (G,2) --;Zd'(G,C(K,R))—-;—-yZi (G,UOC(K)) ._..5_"_,5. HZ(G,Z)
)
“ J,p* »l/p% 5 H
o ot eiay e > @ R) ——— TG n2(c,2)

: b
Since i
p*

; - id it follows that image ‘SO = image 51 ;



L

By Lemma 3.1 image §, = Bt (G ., 7).
1 Z' ab

359 LEMMA .
45 50 is constant on the path components of le(G,UOC(K)) %
ii) Hom(G,Z)um%Zi(G,C(KrR))_Efgﬁzi(G,UOC(K)) is a (Hurewicz)

fibration,

Proof : i) Let [0,]J3t — al(t) = (ag(t))g€Z1(G,UOC(K)) be
a continuous path, Since the sequence

Z—» C(K,R) ——-‘;UOC(K) is a covering space,for each g€ G
wesecan lift thespathit -J/ag(t) € UOC(K) to a continuous path

t — .fg(t)e C(K,R) such that exp fg(t) = ag(t). For each t we have

(St e ) e g E 2,
Since tﬁe above expression depends continuously on t, we must have
§0a(0) = Soa(l-) :

ii) Let X be a topological space and let
F:xx[0,1] ~—-—>Zi(G,UOC(K))I, f:XﬂLO’;-:fZﬂ‘(GfC(K-,R)) be continuous maps
satisfying exp*f (x,0) = E{x;0) for all x in X. Our aime 15, to

produce a continuous map H:xx[0,1] — ZQ(G,C(K,R)) which extends

£ and lifts F. Now since the sequence Z —C(K,R) —5 U,C(K) is

a covering space, for each g€ G there is a continuous map

H(; : Xx{_O,l] —3 C{K,R) wh;ch extends fg and lifts Fg' Let us check
that for each. x, t, the map g——sH;(x,t)belongs to Z{L(G,C(K,R)).

) Y
Define ng’h(x,t) = Hg ) ok th(x,t) - Hg’h(x,t). 1t s clear

‘ : )
that ocg’h(x,t) € Z since.exp Hg(x,t) = Fg(x,t). Alspjo(g’h(x,O) =0
since H(} (x,0) = Jfg(x,O). As ocg’h(x,t) depends continuously on t

)
we must have OCg,h(x,t) = 0 for all x,t. The map (%, t) — (Hg(x't))geG

is a solution of the given lifting problem with initial data.

Mol 15yl




Al < ¥ B 4 v < - Bl e B ; 2 R s e

L gg =

3,10 PROPOSITION

By
EXtZ(Gab’Z) for n = 0
T (27 (6,U,C(K))) = Hom (G ¢ %) for n =1
0 £ for m ) 2

Proof : Let Z% be the path component of 1 in Zi(G,UOC(K)).
since the group Zi(G,C(K,B)) is contractible at the zero cocycle
(use the obvious homotopy H((ag)g,t) = (tag)g )it follows that
in the sequence 3.8.ker 50 = image(expﬁ) C’Z%. on the other hand,

by Lemma 3.9(1) . Z% — ker § 0° Thus Z% = image (expy) and

1 = Ao q
T{’O(Z (G,UOC(K))) = 7 (G,UOC(K)) 7 ZO——-—Eth(Gab,Z’). As a

consequence of Lemma 3.9 (ii) the sequence

b G e R f_i‘?;z% 5 0 defines a

fibration and we have seen that ifs total space is contractible
and the fiber ‘is totally disconnected. The homotopy sedquence of

> ? . : 1 | Bon(CsZ) for n =1
the fibration gives us ﬁh(zo) —{— 0 P

O
The results of this section can be collected in the following:

3.11. THEOREM. Let K be a compact connected topological group

and let G be a dense subgroup of K acting on K by left translations.

Then :
7, (2% (6,0¢ (<)) Ry (R)#Tf (atg (X)) £ox 0=
S iy (OUSTE EE)) o Hom(G,2) x T (K) x7 (autg(K)) for n=i.

oG T = !
T () x T (ratg (K) for n Y 2.

ﬁrb(Zi(G,UC(K))) fits into the following exact seqﬁence :
iy

0-_—;Emt%(Gab,Z)—w_?i?O(Z%(GrUC(K)))*”gjgfﬂK,G ="

where["K c ig described by Proposition 3.7.
14
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Proof : The theorem follows from Lemma 3.6. and Proposition 3.40.

3.12 REMARK. If G is abelian or countable, then AutG(K) is

_{AutG(K) for n=0.
=00

o 13 — : o | M
totally path_wise disconnected, henceﬂh(AutG(K)) For gl

There are explicitely formulae for the maps ix and g, from above

t [)gleEth(Gaer) ig represented by X.€Hom (G,T") then i X is

the component of the 4-cocycle g —y X{g) ; if a = (ag)ge il(G,UC(K))
A
then g,[a] is the homomorphism a‘ ¢ Hom(G,K) given by

- ) e
y&(x) =1>(ag(°)ag(x =) ) lsee 3.5)

3,13 COROLLARY,. Under the hypothesis of the above theorem we have:

a) AL Ga is free, then :

b

T i
7o (AUt gy (C(I()O:,ﬁrG)) ={’“K’G ¥ (Zy(K) w /o (But (X)) .

b) it Ga ig a torsion group; then :

b :
i A st o
/10(AutC(K) (C(XK) = G)) = Hom(G,T) % (/4 (K) X!//O(AutG(K)))
o ¥
3.14 REMARK. For the case of the Bunce-Deddens algebras, i. €.

K=" and G is an infinite torsion subgroup of T , the above

corollary gives: f - (Hom(G,T) ® 2, for n = 0
fl"‘

/[n(AutC(T) (C(T) ?é_ G)) = Z o r D= 1

0 e ny 2

where Zz acts on Hom(G,T') by conjugation.
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