INSTITUTUL DE MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

DERIVATIONS ON ALGEBRAIC GROUPS, III

by

A. BUIUM

PREPRINT SERIES IN MATHEMATICS
No. 16/1989

DERIVATIONS ON ALGEBRAIC GROUPS, III

by

A. BUIUM*)

May 1989

^{*)} Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bucharest, Romania.

DERIVATIONS ON ALGEBRAIC GROUPS, III

COMPLEMENTS

by A.BUIUM

Contents

- 0. Introduction
- 1. Descent of linear groups
- 2. More applications of the analytic method
- 3. Remarks on the case of characteristic p>0
- 4. Embeddings of f- Δ -groups into algebraic groups.

0. Introduction

This paper is a direct continuation of $\begin{bmatrix} B_1 \end{bmatrix} \begin{bmatrix} B_2 \end{bmatrix}$ from where we borrow our terminology and conventions. Our aim here is to settle some questions raised in $\begin{bmatrix} B_1 \end{bmatrix} \begin{bmatrix} B_2 \end{bmatrix}$ and improve (or give alternative proofs) of some results from there.

Notably, we prove that for any irreducible linear algebraic F-group G, $F^{\Delta(G)}$ is a field of definition for G (cf. section 1) hence that any linear $f^-\Delta$ -group is semisplit! This result together with an improvement (cf. section 2) of a result from $\begin{bmatrix} B_1 \end{bmatrix}$ on abelian ideals in $\Delta(G)$ complementary to $\Delta(G, \text{fin})$ will lead to a quite satisfactory picture of all linear $f^-\Delta$ -groups. The idea in sections 1-2 is to study the interplay between algebraic and analytic groups and to use analytic results of Hamm $\begin{bmatrix} Ha \end{bmatrix}$ and Hochschild-Mostow $\begin{bmatrix} HM_1 \end{bmatrix} \begin{bmatrix} HM_2 \end{bmatrix}$.

In section 3 we make some remarks on the characteristic p>0 case. Here we always have $\Delta(G)=\Delta(G/F)$ so the moduli-theoretic problems dissapear. But new phenomena occur. First $\Delta(G/F)$ is usually infinite dimensional. Next $\Delta(G, \operatorname{fin})$ need not be closed under addition and many contain derivations δ for which $\log \delta \neq 0$! On the

other hand one can prove that for G irreducible, solvable with commutative unipotent radical, the kernel of $log: \Delta(G) \longrightarrow W(G)$ must be contained in $\Delta(G, fin)$.

It should be said that Δ -groups embedded into (prolongations of) algebraic groups are intimately related to derivations on proalgebraic (rather than algebraic) groups. Part of our results and methods in $[B_1][B_2]$ extend to the proalgebraic case and hence to groups of type >0. We shall come back to this question in a subsequent paper. We aknowledge our debt to Professor H. Hamm for explaining to us his results on "local systems" associated to "relative" Lie groups (cf. [Ha]). In particular Theorem (1.3) (which is essential for our method here) and its elegant proof are due to him.

1. Descent of linear groups

The aim of this section is to prove the following:

- (1.1) THEOREM. Let G be an irreducible linear algebraic F-group. Then $F^{\Delta(G)}$ is a field of definition for G (hence it coincides with $F_G\,!)$.
- (1.2) Remark. The above statement fails for non-linear G, cf. $\begin{bmatrix} B_2 \end{bmatrix}$. Our proof of (1.1) will be analogue to that of Theorem (1.1)

in Chapter 2 cf $\begin{bmatrix} B_O \end{bmatrix}$ in the sense that we are going to use "birational quotients", a "Kodaira-Spencer map" and an analytic ingredient. In $\begin{bmatrix} B_O \end{bmatrix}$ the analytic ingredient was the versal deformation of a compact complex space. Here the analytic ingredient is a combination of Theorems (1.3) and (1.4) below. The first theorem is due to Hamm. To state it let's fix some notations. Assume $\mathfrak{A}: \mathcal{G} \to \mathcal{X}$ is an analytic family of complex connected Lie groups (i.e. a map of analytic \mathcal{X} -maps $\mu: \mathcal{G}_{\mathbf{X}} \to \mathcal{G}_{\mathbf{X}}$, S: $\mathcal{G} \to \mathcal{G}_{\mathbf{X}}$ and a section $\mathcal{E}: \mathcal{X} \to \mathcal{G}_{\mathbf{X}}$ of \mathcal{X} satisfying the usual axioms of comultiplication, antipode and co-unit). Assume moreover that: a) \mathcal{X} is simply connected and $\mathbf{v}_1, \ldots, \mathbf{v}_n$ are commuting vector fields on \mathcal{X} giving at each point a basis of the tangent space, b) $\mathbf{v}_1, \ldots, \mathbf{v}_n$ can be lifted to commuting vector fields $\mathbf{w}_1, \ldots, \mathbf{w}_n$ on $\mathcal{G}_{\mathbf{X}}$ such that $\mu, \mathcal{S}, \mathcal{E}_{\mathbf{X}}$ agree with $\mathbf{w}_1, \ldots, \mathbf{w}_n$ in the sense that for each \mathbf{w} we have:

- 1) $(T_{(g_1,g_2)}^{\mu})^{(w(g_1),w(g_2))=w}(\mu(g_1,g_2))$ for any $(g_1,g_2)\in G_X$
- 2) $(T_gS)(w(g))=w(Sg)$ for any $g \in \mathcal{G}$
- 3) $(T_x \xi)(v(x)) = w(\xi(x))$ for any $x \in \mathcal{X}$

Then we have

(1.3) THEOREM (Hamm [Ha]). Under the assumptions above there exists an analytic \mathcal{X} - isomorphism $\varphi\colon\mathcal{G}_{o}\times\mathcal{H}\to\mathcal{G}$ (where \mathcal{G}_{o} is some fibre of \mathcal{X}) which above each point of \mathcal{X} is a group homomorphism and such upon letting v_{i}^{*} be the "trivial lifting" of v_{i} from \mathcal{X} to $\mathcal{G}_{x}\mathcal{X}$ we have $(T\varphi)(v_{i}^{*})=w_{i}$ for all i.

The second theorem needed is:

(1.4) THEOREM (Hochschild - Mostow $[HM_1]$). Let G_1, G_2 be two connected linear algebraic (-groups. If G_1^{an} and G_2^{an} are isomorphic (as analytic Lie groups) then G_1 and G_2 are isomorphic (as algebraic groups).

(1.5) Remark. The above statement fails for non-linear groups (cf. $[HM_1][Se]$).

Theorem (1.4) is a consequence of the theory developed in $[HM_1]$ and no argument will be indicated here. We shall however include the proof (due to Hamm) of (1.3) since it is quite elementary and fairly elegant:

and any $g \in \mathcal{H}^{-1}(x_0) = \mathcal{G}$ there exists a neighbourhood \mathcal{V}_g of x_0 in \mathcal{K} , a neighbourhood \mathcal{W}_g of g_0 in \mathcal{G}_g and an analytic map $\psi: \mathcal{W}_g \times \mathcal{V}_g \to \mathcal{G}_g$ over \mathcal{K} such that $T\psi$ takes v_i^* (=trivial lifting of v_i from \mathcal{K} to $\mathcal{W}_g \times \mathcal{V}_g \to \mathcal{G}_g$) into w_i . A triple $(\mathcal{V}_g, \mathcal{W}_g, \psi)$ will be called a "local solution" at g_0 . It is sufficient to show that for a given x_0 the various \mathcal{V}_g appearing in the local solutions (with $g_0 \in \mathcal{G}_g$) can be chosen to contain a fixed open neighbourhood of x_0 . Let $e_0 = \mathcal{E}(x_0)$ and consider the set Σ of all $g \in \mathcal{G}_g$ such that there exists a local solution $(\mathcal{V}_g, \mathcal{V}_g, \psi)$ at g with $\mathcal{V}_g \subset \mathcal{V}_g$. One easily checks that Σ is an open subgroup of \mathcal{G}_g (local solutions can be "multiplied" and "inverted" using μ and S) hence $\Sigma = \mathcal{G}_g$ since \mathcal{G}_g is connected, which proves the theorem.

Next we need some facts about isomorphisms of Lie algebras. First "recall" the following trivial representability result:

(1.7) LEMMA. Let R be a (commutative) ring and L,L' two Lie R-algebras which are free and finitely generated as R-modules. Then the functor $\underline{Iso}_{L,L'}$ from $\{commutative\ R-algebras\ \}$ to $\{sets\}$ defined by $\underline{Iso}_{L,L'}(\widehat{R})=\{set\ of\ \widehat{R}-Lie\ algebra\ isomorphisms\ from <math>L\otimes_R\widehat{R}$ to $L'\otimes_R\widehat{R}$ is representable by a finitely generated R-algebra (which we call $\underline{Iso}_{L,L'}$).

Exactly as in $\left[\overline{B}_{o} \right]$ pp.35-36 the above Lemma implies the following:

(1.8) LEMMA. Let K be an algebraically closed field, S an affine K-variety and L a Lie $\mathcal{O}(S)$ -algebra which is free and finitely generated as an $\mathcal{O}(S)$ -module. Then there is a constructible subset Z=SxS such that for any $s_1, s_2 \in S(K)$ we have $(s_1, s_2) \in Z(K)$ if and only if the Lie K-algebras L $\bigotimes_S K(s_1)$ and L $\bigotimes_S K(s_2)$ are isomorphic.

Next we have:

(1.9) LEMMA. Assume K,S,L are as in (1.8), let F be an algebraically closed extension of Q(S) and assume F_L (=smallest algebraically closed field of definition of $L\otimes_S F$ between F and K, which exists by $\begin{bmatrix} B_O \end{bmatrix}$ p.86) equals the algebraic closure of Q(S) in F. Then there exists an open subset $S_C S$ such that for any $S_O \in S_O$ (K) the set

$$\left\{s \in S(K); L \otimes K(s) \simeq L \otimes K(s_0)\right\}$$

is finite.

Proof. By (1.8) and $\begin{bmatrix} B_0 \end{bmatrix}$, (1.13) p.36 there exists an affine open set $S_1 \subseteq S$ and a dominant morphism of affine K-varieties $\psi: S_1 \longrightarrow M$ such that for any $s_1 \in S_1(K)$ we have $\psi^{-1} \psi(s_1) = \left\{ s \in S_1(K); L \otimes K(s) \cong L \otimes K(s_1) \right\}$. If dim M=dim S_1 we are done. Assume dim M < dim S_1 . Then we use an argument similar to $\begin{bmatrix} V \end{bmatrix}$ p.576. Choose a closed subvariety N $\subseteq S_1$ with dim N=dim M, let L_N be the pull-back of L on N, let L' be the pull-back of L on the affine scheme $\widetilde{S}_1 = S_1 \times_M N$ and let L'' be the pull-back of L on \widetilde{S}_1 . Then f or any K-point X of \widetilde{S}_1 one checks that $L^{\frac{1}{2}} \otimes K(X) \cong L'' \otimes K(X)$. By representability of $\underbrace{1so}_{L^{\frac{1}{2}}} L''$ (1.7) there is a generically finite dominant morphism of finite type of affine schemes $Y \rightarrow \widetilde{S}_1$ with Y integral such that the pull-backs of L' and L'' on Y are Y-isomorphic. Since $Y \rightarrow S_1$ is generically finite one can embed Q(Y) over $Q(S_1) = Q(S)$ in F and we get that Q(N) is a field of definition for $L \otimes F$ between K and F contradicting our hypothesis. The

lemma is proved.

Next we need a Kodaira-Spencer map for linear irreducible algebraic K-groups G(K any field containing our ground field k). Define Δ^2 (G/K) to be the cohomology of the complex

$$\operatorname{Der}_{K}(A,A) \xrightarrow{\partial_{1}} \operatorname{Der}_{K}(A,A\otimes_{K}A) \xrightarrow{\partial_{2}} \operatorname{Der}_{K}(A,A\otimes_{K}A\otimes_{K}A)$$

where

$$\begin{array}{ll} \partial_{1}(d) = \mu d - (d \otimes 1 + 1 \otimes d) \mu, & d \in \operatorname{Der}_{K}(A, A) \\ \partial_{2}(D) = (D \otimes 1) \mu - (1 \otimes D) \mu + (\mu \otimes 1) D - (1 \otimes \mu) D, & D \in \operatorname{Der}_{K}(A, A \otimes_{K} A) \end{array}$$

(One can identify $\Delta^2(G/K)$ with the second Hochschild cohomology group of the adjoint representation of G, of DG p.192, but we won't need this fact!). Clearly $\Delta^2(G\otimes_K K'/K') \simeq \Delta^2(G/K) \otimes_K K'$ for any field extension K'/K.

(1.10) LEMMA. There is an exact sequence

$$0 \to \Delta(G/K) \to \Delta(G) \to Der_K K \xrightarrow{f} \Delta^2(G/K)$$

where f is compatible with field extensions K^{ℓ}/K .

Proof. Let's define f. Since G/K is smooth and affine, any derivation $\mathcal{S}\in \operatorname{Der}_k K$ can be lifted to a k-derivation \mathcal{S} of $A=\mathcal{O}(G)$. Then one checks immediately that

$$\mu \delta - (\hat{\delta}_{\otimes 1} + 1 \otimes \hat{\delta}) \mu \in \text{Ker}(\hat{\partial}_{2}) \subset \text{Der}_{K}(A, A \otimes_{K} A)$$

and the class of this derivation in Δ^2 (G/K) does not depend on the choice of the lifting $\widehat{\mathcal{E}}$; we call this class $f(\widehat{\mathcal{E}})$. We must check

that

$$Im(\Delta(G) \rightarrow Der_k K) = Ker g$$

The inclusion " \subset " is clear. Conversely if $\rho(\widehat{\mathcal{S}})=0$ then there is a lifting $\widehat{\mathcal{S}}$ of $\widehat{\mathcal{S}}$, $\widehat{\mathcal{S}}\in \operatorname{Der}_k(A,A)$ such that $\mu\widehat{\mathcal{S}}=(\widehat{\mathcal{S}}\otimes 1+1)$ +1 $\otimes\widehat{\mathcal{S}}$) μ . Then one immediately checks that

$$\mu(s \hat{\delta}s) = [(s\hat{\delta}s)\otimes 1 + 1\otimes (s\hat{\delta}s)]\mu$$

Putting $\hat{S} = \frac{1}{2}(\hat{S} + S\hat{S})$ we see that \hat{S} lifts \hat{S} and belongs to $\Delta(G)$ so our lemma is proved.

(1.11) Remark. If we consider the complex

$$0 \rightarrow \operatorname{Der}_{K}(A,A) \xrightarrow{1} \operatorname{Der}_{K}(A,A\otimes_{K}A)$$

then its cohomology (call it $\triangle^1(\mathfrak{G}/K)$) is invariant under the involution $\partial \mapsto S \partial S$ of $\operatorname{Der}_K(A,A)$ and the fixed part $\triangle^1(\mathfrak{G}/K)^S$ indentifies with our $\triangle(\mathfrak{G}/K)$. This expression for $\triangle(\mathfrak{G}/K)$ already shows that for any field extension K^{ℓ}/K we have $\triangle(\mathfrak{G}\otimes_K K^{\ell}/K^{\ell}) \simeq \triangle(\mathfrak{G}/K) \otimes_K K^{\ell}$.

(1.12) THEOREM. Assume G is an irreducible linear algebraic F-group and K is a subfiled of F. Let F_o be the smallest algebraically closed field of definition between K and F and $G \cong G \otimes F$ F with G_o some F_o -group. Then the map

$$f_o: Der_{K}F_o \rightarrow \Delta^2(G_o/F_o)$$

is injective.

We shall give first the proof of (1.12) in the case K=(1,12)

Recall from $\begin{bmatrix} B_3 \end{bmatrix}$ that $F_G = F_{\mathcal{L}}(U)$ (=smallest algebraically closed field of definition for $\mathcal{L}(U)$ between K and F where U is the unipotent radical of G). There exist group schemes $\widetilde{G} \to S$ and $\widetilde{U} \to S$ (S an affine \mathbb{C} -variety, \widetilde{U} a closed subscheme of \widetilde{G}) such that F_O is the algebraic closure of $F_1 = \mathbb{Q}(S)$, $\widetilde{G} \otimes_S F_O = G_O$, $\widetilde{U} \otimes_S F_O = U_O$ (=unipotent radical of G_O) and the fibres of \widetilde{U}/S are the unipotent radicals of the fibres of \widetilde{G}/S . We may assume the relative Lie algebra $\mathcal{L}(\widetilde{U}/S)$ is a free $\mathcal{L}(S)$ -module. Assume f_O is not injective. Then $f_1: \operatorname{Der}_{\widetilde{G}} F_1 \to \Delta^2(G_1/F_1)$ is not injective (where $G_1 = \widetilde{G} \otimes_S F_1$). By (1.10) there exists a derivation $\widetilde{\mathcal{L}}(G_1)$. Now both $\widetilde{\mathcal{L}}(G_1)$ and $\widetilde{\mathcal{L}}(G_1)$ which lifts to a derivation $\widetilde{\mathcal{L}}(G_1)$. Now both $\widetilde{\mathcal{L}}(G_1)$ and $\widetilde{\mathcal{L}}(G_1)$ can be viewed as rational vector fields on the $\widetilde{\mathcal{L}}(G_1)$ varieties S and $\widetilde{\mathcal{L}}(G_1)$ respectively. We may replace S by a Zariski open set such that $\widetilde{\mathcal{L}}(G_1)$ and $\widetilde{\mathcal{L}}(G_1)$ become regular everywhere. Now by (1.9) there exists a Zariski open set $S_0 \subset S$ such that for any $S_0 \subset S_0$ ($\widetilde{\mathcal{L}}(G_1)$) the set

$$Z_{s_0} = \{ s \in S_o(C); \mathcal{L}(U_s) \simeq \mathcal{L}(U_{s_0}) \}$$

is finite, where $U_s = U \otimes_S \mathbb{C}(s)$. Let \mathcal{X} be an analytic disk in S_o^{an} which is an integral subvariety for S and let $G = G^{an} \times S_o^{an} \times S_o^{a$

(1.13) Proof of Theorem (1.1). It is sufficient to prove that for any $\Delta \subset \Delta(G)$, F^{Δ} is a field of definition for G.

Case 1. F $^\Delta$ uncountable. Then we can assume C \subset F $^\Delta$. Let F $_0$ be the smallest algebraically closed field of definition for G

between (and F, $G=G_0\otimes_{F_0}F$. As in $\left[B_0\right]$ p.41 we may conclude by inspecting the diagram with exact rows and colomns (cf. (1.12), case K=C)

Der_F F

$$\Delta^{2}(G/F)$$

$$0 \longrightarrow (Der_{C}F_{o}) \otimes_{F} F \longrightarrow \Delta^{2}(G/F_{o}) \otimes_{F} F$$

$$0 \longrightarrow (Der_{C}F_{o}) \otimes_{F} F \longrightarrow \Delta^{2}(G/F_{o}) \otimes_{F} F$$

that $\operatorname{Im} Y = \operatorname{Im} Y$ hence that $\operatorname{F}_{o} \subset \operatorname{F}^{\Delta}$ i.e. that G is defined over $\operatorname{F}^{\Delta}$.

Case 2. F^{Δ} is countable. Then take an embedding F^{Δ} (and conclude exactly as in $\begin{bmatrix} B_0 \end{bmatrix}$ (instead of $\begin{bmatrix} B_0 \end{bmatrix}$ p.42, Lemma (1.19) use the fact which we already know from $\begin{bmatrix} B_3 \end{bmatrix}$ that the set of algebraically closed fields of definition for a linear algebraic group has a minimum element).

(1.14) Remark, Using Theorem (1.1) one can immediately prove Theorem (1.12) for arbitrary K!

The main consequence of (1.1) is:

(1.15) COROLLARY. Let G be an irreducible linear algebraic F-group. Then we have a semidirect Lie space decomposition

 $\Delta(G) \simeq \Delta(G/F) \oplus Der(F/F_G)$.

2. More applications of the analytic method

First a variation on Hamm's result (1.3):

(2.1) LEMMA. Let \mathcal{G} be a connected Lie group and v an analytic vector field on \mathcal{G} such that the multiplication $\mathcal{G} \times \mathcal{G} \to \mathcal{G}$ and the inverse $\mathcal{G} \to \mathcal{G}$ are equivariant (with respect to the vector field v on \mathcal{G} and to the vector field (v,v) on $\mathcal{G} \times \mathcal{G}$). Then there is a 1-parameter group of analytic group automorphisms $(x \mathcal{G} \to \mathcal{G})$ whose associated vector field is v.

Proof. Use Hamm's open subgroup argument (1.3) once again to show that there is a disc $0 \in B \subset C$ such that for all $g \in G$ there exists an analytic map $\psi_g : B \to G$, $\psi_g(0) = g$ whose tangent map $T \psi : TB \to TG$ takes $\frac{d}{dz}$ (z a coordinate in C) into v. This immediately implies the lemma. We get the following improvement of C [B_1] (2.10):

(2.2) COROLLARY. Let G be an irreducible linear algebraic C-group. Then $\triangle(G/C) \subset \mathcal{L}(Aut\ G^{an})$.

The following result was proved in $\left[B_1\right]$ by algebraic arguments; we provide here an analytic proof.

(2.3) PROPOSITION. Let G be an irreducible linear algebraic F-group. Then a derivation in $\Delta(G)$ belongs to $\Delta(G, \text{fin})$ if and only if it preserves the unipotent radical U of G (hence if and only if it preserves $\mathcal{L}(U)$).

The basic ingredient is the following

(2.4) THEOREM. (Hochschild-Mostow $[HM_2]$). If G is a connected linear algebraic (G-group then an analytic group automorphism G Aut G belongs to Aut G if and only if it preserves the unipotent radical of G.

Now the proof of (2.3) proceeds as follows. The "only if" part is the "easy part" cf $\left[B_1\right]$ so we shall deal here only with

the "if part". First assume F = C. Let $S \in \Delta(G)$ preserve U, hence also $\mathcal{L}(U)$. By $(1.15) S = S^* + \theta$ where S^* is the trivial lifting of S^* from F to $G = G_0 \otimes_{F_0} F$ $(F_0 = F_G, G_0)$ and $F_0 = G_0 G_0 G_0$. Since S^* clearly preserves $\mathcal{L}(U)$, so does G. Now by (2.1) there is a 1-parameter group of automorphisms $G \to Aut(G^{an})$, $f \to \mathcal{L}(G^{an})$, there is a 1-parameter group of automorphisms $G \to Aut(G^{an})$, the $\mathcal{L}(G^{an})$ is $\mathcal{L}(G^{an})$, the $\mathcal{L}(G^{an})$ is $\mathcal{L}(G^{an})$. By $(2.4) \mathcal{L}(G^{an})$ is locally finite both as $\mathcal{L}(G^{an})$ is locally finite both as $\mathcal{L}(G^{an})$ is locally finite as a $\mathcal{L}(G^{an})$ consequently $\mathcal{L}(G^{an})$ is locally reduces to the case $\mathcal{L}(G^{an})$ case easily reduces to the case $\mathcal{L}(G^{an})$

(2.5) Remark. Our purely algebraic proof of (2.3) in $\begin{bmatrix} B_1 \end{bmatrix}$ has an interest in itself because it gives a hint of how the linear theory can be generalized to non-algebraic groups and to algebraic groups in characteristic p>0 (cf. section 3).

Before going on it is convenient to give the following.

- (2.6) Definition. Let G be an irreducible (non-necessary linear) algebraic F-group. An ideal (of the k-Lie algebra) Δ (G) is called a representative ideal if:
- a) it is an abelian ideal in $\Delta(\mathsf{G})$ and an F-linear subspace of $\Delta(\mathsf{G}/\mathsf{F})$
 - b) it is an F-linear complement of $\Delta(G, fin)$
 - c) it is Aut G-invariant.

Note that representative ideals may not exist; this is the case for instance with G= "universal" extension of an elliptic curve A over F (A not defined over k!) by G_a , since in this case $\Delta(G/F)=0$ and $\Delta(G)\neq\Delta(G,fin)$.

The interest for representative ideals lies in the following result essentially proved in $\lceil B_1 \rceil$:

(2.7) PROPOSITION. Let $\mathcal U$ be a universal Δ -field with field of constants $\mathcal K$ and $\mathcal G$ an irreducible algebraic $\mathcal U$ -group. Assume $\mathcal K$ is a field of definition for $\mathcal G$ and $\Delta(\mathcal G)$ contains a representative ideal $\mathcal V$. Then the set $\Gamma(\mathcal G)$ of Δ -isomorphism classes of $\mathcal G$ -groups Γ for which $\mathcal G$ - $\mathcal G$ -

We shall prove here (using $[HM_2]$ once again):

- (2.8) PROPOSITION. Let G be an irreducible linear algebraic F-group. Then $\Delta(G)$ contains at least one representative ideal.
- (2.9) Remark. From (1.1), (2.7) and (2.8) we get a quite satisfactory "classification" of all linear f- Δ -groups Γ . Indeed for any such Γ , G=G(Γ) is defined over K cf.(1.1). Moreover, by (2.8) Δ (G) contains a representative ideal V. Hence by (2.7) Γ (G) \cong V^{int}/Aut G $_K$. Of course the problem remains of describing (in special cases) a representative ideal V as above. This is done in $[B_1]$ in case the radical of G is nilpotent or the unipotent radical of G is commutative. In the general case it follows from results in $[B_1]$ and from (1.1) that any representative ideal is mapped isomorphically by the map $\log: \Delta(G) \to W(G)$ onto an intermediate space between $W_O(G)$ (cf. $[B_1]$ p.13) and $W_1(G):= \mathrm{Ker}(W(G) \to H^2(u,u))$ (cf. $[B_1]$ p.28).

To prove (2.7) the basic ingredient is the following

(2.10) THEOREM (Hochschild-Mostow $[HM_2]$). Let G be an irreducible linear algebraic C-group. Then Aut G^{an} is the semidirect product of Aut G by some normal vector subgroup N of it.

We will also need the following:

(2.11) LEMMA. Let L be a Lie F-algebra of dimension n, L_1 a Lie subalgebra of dimension n_1 and A a locally algebraic F-group acting algebraically on L by Lie algebra automorphisms. Assume F_0 is an algebraically closed subfield of F over which all the above data are defined. Let Y denote the subset of all F-points in the Grassmanian X of $(n-n_1)$ -subspaces of L which correspond to subspaces L^{ℓ} of L enjoying the following properties:

- 1) L^f is an abelian subalgebra of L
- 2) L'is an ideal in L
- 3) $L_1 + L^4 = L$
- 4) L is A-invariant,

Then Y is locally closed in X in then natural F_0 -topology of X.

Proof. Condition 1) is F_0 -closed and so is 2). Indeed for 2) note that for each xEL, the derivation ad x:L \rightarrow L induces a vector field on X (to each linear space WCL of dimension n-n₁ we consider the linear map

$$W \subset L \xrightarrow{ad \times} L \rightarrow L/W$$

which is an element in the tangent space to X at [W]; the locus in X of all ideals in L is then given by the vanishing of ad x_1, \ldots, x_n , and x_n where x_1, \ldots, x_n is a basis in L for which the structure constants belong to F_0 ; clearly, this locus is F_0 -closed. Condition 3) is F_0 -open (it is given by the non-vanishing of a certain Plücker coordinate). Finally condition 4) is F_0 -closed (since A acts on X by an F_0 -rational action).

(2.12) Proof of (2.8), Put $F_0 = F_G$ and let $G = G_0 \otimes_{F_0} F$. It is sufficient to find an abelian ideal I_0 of the F_0 -Lie algebra $\Delta(G_0/F_0)$ complementary to $\mathcal{L}(Aut G_0)$ and $Aut G_0$ -invariant; because

then formula (1.15) and $\llbracket B_1 \rrbracket$ (1.2) imply that $\Delta(G, fin) = \operatorname{Der}(F/F_0) \oplus \mathcal{L}(Aut\ G)$ hence $I = I_0 \otimes_F F$ will be a representative ideal in $\Delta(G)$ (use (1.11)). Now by (2.11) it is sufficient to find an abelian ideal I of $\Delta(G/F)$ complementary to $\mathcal{L}(Aut\ G)$ and $Aut\ G$ -invariant. By (2.11) again we may assume (after replacing F by a field extension of it or by a suitable subfield of it) that $F = \mathbb{C}$. But then (2.2) and (2.10) show that viewing $\Delta(G/\mathbb{C})$ as a subalgebra of $\mathcal{L}(Aut\ G^{an})$ we have that $I = \Delta(G/\mathbb{C}) \cap \mathcal{L}(N)$ satisfies our requirements (N as in (2.2)).

3. Remarks on the case of characteristic p>0

(3.1) In this section only we assume char F=p>0 (and F algebraically closed usual). We will make some comments an how our results extend into this setting. Algebraic F-groups will always be assumed irreducible and reduced. If G is such a group one can define $\Delta(G)$ and $\Delta(G/F)$ exactly as in $B_1 = B_2$. But since F is perfect any derivation on it vanishes hence these two spaces coincide; so the "moduli-theoretic" problems dissapear in characteristic p>0!

(3.2) PROPOSITION. Assume G is commutative unipotent. Then $\triangle(G) = \triangle(G, \text{fin}) \, .$

Proof. For each $y \in \mathcal{V}(G)$ there exists an integer N=N(y) such that any product of N elements of $\mathcal{L}(G)$ (viewed as elements of $\operatorname{End}_F(\mathcal{O}(G))$) kills y (cf. [H] pp.42 and 63-64). If $\lambda_x \in \operatorname{End}_F(\mathcal{O}(G))$ denotes the multiplication by $x \in \mathcal{O}(G)$ on $\mathcal{O}(G)$ then for any $\mathcal{O}(G)$ we have $[\theta, \lambda_x] = \lambda_{\theta x}$; so by (3.1) if $x \in X_a(G)$ then $[\theta, \lambda_x]$ is the homotety with some scalar in F. Now pick an element $\mathcal{O}(G) = \sum_{a \in F} \lambda_{a} = \sum$

is contained in the F-linear span of the set

$$\left\{ \lambda_{a_{i_1}a_{i_2}\dots a_{i_n}\theta_{j_1}\theta_{j_2}\dots \theta_{j_n}}; \ n \leq N-1 \right\} \subset \mathcal{O}(r_i)$$

In particular $\dim_F \sum_{i=0}^{\infty} F\mathcal{S}^i y < \infty$ for all $y \in \mathcal{O}(G)$ which proves our proposition.

- (3.3) Question. Is it true that $\triangle(G) = \triangle(G, \text{fin})$ for any unipotent G?
- $(3.4) \ \, \text{Exactly as in } \left[\textbf{B}_1 \right] \, , \, \text{for any linear G and any } \mathcal{S} \in \Delta(\textbf{G}) \, \text{we have } \left\{ \textbf{X}_{a}(\textbf{G}) \in \textbf{X}_{a}(\textbf{G}) \, \text{ and } \left(\log \mathcal{S} \right) \left(\textbf{X}_{m}(\textbf{G}) \right) \in \textbf{X}_{a}(\textbf{G}) \, , \, \text{In particular we dispose of an F-linear map log:} \Delta(\textbf{G}) \rightarrow \textbf{W}(\textbf{G}) = \text{Hom}_{\textbf{gr}} \left(\textbf{X}_{m}(\textbf{G}) \, , \, \textbf{X}_{a}(\textbf{G}) \right) \, . \, \, \text{Unlike in characteristic zero it may happen that there exist derivations } \mathcal{S} \in \Delta(\textbf{G}, \text{fin}) \, \text{ with log } \mathcal{S} \neq 0 \, . \, \, \text{To construct such examples note that we can check (by direct computation) for p=2,3,5 and we ask whether it is true in general that:}$
- (3.5) Question. Does the following formula hold in the polynomial ring $A = \prod_{p} [x]$:

$$((x-x^p)\frac{d}{dx} + x.1_A)^{p-1}(x) = x?$$

(3.6) Assuming (3.5) above holds for a prime p (e.g. assuming p \in $\{2,3,5\}$ let $G=G_a\times G_m=Spec\ [x,y,y^{-1}]$, $\mu \times = \times \otimes 1 + 1 \otimes \times$, $\mu \times y = y \otimes y$ and define $S\in Der_F\ \mathcal{O}(G)$ by the formula

$$\delta = (x - x^p) \frac{d}{dx} + xy \frac{d}{dy}$$

Since $x-x^p$, $x \in X_a(G)$ and $\frac{d}{dx}$, $y\frac{d}{dy} \in \mathcal{L}(G)$ it follows by (3.1) that $\mathcal{L}(G)$. Now (3.5) implies that $\mathcal{L}(G)$ and $\mathcal{L}(G)$ and $\mathcal{L}(G)$. Now (3.5) implies that $\mathcal{L}(G)$ and $\mathcal{L}(G)$ are sometimes another anomaly related to this example namely that $\mathcal{L}(G)$ in is not closed under addition. Indeed consider $\mathcal{L}(G)$ and $\mathcal{L}(G)$ defined by

$$\delta_1 = (x^p - x) \frac{d}{dx}$$
 and $\delta_2 = (x - x^p) \frac{d}{dx} + xy \frac{d}{dy}$

Then $\int_{1}^{2} + \int_{2}^{2} = xy \frac{d}{dy}$ hence $\int_{1}^{2} y = x \cdot y$ so $\int_{1}^{2} \Delta(G, fin)!$. Inspite of these anomalies the converse question of whether $\log \int_{1}^{2} = 0$ implies $\int_{1}^{2} \Delta(G, fin)$ may be given a positive answer in some special cases; indeed the arguments in $\left[B_{1}\right]$ (2.3)-(2.8) and (4.4) yeld the following:

- (3.7) PROPOSITION. Let G be a solvable linear algebraic F-group.
- 1) Assume the unipotent radical of G is commutative. Then any derivation $S\in\Delta({\tt G})$ with $\log S=0$ belongs to $\Delta({\tt G},{\tt fin})$.
- 2) Assume the unipotent radical of G is a vector group. Then \triangle (G) kills the weights of G. Moreover the image of $\log : \triangle$ (G) \rightarrow W(G) coincides with W_O(G).

In the above statement the notion of "weight" and the de-

finition of $W_0(G)$ are those of $\left[B_1\right]$. Note also that if Question (3.3) has a positive answer then the assumption in (3.7), 1) that the unipotent radical is commutative can be dropped.

(3.8) Remark. By representability of Aut G for G reductive [GD] it follows that $\Delta(G) = \Delta(G, \text{fin})$ whenever G is reductive.

4. Embeddings of $f-\Delta$ -groups into algebraic groups

Everywhere in this section $\Delta = \{ \beta_1, \dots, \beta_m \}$ by commuting derivations.

(4.1) Let F be a Δ -field (once again of characteristic zero) and let $V \mapsto V$ be the forgetful functor

 $\left\{ \text{reduced Δ-schemes over F } \right\} \longrightarrow \left\{ \text{reduced schemes over F } \right\}$

One can construct a right adjoint $X \mapsto X^\infty$ to this functor using the usual "prolongation" procedure \mathbb{W} (see also the "produced schemes" of \mathbb{W}). So, for any reduced F-scheme X and any reduced Δ -scheme V over F we will have a natural bijection

$$Hom_{Sch/F}(V^!, X) \simeq Hem_{\Delta-Sch/F}(V, X^{\infty})$$

"Recall" one of the possible constructions of X \mapsto X. We construct a sequence \mathcal{A}_n (n > -1) of sheaves of \mathcal{O}_X -algebras on X equiped with \mathcal{O}_X -algebra maps $f_n : \mathcal{A}_n \to \mathcal{A}_{n+1}$ and with f_n -derivations $d_n^i : \mathcal{A}_n \to \mathcal{A}_{n+1}$ ($1 \le i \le m$) inductively starting with $\mathcal{A}_{-1} = F$, $\mathcal{A}_0 = \mathcal{O}_X$, $f_{-1} = n$ atural inclusion $F \subset \mathcal{O}_X$, $d_{-1}^i = \mathcal{O}_i : F \to F \subset \mathcal{O}_X$ and then letting

$$\mathcal{A}_{n+1} = S^{\circ}(\Omega \mathcal{A}_{n}^{\oplus m})/J_{n}$$

where J is the sheaf of ideals in the symmetric algebra of $\Omega^{\bigoplus m}$. An generated by elements of the form

(4.1.1)
$$d_{n-1}^{i}(a-1)(a))e_{i}, a \in \mathcal{N}_{n-1}$$

and elements of the form

(4.1.2)
$$d(d_{n-1}^{j}a)e_{i}-d(d_{n-1}^{i}a)e_{j}, a \in A_{n-1}$$

where e_1,\dots,e_m is the standard basis of $\Omega \oplus_n^{\oplus m}$ and $d: \mathcal{A}_n \to \Omega_n$ is the usual differential. Moreover we let f_n be induced by the natural inclusion map $\mathcal{A}_n \to S^\circ(\Omega \oplus_n^{\oplus m})$ and d_n^i be induced by the map $\mathcal{A}_n \to \Omega \oplus_n^{\oplus m}$, bi-> (db) e_i . Note that in the definitions above the modu-

les of differentials are the absolute ones (over \mathbb{Q} not over \mathbb{F} !).

We put $A^{\infty} = (\lim_{n \to \infty} A_n)_{red}$, $d^{i} = (\lim_{n \to \infty} d_n)_{red}$ and $X^{\infty} = \operatorname{Spec} A^{\infty}$.

One easily checks that $X \mapsto X^{\infty}$ is the functor we are looking for (the \triangle - structure on X^{∞} will be given of course by d^1, \ldots, d^m).

If $\widetilde{N}:(X^{\infty})^{\frac{1}{n}} \to X$ is the natural map then for any open set $U \subset X$ it is easy to see that $U^{\infty} \cong \pi^{-1}(U)$. Moreover if X is affine and of finite type over F then X^{∞} will be also affine and its coordinate ring $\mathcal{O}(X^{\infty})$ is Δ -finitely generated over F (but not finitely generated over F!). So if $F = \mathcal{U}$ (a universal Δ -field), exactly as in the case of Δ - varieties we may associate to any \mathcal{U} - variety the locally Δ -ringed space $X = (X^{\infty})_{\Delta}$ which will be a Δ - manifold, we get a functor $X \mapsto X$

$$\{\mathcal{U} - \text{varieties}\} \longrightarrow \{\Delta - \text{manifolds}\}.$$

Note that we have a natural identification $X(\mathcal{U}) \cong X(\mathcal{U})$ for any \mathcal{U} -variety X.

Coming back to an arbitrary Δ -field F, universality properties immediately imply that the functor $X \mapsto X^\infty$ from $\begin{cases} \text{reduced} \end{cases}$ F-schemes $\begin{cases} \text{to} \end{cases}$ $\begin{cases} \text{reduced} \end{cases}$ defined $\begin{cases} \text{reduced} \end{cases}$ defined $\begin{cases} \text{reduced} \end{cases}$ defined a scheme $\begin{cases} \text{reduced} \end{cases}$ from \begin{cases}

the latter being of course the group objects in

 ${ \text{reduced } \Delta \text{- schemes over F } }$

The functor $G \mapsto G^{\infty}$ is a right adjoint for the forgetful functor. Clearly, if G is commutative so will be G^{∞} . As above we get a functor $G \mapsto \hat{G} := (G^{\infty})_{\Delta}$

 $\{algebraic \ \mathcal{U}\text{-groups}\} \rightarrow \{\Delta\text{-algebraic groups}\}$

and a natural identification $G(\mathcal{U}) \cong \widehat{G}(\mathcal{U})$. Clearly \widehat{G} is not an $f-\Delta$ -group (except if G is trivial). A morphism $H \to \widehat{G}$ of Δ -groups will be called an embedding if the induced morphism $H(\mathcal{U}) \longrightarrow \widehat{G}(\mathcal{U}) = G(\mathcal{U})$ is injective; by above we may say that H embeds into G (rather than into \widehat{G}).

- (4.2) LEMMA. Let $G^! \to H$ be a morphism of algebraic $\mathcal U$ -groups where G is an algebraic $\mathcal U$ -group with Δ structure. The following are equivalent:
- 1) The induced Δ -morphism $G \to H^{\infty}$ has a trivial kernel (we say simply that it is injective).
- 2) The kernel of $G \xrightarrow{!} H$ contains no non-trivial \triangle -stable algebraic subgroup.

Proof. 2) \Longrightarrow 1) Ker(G \Longrightarrow H $^{\infty}$) is a Δ -stable algebraic subgroup of Ker(G $^{!}\Longrightarrow$ H) so by 2) it is trivial.

1) \Rightarrow 2) Assume P is a Δ -stable algebraic subgroup of Ker(G $^!$ \rightarrow H). Then both the trivial Δ -morphism

$$\varphi: P \to \operatorname{Spec} \mathcal{U} \xrightarrow{\mathcal{E}} H^{\infty}$$

and the Δ -morphism

$$\psi:P\hookrightarrow G\to H^\infty$$

composed with the projection $H^{\infty} \to H$ give the same (trivial) morphism $P \to \operatorname{Spec} \mathcal{U} \xrightarrow{\mathcal{E}} H$. By universality of H^{∞} , Y = Y hence P reduces to the identity.

(4.3) COROLLARY. Let Γ be an $f-\Delta$ -group. Then there is a natural embedding $\Gamma \to G(\Gamma)^{\Lambda}$.

Proof. Apply (4.2) to the identity map $G(\Gamma) \stackrel{!}{\longrightarrow} G(\Gamma)$ toget an injective Δ -morphism $G(\Gamma) \longrightarrow G(\Gamma)^{\infty}$ hence our embedding $\Gamma \longrightarrow G(\Gamma)^{\Lambda}$.

More about the embedding (4.3) be proved in (4.11).

- (4.4) LEMMA. Let G be an irreducible commutative algebraic F-group.
 - 1) Any torsion point of G(F) is a $\Delta(G)$ -point.
- 2) Any torus and any abelian variety contained in G is a \triangle (G) subvariety.

Proof. 1) If $x \in G(F)$ is an N-torsion point, consider the isogeny $Y_N: G \longrightarrow G$, $Y_N(g) = Ng$. Then $Ker \ Y_N$ is a (finite) $\triangle(G) - sub$ -

scheme of G, hence so are all its irreducible components, in particular so is x.

- 2) Since the torsion points are dense in tori and abelian varieties the ideal sheaf I_T (respectively I_A) of any torus T (respectively abelian variety A) contained in G is the intersection of the ideals of the torsion points of T (respectively A), hence I_T (resepctively I_A) is a $\Delta(G)$ -ideal.
- (4.5) COROLLARY. Let Γ be an f- Δ -group and G=G(Γ). The following are equivalent:
- 1) There is an embedding $\Gamma \to \Lambda$ for some abelian $\mathcal U$ -variety A.
- 2) There is an injective \triangle -morphism $G \to A^\infty$ for some abelian $\mathcal U$ -variety A .
- 3) The linear part of G contains no nontrivial Δ stable algebraic subgroup.
- 4) Any morphism from a linear f- Δ -group Γ^{i} to Γ^{i} is trivial. Moreover if the above conditions hold, the linear part of G is unipotent.

Proof. Let B be the linear part of G.

- 3) \Longrightarrow 2) follows from (4.2) applied to the projection G \Longrightarrow G/B.
- 2) ⇒ 1) is obvious.
- 2) \Rightarrow 3). We have a commutative diagram

Since Υ is injective so is Υ . Applying (4.2) to $\Upsilon:G \to (G/B)^\infty$ we get our conclusion. Note that if 2) or 3) hold G is commutative so by (4.4) the maximal torus B_m of B is Δ - stable hence trivial so B is unipotent.

1) \Longrightarrow 2) The embedding $\Gamma \to A$ provides a Δ -ring map $\mathcal{O}_{A^{\infty}, o} = \mathcal{O}_{A, o} \to \mathcal{O}_{\Gamma, o} = \mathcal{O}_{G, o}$. Composing this morphism with the natural morphism $\mathcal{O}_{A, o} \to \mathcal{O}_{A^{\infty}, o}$ we get a morphism $\mathcal{O}_{A, o} \to \mathcal{O}_{G, o}$ hence a rational map $\Psi: G \dashrightarrow A$ which is easily seen to agree with comultiplication generically. So Ψ is an everywhere defined morphism of \mathcal{U} -algebraic groups and the morphism $\Psi: G \to A^{\infty}$ induced by it induces our morphism $\Gamma \to A$. We are left to prove that $K = Ker(G \to A^{\infty})$ is trivial. But if K is nontrivial its group $K_{\Delta}(\mathcal{U})$ of $\Delta - \mathcal{U}$ -points is nontrivial contradicting the injectivity of $\Gamma(\mathcal{U}) \to A(\mathcal{U}) = A(\mathcal{U})$.

- 3) \Rightarrow 4). If $\Gamma' \rightarrow \Gamma'$ is as in 4) then the image of $G(\Gamma') \rightarrow G(\Gamma)$ is a Δ -stable subgroup of B hence trivial. So $G(\Gamma') \rightarrow G(\Gamma)$ is trivial, so $\Gamma' \rightarrow \Gamma'$ is trivial.
- 4) => 3) Since $[\Gamma, \Gamma]$ is linear it is trivial so Γ is commutative. By (4.4) B_m is Δ -stable. By 4) B_m is trivial. Now assume 3) does not hold hence there exists a Δ -stable subgroup $H\neq 0$ of B. Since H is unipotent, it is irreducible. Letting $\Gamma^{\#}=H_{\Delta}$ we get a contradiction.
- (4.6) Let A an abelian $\mathcal{U}-$ variety of dimension g and \widetilde{A} be the "universal" extension of A by B=G $_a^g$. By $\left[B_2\right]$ (5.8) the derivations of \mathcal{U} uniquely lift to pairwise commuting derivations in

 $\Delta(\widetilde{A})$. So we may consider the $f-\Delta$ -group \widetilde{A}_{Δ} ; we have a natural morphism $\widetilde{A}_{\Delta} \to \widetilde{A}$ induced by the projection $\widetilde{A} \to A$. We are looking for a criterion for $\widetilde{A}_{\Delta} \to \widetilde{A}$ to be an embedding (equivalently for $\widetilde{A} \to A^{\infty}$ to be injective). Assume for simplicity that $\mathcal U$ is ordinary.

Note that if g=1 and if $f: \operatorname{Der} \mathcal{U} \to \operatorname{H}^1(A,T_A)$ is the Kodaira-Spencer map then if $f(\mathcal{S}) \neq 0$ then $A \to A$ is an embedding. Indeed by (4.2), it is sufficient to check that $G_a = \operatorname{Ker}(A \to A)$ is not $f = \operatorname{Spencer}(A \to A)$ is not f

The proposition below generalizes the above remark for arbitrary g > 1. First we may consider the Kodaira-Spencer map once again; identifying $H^1(A,T_A)$ via cup-product with $H^0(A,T_A) \otimes \otimes H^1(\mathcal{O}_A) = \operatorname{Hom}(H^0(\Omega_A^1), \ H^1(\mathcal{O}_A))$ me may consider for any element $\Psi \in H^1(A,T_A)$ its determinant

$$\det \Psi \in \operatorname{Hom}(\ \bigwedge \operatorname{H}^{\operatorname{O}}(\Omega_{\mathrm{A}}^{1}),\ \bigwedge \ \operatorname{H}^{1}(\mathcal{O}_{\mathrm{A}})) \ \underline{\sim} \ \mathsf{F}$$

(4.7) PROPOSITION. In notations above assume det $f(\delta) \neq 0$. Then $A \to A$ is an embedding.

Proof. We shall use notations from $[B_2](5.8)$ -(5.11) with $C=\widetilde{A}$. In particular in our situation the classes $a^1,\ldots,a^g\in H^1(\mathcal{O}_A)$ of the cocycles $(a^p_{ij})_{1\leq p\leq g}$ in loc.cit. form an F-basis of $H^1(\mathcal{O}_A)$. By $[B_2]$ p.48 \mathscr{O} is obtained by glueing together derivations of the form

$$(4.8.1) \qquad \int_{i=0}^{\infty} \frac{1}{i} + \sum_{k} x_{k} v_{k} - \sum_{k} \sum_{p} (\alpha_{ik}^{p} x_{k} + \alpha_{i}^{p}) \frac{\partial}{\partial x_{p}}$$

where recall that $(x_k)_k$ is a basis of $E=X_a(B)$. Moreover $\left[B_2\right](5.10.1)$ implies

$$(4.8.2) \qquad \qquad \beta(\delta) = \sum_{a}^{k} v_{k}$$

By (4.2) it is sufficient to prove that B contains no non-trivial δ -stable algebraic subgroup B₁. Assume there exists such a B₁. If B₁=B we conclude exactly as in the case g=1 (cf.(4.7)) by using (4.2) and $\left[B_2\right]$ (3.4), (1.6). So we may assume lédim B₁ég-1. Now to the surjection B \rightarrow B'=B/B₁ there corresponds the extension $C'=C/B_1$ of A by B' which is obtained by glueind together the spectra of A₁ $\left[E'\right]$ where $E'=X_a$ (B') \subset E. We may assume x_1,\dots,x_r is a basis of E', $1 \le r \le g-1$. Since A₁ $\left[E'\right]$ must be δ_1 -subring of A₁ $\left[E\right]$ formula (4.8.1) shows that $v_k=0$ for $r+1 \le k \le g$. Then formula (4.8.2) implies $\det f(\delta)=0$, contradiction.

We close this paper by dicussing "logarithmic derivatives" associated to f-\$\Delta\$-groups.

(4.9) Let G,H be irreducible algebraic $\mathcal U$ -groups with G acting on H by $\mathcal U$ -group automorphism and with H commutative. By functoriality G^∞ will act on H^∞ . By a Δ -cocycle of G in H (or "crossed Δ -homomorphism", cf. $\left[K_2 \right]$ we shall understand a morphism of Δ -schemes $\forall: G^\infty \to H^\infty$ which makes commutative the usual diagram expressing the cocycle condition (the diagram being in the category of Δ -schemes over $\mathcal U$). Giving such a $\mathcal V$ is equivalent to giving for any reduced Δ -algebra R over $\mathcal U$ a cocycle of $G^\infty(R) \not\simeq G(R^!)$ in $H^\infty(R) = H(R^!)$ i.e. of a map $\mathcal V_R: G(R^!) \to H(R^!)$ satisfying

(4.9.1)
$$\Psi_{R}(xy) = \Psi_{R}(x) + x\Psi_{R}(y), \quad x,y \in G(R^{!})$$

The set of all Δ -cocycles of G in H will be denoted by $Z_{\Lambda}^{1}(G,H)\,.$

In particular, in the above definition we may take $H=\mathcal{L}(G)$ (viewed as a vector group) on which G acts by adjoint representation

or more generally $H=\mathcal{L}(G)^N$ for some N>1 with adjoint action on the components. Assume G and H as above. Then for any $\varphi\in Z^1_\Delta(G,H)$, the Δ -subscheme $G_\varphi:=\varphi^{-1}(0)$ of G^∞ is a group Δ -subscheme of G^∞ ; (i.e. the multiplication antipode and unit on G^∞ induce a multiplication, antipode and unit on G_φ).

Indeed, it is sufficient to check that for any reduced \triangle -algebra R over $\mathcal U$ the set $G_{\varphi}(R^!)$ is a subgroup of $G(R^!)$; but $G_{\varphi}(R^!) = \left\{x \in G(R); \ \mathcal V_R(x) = 0\right\}$ which clearly is a subgroup by (4.9.1).

The proposition below shows in particular that any f-\$\Delta\$-group \$\Pi\$ can be canonically realized as the kernel \$G_{\psi}\$ of some suitable \$\Delta\$-cocycle \$\Pi\$ of \$G=G(\Pi)\$ in \$\mathcal{L}(G)^m\$:

(4.10) PROPOSITION. Let G be an irreducible algebraic $\mathcal{U}\text{-group.There}$ exists a natural injective map

$$\ell: \Delta(G)^{int} \longrightarrow Z^{1}_{\Delta}(G, \mathcal{L}(G)^{m})$$

assigning to any m-uple $\mathcal{S}=(\mathcal{S}_1,\dots,\mathcal{S}_m)\in\Delta(\mathbf{G})^{int}$ of pairwise commuting elements in $\Delta(\mathbf{G})$ lifting the derivations of \mathcal{U} advocycle $\mathcal{C}=(\mathcal{C}_1,\dots,\mathcal{C}_m) \text{ whose kernel } \mathbf{G}_{\mathcal{C}} \text{ is isomorphic (as a group scheme with } \Delta\text{-action)} \text{ with } (\mathbf{G},\mathcal{S}) \text{ (i.e. with } \mathbf{G} \text{ equiped with derivations } \mathcal{S}_1,\dots,\mathcal{S}_m).$

Proof. Let $\mathcal{S}=(\mathcal{S}_1,\ldots,\mathcal{S}_m)\in\Delta(\mathsf{G})^{int}$ be as in the statement of (4.10). To define $\ell\mathcal{S}_i$ we must define for any reduced Δ -algebra R over \mathcal{U} , cocycles $(\ell\mathcal{S}_i)_R:\mathsf{G}(\mathsf{R}^!)\to\ell(\mathsf{G})\otimes_{\mathcal{U}}\mathsf{R}$ behaving functorially in R. We define them by the formula

$$(4.10.1)$$
 $(\ell J_i)_R(x) = L_x S_i^R L_x^{-1} - S_i^R$, $x \in G(R!)$

where for any $x \in G(R^!)$ we denote by \int_i^R the derivation on $\mathcal{O}_{G \otimes R}$ deduced from G and R and $L_x : \mathcal{O}_{G \otimes R} \to \mathcal{O}_{G \otimes R}$ is induced by left translation with x. That $(\mathcal{O}_i)_R(x) \in \mathcal{L}(G) \otimes R$ follows from the fact that

from identification of $\mathcal{L}(G)$ with the right invariant members of \mathbb{D} er $(\mathcal{O}_G,\mathcal{O}_G)$ and from the following computation (with $\mu^R=\mu\otimes 1_R$)

$$\mu^{R} \left(L_{x} S^{R} L_{x}^{-1} - S^{R} \right) = \mu^{R} L_{x} S^{R} L_{x}^{-1} - \mu^{R} S^{R} =$$

$$= \left(L_{x} \otimes 1 \right) \mu^{R} S^{R} L_{x}^{-1} - \mu^{R} S^{R} =$$

$$= \left(L_{x} \otimes 1 \right) \left(S^{R} \otimes 1 + 1 \otimes S^{R} \right) \mu^{R} L_{x}^{-1} - \left(S^{R} \otimes 1 + 1 \otimes S^{R} \right) \mu^{R} =$$

$$= \left(\left(L_{x} \otimes 1 \right) \left(S^{R} \otimes 1 + 1 \otimes S^{R} \right) \left(L_{x}^{-1} \otimes 1 \right) - \left(S^{R} \otimes 1 + 1 \otimes S^{R} \right) \right) \mu^{R} =$$

$$= \left(\left(L_{x} S^{R} L_{x}^{-1} - S^{R} \right) \otimes 1 \right) \mu^{R}$$

The fact that $(\mathcal{C}_i)_R$ are indeed cocycles follows by immediate computation. To check injectivity of ℓ assume $\ell \mathcal{C}_i = \ell \mathcal{E}_i$, $1 \leq i \leq m$ for some $(\mathcal{C}_1, \ldots, \mathcal{C}_m)$, $(\mathcal{E}_1', \ldots, \mathcal{E}_m') \in \Delta(G)$. Then if $\theta_i = \mathcal{E}_i - \mathcal{E}_i'$ we get that $L_x\theta_i = \theta_i L_x$ for all $x \in G(\mathcal{U})$. Since the θ_i 's are \mathcal{U} -linear we get that θ_i is a left-invariant vector field on G vanishing at the identity of G, hence $\theta_i = 0$ for all i and injectivity of ℓ follows. To check that $G_{\ell \mathcal{E}} \subseteq (G, \mathcal{E})$ it is sufficient to show that for all reduced Δ -algebra R over \mathcal{U} the sequence of pointed sets

1 → Hom
$$\Delta$$
-Sch (Spec R, (G, S)) $\stackrel{i}{\longrightarrow}$ Hom $_{Sch}$ (Spec R, G)=G(R!) $\stackrel{\mathcal{CS}_{R}}{\longrightarrow}$ \mathcal{L} (G) m \otimes R

If x:Spec R \rightarrow G is a Δ -morphism, clearly the left translation $G \otimes R \rightarrow G \otimes R$ defined by x is a Δ -morphism, equivalently $(\mathcal{O}_i)_R(x) = 0$ for all i. Conversely if the latter happens, since the unit Spec R \rightarrow G \otimes R is a Δ -morphism so will be its composition with the left translation by x which is precisely x. Our proposition is proved.

(4.11) COROLLARY. Let Γ be an $f-\Delta$ -group. Then there exists a natural morphism of Δ -manifolds $\ell_{\Gamma}:\widehat{G} \to (\mathcal{L}(G)^m)^{\Lambda}$ (where $G=G(\Gamma)$) such that $\Gamma \simeq \ell_{\Gamma}^{-1}(0)$ (isomorphism of Δ -manifolds). In particular there is an exact sequence of pointed sets

$$1 \rightarrow \Gamma(\mathcal{U}) \rightarrow G(\mathcal{U}) \xrightarrow{\ell_{\Gamma}(\mathcal{U})} \rightarrow \mathcal{L}(G)^{m}$$

Moreover the image of $\ell_{\Gamma}(\mathcal{U})$ equals the set of all m-uples $(\theta_1,\ldots,\theta_m)\in\mathcal{K}(G)^m$ such that $\mathcal{S}_{\underline{i}}\theta_{\underline{j}}=\mathcal{S}_{\underline{j}}\theta_{\underline{i}}$ for all \underline{i} , \underline{j} .

Proof. Everything but the last assertion follows from (4.10). The last assertion follows by arguments similar to those in $\begin{bmatrix}B_0\end{bmatrix}$ p.51.

above is of course Kolchin's logarithmic derivative in $[K_1]$. Moreover if for instance $\Gamma = A_0$ with A_0 an abelian \mathcal{K} -variety then the logarithmic derivative ℓ_{Γ} has a nice "geometric" interpretation (cf $[B_2]$, section 2): if we let $A = A_0 \otimes \mathcal{M}$ then $\ell_{\Gamma}(\mathcal{U}) : A(\mathcal{U}) \longrightarrow \ell(A)$ is induced by logarithmic derivative of cocycles $H^1(A^0, \mathbb{O}^*) \longrightarrow H^1(A^0, \mathbb{O})$ where A^0 is the dual abelian variety of A. It would be interesting to give such "geometric" interpretations of ℓ_{Γ} for $f - \Delta$ -groups Γ which are not split (or even non-semisplit). In particular it is reasonable to believe that if $\Gamma = \widetilde{A}_{\Delta}$ (cf.(4.6)) then

the map ℓ_{Γ} can be expressed in terms of the "multiplicative analogue" of the Gauss-Manin connection (cf. $[B_2]$).

References

- [B_o] A.Buium, Differential Function Fields and Moduli of Algebraic Varieties, Lecture Notes in Math. 1226, Springer 1986.
- $\begin{bmatrix} B_1 \end{bmatrix} \begin{bmatrix} B_2 \end{bmatrix} A$. Buium, Derivations on Algebraic Groups, I,II, Preprint INCREST 66/1988
- $\begin{bmatrix} B_3 \end{bmatrix}$ A.Buium, Birational moduli and nonabelian cohomology I, Composition Math. 68(1988), 175-202.
- $[C_1]$ P.Cassidy (see $[B_1]$, $[B_2]$)
- [DG] M.Demazure, P.Gabriel, Groupes Algébriques, North Holland,
- [GD] A. Grothendieck, M. Demazure et al., SGA III
- [Ha] H. Hamm, Conference at Steklov Institute in Moscow, March
- [H] G.Hochschild, Basic Theory of Algebraic Groups and Lie Algebras, Springer 1981
- [HM₁] G. Hochschild, D. Mostow, On the algebra of representative functions of an analytic group, Amer. J. Math. 83(1961), 111-136.
- [HM₂] G.Hochschild, D.Mostow, Analytic and rational automorphisms of complex algebraic groups, J.Algebra 25,1(1973),146-152.
- [J] J.Johnson, Prolongations of Integral Domains, J.Algebra 94,1(1985), 173-211.
- $[K_1]$ E.R. Kolchin (see $[B_1][B_2]$).
- [NW] W.Nichols, B.Weisfeiler, Differential formal groups of J.F.Ritt, Amer.J.Math. 104,5(1982), 943-1005.

- [Se] J.P.Serre, Groupes Algébriques et Corps de Classes, Hermann, Paris 1959.
- [V] E.Viehweg, Weak positivity and additivity of the Kodaira dimension II: the Torelli map, in: Classification of Algebraic and Analytic Manifolds, Birkhäuser 1983, 567-584.

A. Buium

INCREST

Bd. Păcii 220

79622 Bucharest, Romania.