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0. Introduction

This paper is a dirgct continuation of [é;l[ézl from where we bor-
row our terminology and conventions. Our aim here is to settle so-
me questions raised in [Bi}[le and improve (or give alternative
proofs) of some results from there.
Notably, we prove that for any irreducible linear algebraic F~group
‘G, FA(G) is a field of definition for & (cf. section 1) hence that
any linear f—[&—group is semisplit! This result together with an
improvement (cf. seenian 2} of a resilt from [811 on abelian ideals
in A(6) complementary to /A(G,fin) will lead to a quite satisfactory
picture of all linear f-(-groups. The idea .in sections 1-2 is to stu-
dy the interplay between algebraic and analytic groups and to use
analytic results of Hamm [Pal and Hochschild-Mostow lFM1][hMé].

In section 3 we make some remarks on the characteristic
p>0 case, Here we always have A(6)=/A(G/F) so the moduli-theoretic
problems dissapear., But new phenomena bccur; First ﬁdG/F) fs usually

infinite dimensional, Next A(G,fin) need not be closed under addi-

tion and many contain derivations g* for which éﬁc £ 01 06 the
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other hand one can prove that for G irreducible, solvable with
commutative unipotent radical, the kernel of / (A(G)—> W(G)
must be contained in A(G,fin).

In section 4 we associ%te (along the lines of [p ; [ﬂ\ﬂ
to any a]qebraic’u—group G a fA-group f (called the ”prolonqatnon of G'" or the

A gro%p'”produced“ From:B)  such “that.the
group G(u) of A-Q- points of G identifies with the group G(a) of

W - points of G. We observe that any f-A- group of typical dimension
d can be embedded into (the prolongation of) an algebraic group of
dlmensuo\#as the kernel of a cerfain crossed [X—homomorpmsm of the
algebraic group in a power of its Lie algebra. We also study some
remarkable embeddings of f-[l—groups of typical dimension d into
abelian varieties of dimension <d.

It should be said that [\~groups embedded into (prolonga-
tions of) algebraic groups are intimately related té derivations on
proalgebraic (rather than algebraic) groups. Part of our results and
methods in [b{l[le extend to the proalgebraic case and hence to
groups of type >0, We shall come back to this question in a subse-
quent paper. We aknowledge our debt to Professor H. Hamm for explai-
ning to us his results on "local systems' associated to "relative!
Lie groups {cf. [Ha] ). In particular Theorem (1.3) (thch is essen-

tial for our method here) and its elegant proof are due to him.

L. Descent of linear groups

The aim of this section is to prove the following:

(1.1) THEDREM, Let & be an irreducible 1inear algebraic F-

Then FXG)

group. is a field of definition for G (hence it coincides

with FG!).
(1.2) Remark. The above statement fails for non-linear f,

cf.[ﬁzl. Qur .proof of (1.1) will be analogue to that of Theorem (1.1
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in Chapter 2 cf [Bél in the sense that we are going to usevﬁbiratioF
nal quotients'", a "Kodaira-Spencer map' and an analytic inggédient.
In [Bglthe analytic ingredient was the versal deformation of a . com=
pact complex space. Here the analytic ingredient is a combination of
Theorems (173) and (1.4) below. The first theorem is -due to Hamm,

To state it Iet’; fix some nptations. Assumeﬁ’f§~®;% is an analytic
family of complex connected Lie groups (i.e. a map of analytic

@— manifolds, having connected fibres, such that one is given analy-
tic }{:-maps/u:g)xAgQg, S:‘g“);éf and a section 2':%‘9 § (o) i) o
satisfying the Jéua] axioms of comultiplication, antipode and co-unit):

Assume moreover that: a) % is simply connected and Vissss,V_ are

n

commuting vector fields on % giving at each point a basis of the

tangent space, b) v >V can be lifted to:commuting vector fields

]"o

Wisseo,W oON g such that/u,S,E agree with w CaW in the sense

100"
that for each w=wi we have:

1) (T(g1,gévx)(w(g1),w(g2))=w;y(g],qz)) for any (91’92)€§; ?

2) (Tgs)(w(g))=w(5g) fOf any g ¢ g

3) (TXE)(V(X))=W(£(X)) for any x e:%

Then we have

(1.3) THEOREM (Hamm lﬁa]). Under the assumptions above there

' i~ ) 1 o
exists an analytic 3@— isomorphism ¥: g;x %E“?L? (where 90 is some
fibre of T) which above each point of ¥ is a aroup homomorphism and

that D
such“Upon letting v? be  the "erivial 1ifting" of v, from }S to 5;&%
o

we have (T?)(v?)=wi”for all i,

The second theorem needed js:

(1.4) THEOREM (Hochschild - Mostow [HM,]). Let 4,,8, be

1

phic (as analytic Lie groups) then G1\and G, are isomorphic (as al-

. . an an .
two connected linear algebraic Q,*grOUps. If G and ﬂz are isomor-

gebraic groups) .



(1.5) Remark., The above statement fails for non-1linear groups
(cf. [um,] [sel).

Theorem(l.h)is a consequence of the theory developed in [EM]I
and no argument will be indicated here. We shall however include the
proof (due to Hamm) of (1.3) since it is quite elementary and fairly

elegant:

(1.6) Proof of (1.3) (Hamm). By Frobenius, for any x, €&
and any goeﬁ’—](xo)=§i there exists a neighbourhood Zﬁ of x_ in j?,
a neighbourhood ﬂé of 9 in é; and an analytic map ‘;:Mg'xvr~a ﬁ
over %3 such that ?%’ takes v& (=trivial lifting of v, fro; ,%Oto

i
LU/ xbr ) into w,. A triple (br ,Uf’, %) will be called a "local solu-
9% 9o ! 9% 9

tion' at gdlt is sufficient to show that for a given R the various

@; appearing in the local solutions (with goéfi) can be chosen to
o

contain a fixed open neighbourhood of x o Let eo=£(xo) and consider
the set Z of all g<:§; such that there exists a local solution
(ﬂ;,Ug:%) at g with v; clg. One easily checks that 2 is an open sub-
group of §O<]ocal so]uiions can be '"multinlied" and"inverted"using
/u and S) hence Z; é@ since §2 is connectedjwhich proves the theo-
rem.

Next we need some facts about isomorphisms of Lie algebras.

First "recall¥

the following trivial representability result:

(1.7) LEMMA, Let R be a (commutative) ring and L,L? two
Lie R-algebras which are free and Finitely’generated as R-modules.
Then the functor lsoL L from { commutative R-algebras %to {sets%

T ’
, ~n
defined by Iso, L,(ﬁ)=%et of R-Lie algebra isomorphisms from
s I g i .
NS N

L@RR to L‘&ﬁR %is representable by a finitely generated R-algebra
(which we call ISOL,L')°

Exactly as in [EO] pp.35-36 the above Lemma implies the

fol]qwing:
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(1.8 LEMMA; Let K be an algebraically closed fiejd; S an
affine K-variety amd L & Lie @(S)~a]gebra which is free and<¥inite“
ly generated as an @(S)—modu]e. Then -there is -a constructible subset
ZeSxS such that for any S],SZGS(K) we have (s],sz)éZ(K) tEmmd on??

if the Lie K~algebras L @%K(s]) and L®SK(52) are isomorphic,

Next we have:

(1.9) LEMMA. Assume K;S,L are as in (1,8), let F be an alge~
braically closed extension of Q(S) and assume FL (=smallest algebrai-
cally closed field of definition of L®SF between F and K, which
ex{sts‘by l};] p.86) equals the algebraic closure of 6{s) in F. Then

there exists an open subset S&:S such that for any sOeSO(K) the set
fses (0 Lok (s)atgr(s ) ]

is—-Flnites

Proof. By (18] and [éo]’ (1.13) p.36 there exists an affi<
ne open set SlCS and a dominant %orphism of affine K-varieties
%:S]wapM such that for any s.,eS,(K) we have %—1%(s])={séS](K);
L@K(S)fL@K(S1ﬁQ If dim M=dim S; we are done. Assume dim M <dim Sy
Then we use an argument similar to [Vj»p.576, Choose a closed subva-

riety NCSi with dim N=dim M, let LN be the pull-back-of L on N, let

AL
LY be the pulil=back of LN on the affine scheme S]=S]XMN and Jer L

e L
be . the pull-back. of L. on S]. Then.f_ or any Kepoint x of S; one checks

that L'&K(x)¥L" ® K(x). By representability of lso , . (1.7) there
is a generically finite dominant morphism of finite/type of affine
schemes Ymagg with Y integral such that the pull-backs of LY and L"
on Y jare-Y-jsemerphlc. Since YwéS] is generically finite one cah
embed Q(Y) over Q(S])=Q(S) in F and we.get that Q(N) s a-field of

definftion tor L&F between K and F contradicting our hypothesis. The




lemma is proved.
Next we need a Kodaira-Spencer map for linear irreducible
~algebraic K-groups G(K any field containing our ground field k). De-
fine ﬁg(G/K) to be the cohomology of the complex
2
9 )

] < : -~ 2 "
Def el s Tor (A AG ) o = s Der (A, A® ABA)

where

91 (d)=;/»d~(d®]+1®d?“, deDerK(A,A)

92(D)=(D®1}M-(1®D)/'4+(/¢®1)D—(1o§'//e)D, D(fDer'K(A,A@KA)

(One can identify AE(G/K) with the second Hochschild cohomology

group of the adjoint representation of G, ¢f [}G] ps 192, but we
™ : 2 o e o 1 !

won’ & need this factl)., Clearly £5(6®KK /K )y[>(G/K)®kK for any

field extension Kf/K.

(1.10) LEMMA. There is. an exact seqUence

2

0—> A(G/K) ~> AlG) —> Der, K ijv/_\z((;/K)

where j? is compatible with field extensions s

Proof. Let”s" define f + Sinece G/K ls smooth and affine, any
Fatd

derivation géDerkK can be lifted to a k-derivation J‘ of A=G%G).

Then one checks immediately that

N ~e

Ao
¢ ' 4
/mﬁo —(&3;1 +1¢y5)/v1@ Ker((/"z)r:’:: DerK(A,A®KA)

and the class of this derivation in QZ(G/K) does not depend on the

e

choice of the lifting 5‘; we call this class f(g). We must check’



that
millNR ) s Der K) = Ker~f

The “inelusion Y9 s ¢lear; Conversely 1fhf(§3 =0 then
~

there’ i's a8 ATt Lng § of S ?2 Derk(A A) such thdt/ﬂb ((@ 1+

e

+l®g>u . Then one ummediately checks that

~

/,{ f =[: ﬁ@]ﬂ@‘ ]/J
¢

Eav
Putting ¢ 2 él Sgg we see that éwllfts 5qand belongs to A(R) so

our lemma is proved.

(1.11) Remark. If we consider the complex

J

1
0 -—» Dng(A,A)~wwwv> DerK(A,A&kA)

then jts coliomology (call it L& G/K)) is invariant under the involu-
tion Blos@s of DerK(A,A) and the fixed part ZQ(G/K)S indentifies
with our A(G/K). This expression for A(G/K) already shows that for

any field extension K!//K we have A(G&kK’/K‘)ﬁgﬂ(G/K)@kK’,

(1.12) THEOREM. Assume & is an irreduéib]g linear algebraic
F-group and K is a subfiled of F. Let F, be the smallest algebraically
G

{
closed field of deflnltlaﬁvbetween K and F and GﬁCO®F F with Go'some

o !
F,-group. Then the map : |

J?O:DerKF m»?A C L )

is injective,

We shall give first the proof of (1,12) in the case K=( .



Recall from LB31 that Fg=ﬂ£(u) (:sma]}est algebraically closed
field of definition forcﬁ(U) between K and F where U is the unipo-
vy NS
tene radical of Gl There.exist group schemes & =98 and Ushs (s
~d J S
an affine €-variety, U a closed subscheme of G) such that FO is the
N fa%d
algebraic closure of F]=Q(S), G®5F0=GO, U(X»SFO=Uo (=unipotent radical
of GO) and.the-fibres of ﬁ/S are the unipotent radicals of the fi-
o~ v A
bres of G/S. We may assume the relative Lie a]gebraq((U/S) is a free
4 : g . . 2
((s)-module. Assume j% is not injective, Then“f1.De%:F1~% A (G1/F1)

is not injective (where G]—GwsF S U e there exists a deriva-

tion f%O in Der F1 which 1tfts to a derivation XCAA G . Now both
{ and can be viewed as rational vector fields on the - varie-
N
ties S and G respectively. We may replace 5 by a Zariski open set
I

such that éjand 5‘become regular everywhere. Now by (1,9) there

exlsts-a Zariski open set SOCS sweh. that for any sogso(ﬁ) the set

Z, =3s€s,(0): L1 )= [l }

an

,\’ ~
is. fimite, where US=U®S@(S). Let £ be an analytic disk in S_ which

is an integral subvariety for S and let §=ﬁanx an:%' Then § is an
: s
integral subvariety for 5‘, By (1.3) al} flbfes ©F ?—e,%: are Pair~
wise isomorphic as complex Lie groupo. By (1.4) the fibres of
Gw%S above the points ofi% are palrW|se lcomorphlc as J ~algebraic

groups; in particular ald=Lie a]gebrasﬁz US) with se:% are pairwise

isomorphic which contradicts the finitness of zis for soéso(:)‘
o

The theorem is proved for K= 6'.

(15, 53) Pirevt pf-Theorem (1:%)+ Lt is sufiticlent to prove

that for any Ac¢ A(G), F'A‘ is.a field of definlition for G.

A

Case 1, F uncountable. Then we can assume o F vialaelt

e be the smallest algebraically closed field of definition for



between (. and s G:GO®F§F s NS Al [éo] p.41 we may conclude by
inspecting the diagram with exact rows and colomns (cf., (g

case K= )
0
&
DerFOF o
= vy I
He) s Der¢F 4 o N Gee ]
J b
2
0 ——> (Der_F )J®. F —e> (6 /F )®. F
G-J/O e S @ & f e s
O ' @)

that ImY=Im ¥ hence that FOC'FA i.e. that 6 is defined over F&l
& ) A s
Case 2, F is countable. Then take an embedding F <« (
and con;]ude exactly as in LB;] (instead of LBO] p.42, Lemma
(1.19) use the fact which we already know from [Egj that the set
of algebraically closed fields of definition for a linear algebraic

group has a minimum element).

(1.14) Remark, Using Theorem (1.1) one can immediately
prove Theorem (1.12) for arbitrary Kl

The main consequence of (1.1) is:

(1.15) COROLLARY. Let & be an irreducible linear algebraic

F-group. Then we have a semidirect Lie space decomposition

AG) & A(G/F) @ Der (F/F.).

G

2. More applications of the analytic method

Fimst a variation ion Hamm’s result. (1.3):
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(2.1) LEMMA. Let Y be a connected Lie group and v an ana-

: : g S : % ;
lytic vector Ffileld on ff such that the multiplication f?x G - § and
el 4 € : ; : -
the Inverse J=~Jare equivariant (with respect to the vector field

72
v on § and to the vector field (v,v) on ﬁ&f}). Then there is a
I-parameter group of analytic group automorphisms 6} gwﬁgfwhose

associated vector field is v,

Proof. Use Hamm’s open subgroup argument (1.3) once again
to show that there is_a disc 0B @ sueh that for all g& g there
exiksts an analytic map %é:B*§§, %B(O)=g whose tangent map
T :TB > TG takes = (z a coordinate In @ ) inte v This Immedla-

tely implies the lemma. We get the following improvement of [é11

(2 00)

(2.2) COROLLARY. Let G be an irreducible linear algebraic
C-group. Then [MG/C?GCKQAut P
The following result was pfoved in [B]] by algebraic arqu-

ments; we provide here dan analytic proof.

(2.3) PROPOSITION, Let & be an irreducible linear algebraic
F-g;oup. Then a derivation in A(8) belongs to A(G,fin) if and only
if it preserves the unipotent radical U of G (hence if and only
if it preserves df“”).

The basic ingredient is the following

(2.4) THEOREM. (Hochschild-Mostow [HM?}). If G s o .connecr
ted linear algebraic ([ -group then an analytic group automorphism
¢ ¢ Aut et beliomags “teo Aut G 1T and only if it préserves the unipo=
tent .Fadical Of G,

Now the- proof.of (2.3} proceeds as follews. The "only if"

part  is the "easy part'' cf [ﬁ]l so we shall deal here only with
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thes iv papt!lc Flest assume F={, Let 51?4&(@) preserve U, hence
E 3 it '
also;ﬁ(u). By ililil5) S=5ﬂ B where 8 ° be the teiwiial lufting of

b}
S/F from F to GzGo®Q)F (FO=FG, G an Fo-group) and 8¢ A(B/F). Since

i clearly preserves J£(U), so does 8. Now by (2,1) there is a 1-pa-
rameter group of automorphisms € —» Aut(6®"), t (—> %% whose asso-
clated vector field is @, Then for.each ted, tP preserves U, By

(2 h) W ¢ Aut G for each e DarCIcular @cf?Aut G) (cf,[§11(1,2)).

But (J(G) is locally finite both as Der(F/F.)-module and as(Aut 6)- |

module. Since J(Aut 6)=/(Aut G )@ F we have LDer B ),e Aut G ]
0

el e 5, consequently(ﬁ( ) lslecally Finite as a Der(F/FGMﬁ

@MﬂAut 6)-module hence as a d-F-vector space and our proposition

is proved for F=C, The general case easily reduces to the case F=C.

(2.5) Remark. Our purely algebraic proof of (2.3) in [%]]
has an. interest in itself because it gives a hint of how the linear
theory can be generalized to non-algebraic groups and to algebraic
groups ‘in characteristic p»0 (cf. section 3), |

Before going on it is coenvenient to give the following.

(2.6) Definition. Let G be an irreducible (non-necessary
linear) algebraic F-group. An ideal (of the k-Lie algebra) A(G) is
called a representative ideal if:

a) it is an abellan ideal in A(G) and an E=linear subspace
of A(G/F)

bl e o e s complement of A(G,fin)

2) Ftoois oyl G- favariant,

Note that representative ideals may not existj this is the
case for instance with G= "universal' extension of an elliptic curve
A over F (A not defined over k!) by G,» since in this case &KG/F)=OA
and A LA, £1m)

The interest for representative ideals lies in the following

result essentially proved in !%11:
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(2.7) PROPOSITION, Let %4 be a universal brretg with field
of constants }é and G an irreducible algebraic Z{-group. Assﬁme };
is: a fleld of deflmition: for G and A{C) contalng s repreéentatiye
ideal V. Then the set FWG) of A-isomorphism classés of f—[&~groups

" for which (M) 6 identifies with V'"“/aut G, where GG, & B, V

e : * A o bt
is viewed as a O-YL- vector space with the rule Sie [ﬁx,vj for
bR £ ;
all defivay S cililo) Ts the vebuial Dititing of s tron thote o)
ks T 2ol i
and V ma(a],..,,am)@v : 5¥aj—5}ai for-all Isi s

We shall prove here (using [ﬁsz once agan )

(2.8) PROPOSITION, Let G be an irreducible linear algebraic

F-groups- Then [“G) contains at least one representative ideal.,

(2:9) sRemairk s From: (11), - 12.7) and (2.8} we get a quite
satlsfactory 'classification'" of all linear f-A-groups {' . Indeed
For.any such [, 6=C() is defined over K cf.(1.1). Moreover, by
(2.8) L) -contains o represenLative ideal V. Hence by (2.7) (6} &
Vint/Aut Gjé' Of course the praoblem reméins of describing (in spe-
ctal cases) a representative ideal V as above. This is done in [E]]
in.-case the radical - of 6. 135 ni]potéﬁt or the unipotent radical -of
G Is commutative. In the general case it follows from results {n
[B]] and Frem: (1.1) that any representative'ideal is mapped isomor-
phically by the map log: /(G) —»W(C) onto an intermediate space bet-

i

ween W_(6) (cf.[8,] p.13) and w,(6):=Ker (W(e)=>H"(u,u)) (cf. [B,]

p.28).

To prove (2.7) the basic ingredient is the following

(2.10) THEOREM (Hochschild-Mostow [HM,[). Let G be an irre-
ducible linear algebraic C-group., Then Aut %" is the semidirect pro-
duct of Aut-G by some normal vector subgroup N of its

We will also need the following:



(2.11) LEMWMA. Let L be a Lie F-algebra of dimensioﬁ n,
L] a Lie suba]gebré of dimension ny and A a locally a]gebraig Fu
group acting algebraically on L by Lie algebra automorphisms., Assu-~
me Fo is an algebraically closed subfield of F over which all the
above data ére defined. Let Y denote the subset of all F-points in
the Grassmanian X of (n~h1)"subspaces bf L which correspond to sub-~
spaces LY of L enjoying the following properties:

1) LY is an abelian subalgebra of L

2) LY is an ideal -in L

L) LY is A-invariant.

Then Y is locally closed in X in the.natural Fo-tooology of X.

Proof. Condition 1) is Fo-clOsed and so is 2). Indeed for
2) note that for each x¢L, the derivation ad x:L-—»L induces a vec-
tor field on X (to each linear space Wl of dimension n-n, we con-

sider the linear map

We L M.i,q,wi;;, L - L/W

which is an element in the tangent space to X at EWJ);the locus in

X of all ideals in L is then given by the vanishing of ad Xggoone

ve ey ad X where Rpsee s X is a basis in L for which the structure
constants belong to FO; clearlv, this locus is Foﬂclosed. Condition
3) is FO“Opeﬂ (it is given by the non-vanishing of a certain Pliucker

coordinate). Finally condition 4) is Fo~c]osed:(since A acts on X

by anF_-rational action).

(2.12) Proof of (2.8). Put FO=F and let G=G0@¥ F. 1t is
o

sufficient to find an abelian ideal lo of the FomLie algebra

jop]

‘A(GO/FO) complementary to dﬁAut GO) and Aut Go—invariant; because
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then formula (1.15) and [B,] (1.2) imply that A(G,fin)zbe‘r(p/Fo‘)@
@f(Aut G) hence I=1 ®:F will be a representative ideal in A(C)

foge (Tabl))neNow-b% (2. 1) 0t is sufficlent ko find -an abelian
ideal | oF'A(G/F) complementary ﬁocf(Aut G) and Aut G-invariant.

By (2501 ) again we may assume (after replacing F by a field exten-
stontof St on b? a suitable subfield of it) that F=C. But then
(2.2) and (2.10) show that viewing A(G/C) as a subalgebra of

df(Aut & e havetthat I=A(Gﬂﬁ)n¢f(N) satisfies our requirements

(Negs-Ta a2 )0

3« Remarks on the case of characteristic p>0

(3.1) In this section only we .assume char F=p»0 (and F al-
gebraically closedﬁzgual). We will make some comments an how our
results extend into this setting. Algebraic F-groups will always be
assumed irreducible and reduced. If & is such a group one can defi-
ne A(G) and A(G/F) exactly as in [éllﬁzj‘ But sinée F is perfect
any derivationion it vanishes hence ‘these two spaces coincide;. so
the '"'moduli-theoretic! prob]emstdissapear in characteristic py0!

As in the characteristic zero case, both Lie F-algebras
.A(G)?A(G/F) and L(6) embed into DerF((:‘?G)a[(G)Q'g;d)(G) and [/_\(G),
K(GY]CCK(G). Moreover if G is commutative A(G)=£%G)@Xa(G) (same

proof as in [Fé}). Note that in general dim_ X_(G)=w hence dimFﬂ(G)=

F a(
7 .
=00, Note moreover that if 8e&d(G) (@ nonnecessary commutative) and
fex, (6) then @feF (indeed mof=(0@l1)uf=(6®1) (f@l+l®f)=0fel which
clearly implies 0fcF). One more definition for 6 affine (only!):
a derivation gkuﬁ(G) is.edalled locally flialite dF @(G) is a union of

finite dimensional (gu stable F-linear subspaces. Moreover let

NG, fin) the set of locally finite derivations in A(c).

(3.2) PROPOSITION. Assume G is commutative unipotent. Then

A(G)zA(Gsfi_\n) .



d

Proof. For each yﬁ@(@) there exists an integer N=N(y) such
ghak, any product of Nielenents of L5) lvieved o5 cllenafts of
EndF((g(G))) kills y (cf.[H) pp.42 and 63-64), If )erndF(@(ﬂ))
denotes the multiplication by xe@(c) on @(5) then for any felic)
we have [G’gx]=%ex; socby (3.1) iF xGXa(G) then [é,)x] is the fomo-
tety with some scalar in F., Now pick an element 0=2?Japi= 2
=§@i @?ai&KYG)®Xa(C) where (@i)i is an F"basis'ofof(Gf and aigXa(G),
Then it is easy to check using the above remarks that the F-linear

span of the set
{giy; a;;.oj c o)

I's contaimed in the F-1lhear span of the set

%)a 5 BB By néN-l%C(o(G)
b G o U I .
e =
In parttcular dimF ZE:F@'y‘iao for all yéd%ﬁ) which proves our pro-
il
posttion,

(3.3) Question. Is it true that A(G)=A(G,fin) for any uni-

potent G7

iy

{3k ). Exactlvias in [blj y o fer mwylbmear B and. any 0 €N B)
we have SXQKG)CXa(G) and (]ogg)(Xm(G))ch(G), In particular we dis-
pose of an F-linear map ]og:A(G)»%’W(E)=Homgr(Xm(G), Xa(G)). Unlike
in charactéristic zero it may happen that there exist derivations
SG‘ZE(G,fin) with 1og<§#0. To construct such examples note that we

can check (by direct computation) for p=2,3,5 and we ask whether it

is true in-genewral that:

(3.5) Question, Does the following formula hold in the poly-

pam o

nomial ring Azﬁgtsz



(3.6) Assuming (3.5) above holds for a prime p (e.g. assu-

ming p&{273’5§ ter G:GaXGm:SpeC {jx,y,y—]"],/(AX:'XQQ']'%]@‘X’/LLY:Y()QY and
o §E;DerF(%G)'bY the formula

ENE T e
(x-x )dx e dy dy
Since x-xP, xéX () and Em‘ ~imef(0) it follows by 63,0 - £hat
% a dx? ydy B )i 1
g&[ﬁ(G). Now: (3.5} -implies that éy:&fand ISP (y 1)=&y 1). On the

. 4
other hand clearly 8 x=dx for all i22, Consequently g%;ﬁ(ﬁ,fin);

but clearly log S#O. There ‘is another anomaly. related to this examplel

namely that[ﬁ(G,fin) is not closed under addition. Indeed consider

§

,{,512 cle,fin) defined by

S e } = (x~-xP)I_ d.
51 (x" x)dx and g; (x=x )dx + XYy

Then S=§}+g‘=xy%? hence Siy=xiy so £$ Alg,fin)t . -tnspite of the-

2

se anomalies the converse question of whether logéq=0 implies
‘S%;QE(G,fin) may be given a positive answer in some special cases;
indeed the arguments in [E;j (2.3)=£2.8) and {4 yeld the follo-

wing:

(3.7) PROPOSITION, Let G be a solvable linear algébralc F-
group.

1) Assume the unipotent radical of G is commutative. Then
any derivation Sé\&(G) with qu§3=0 belohgs to . LlGsEIn),

2) Assume the unipotent radical of G is a vector group.
Then /A(G) kills the weights of G. Moreover the image of log:/\(G)
—» WAG)=coipeides with WO(G). :

In the above statement the notion of "weighlt' and.the de-



==

finltion of WO(G) are those of [BJ Note also that if Ouestion
(3.3) has a positive answer then the assumption Sn 3. 7)1 ) thas

the unipotent radical is commutative can be dropped.

(3.8) Remark. By representability of Aut & for § reductive

-

IGDJ It follows that A(G)f—ﬁ(@,fin) whenever G is reductive.

L, Embeddings of f-[\;grrgupsw into algebraic groups

e o o jstis
Everywhere in this section A=%(}1""’C\)m§\/by commuting derivations.,

(h.1) Let F be a A-field (once again of characteristic ze-

ro) and let VIV’ be the forgeprul futietor

%reduced A-schemes over F?] w*);reduced schemes over F%

One can construct a right adjoint X[ X to thls fupctor using the
usual "prolongation' procedure EJ}(see also the !"produced schemes'
OFE\JW}). So, for any reduced F-~scheme X and any reduced A -scheme

V over F we will have a natural bijection

4
(M, X

o)
°Msch/F A A sy

""Recall' one of the possible constructions of X X7 We

1

4]
construct a sequence '&“\sn (n2-4) of sheaves of i(/X-algebras on X equiped

/ i / :
oy -ty : B i et e S iR ' 5 l:-f‘ —
with (,) algebra maps fn.(,%n t}{n+] and with fn derivation dn e

o (1€i€m) inductively starting with Uf(?sw]:F,{fé&O =C§;<, f .= natural

-’

. 4 \
inclusion FC(O, d_'.l==§i:F--'-> FCU/X and then let'ting

_c e Omy
‘ (Sén+1~s <‘Q"L;4,n)/“’n



..18._

where Jn is the sheaf of ideals in the symmetric algebra of MQ‘_E‘:”“
(# n
generated by elements of the form
gl g . s
(ho1.1) d 2 (d(fn_w}(a)))ci, a €yl
and elements of the form
(h.1.2) dd? ale~dldl ele.. sed
=1 i n=1""7j7 n-1
where € e, C is the standard basis of,ﬂ,h?m and d:L}"f’ «-»M?:;
m Uw,n n (;g,gfn

is the usual differential. Moreover we let fn" be induced by the na-

@&m
;)

tural inclusion map {\fén‘“"’“? Sg(ﬂ/ and dr‘1 be induced by the map

paly

J @ . , . P
'\j!*%n w‘/il];m , bi—"> (db)ei. Note that in the definitions above the modu-
A
n

les of differentials are the absolute ones (over (Q not over F1),.
C\')

. S e )| o T § [
We put f =(1Tn () oqr ¢ =(in dp) oy

oo | oo
and X =Spec (&

. oo, - &
One easily checks that X&» X is the functor we are looking for

" o0
\

L : . ’ 1 m
(the A - structure on X will be given of course by d s, d)

-
IfA:(X ) —» X is the natural map then for any open set

U X it is easy to see that Uwflf ?‘:“‘w1(U). Moreover if X is affine
and of finite type over F then XM?WEH be also affine and its coor=-
dinate ring (;:‘)(Xm) is ,!l“finitely generated over F (but not finitely
generated over F!). So if F=U (a universal A-field), exactly as
in the case of A~ varieties we may associate to any ?{“ variety

A o

the locally A -ringed space X=(X )Zl which will be a /|- manifold
A

we get a functor Xi=—2 X
%"U" varieties?g S {&.“manifo}ds B

A ~
Note that we have a natural identification X{U)¥X(Y) for

any M- variety X,



Coming bdck to an arbitrary [A-field F, universality pro-

perties immediately imply that the functor X&» X% from freduced

1

Fmschemeﬁi to ?reduced A-schemes over Fj commutes with direct

¢
v
H
£
%
¥
{
k
3
i

=~

products., So it induces in -a natural way a functor G e

%reduced F=group scheme5§u$gredupe§ F-group schemes

with A- structure %

the latter being of course the group objects in

A 1 ]

{reduced /A~ schemes over F ? ; i
A |

{

The tumctor GPW»G&yis a right adjoint for the forgetful
funictors s Clear by, Sif G is commutativessoowill . be 6% . As above we

get a functor Gé&>G:=(G6 )

A

%a]gebraic ﬂ"groupsg — ?f&~algebraic groups %

,\ o) A §
and: & matifad  bdantif beat bon: 026 (U) o Clear by G dis not an

. A
" f-A-group (except if G is trivial)., A morphism H—> 6 of A-groups

A
will be called an embedding if the induced morphism H(Y) —s 6 (Y)=
=G(}) is injective! by above we may say that H embeds into G (rather

A
than  tnte 6).

! o

(4,2) LEMMA. Let G -—> H be a morphism of algebraic {f-groups
where G is an algebraic U-~-group with »A- structure. The following
are equivalent:

’ e e

1) The induced A-morphism G-»H has a trivial kernel (we

say simply thar Tt isifjective |
! . . A !
2) The kernel of 6°—» H contains no non-trivial [\ -stable

algebraic subgroup.



S
Proof. 2) => 1) Ker(6—>H%) is a A-stable algebraic subgroup

of Ker(G!w-&p Al es By ) friis trivials |
1)=>2) Assume P is a A-stable algebraic subgroup‘of

Ker(G!—%rH). Then both the trivial»[l-morphism
Y :P —> Spec Y wémb o
and the A-morphism
Y P —HY

composed with the projection the et give the same (trivial) morphism
P—> Spec U M~§~a H. By universality of Héb, Y= % hence P reduces to

thie fdentity.

(4.3) COROLLARY. Let [' be an f-A-group. Then there is a na-
7 :
tural enbedding = G171 .
‘ ' ,
Proof. Apply (4.2) to the identity map 6([') " —= 6(/7") toget
an injective N-morphism (") — (™™ hence our embedding

m— G(P)A .

Wi

1l
More about the embedding (4.3) be proved in (4.11),

(b.4) LEMMA. Let G be an irreducible commutative algebraic
Frgiroups
| L) Anye tersion pointof GlF) 15 a A(G)~point;
2) Any torus and any abelian variety contained in G is a

KKG) = subvériety.

Proof. 1) If xEG(E) 1s an N-tersion point, consider the

isogeny WN:G~J§G, ?N(g)=Ng. Then Ker ¥y . is a (Finitte) - AlR)=subs



‘ =adile=

scheme of G, hence so are all its irreducible components, in partii=
cular se ls 'x,

2) Since the torsion points are dense in tori and abelian
varieties the ideal sheaf [ (respective]y IA) of any torus T {res-
pectively abelian variety A) contained in G is the intersection of
the ideals of the torsion points of T (respectively A), hence |

-
(resepctively IA) fsaAG)~ideal.

(4.5) COROLLARY., Let [' be an f-A-group and G=G(i"). The
following are equivalent:

1) There is an embedding [T —» R for some ab%lian U-varie-
ty A, |

2) There is an injective /A -morphism G- A% for some abe-
lian Q}—variety A,

3). The Jimear patt:of G contains: no nontriwvial A - stable
algebraic subgroup.

k) Any morphism from a linear f-A-group [ to [ is trivial,
Moreover if the above conditions hold, the linear part of G is uni=

potent,

Proof. Let B be the linear part of f.,

3) =>2) follows from (4.2) applied to the projection G-—» G/B.

20 =>1) 15 obyious.

2) =»3)., We have a commutative diagram

|
G5 > A

N
G/B

providing a commutative diagram




G s .\f:..«.), AOO

N

N o
(6/B)*

Since ¥ is injective so is ¥. Applying (4.2) to ¥im—> (6/B)F we
get our conclusion, Note that ifAZ) &fB)hg]d G is commutative 50
by (4.4) the maximal torus B, of B is A- stable hence trivial so
B is unipotent,

1) =>2) The embedding Jﬂ~ﬁ'ﬂ provides a A-ring map

(ﬂ =(?/\ — | = v . s 5
Aw,o Ao C%q,o (QG,O - Composing this morphism with the natural

morphism é&,o “’(QN?O we get a morphism 6&;0 "’CZ’O hence a ra-
tional map ¥:G---»A which is easily seen to agree with comultiplica-
tion generically. So ¥ is an everywhere defined morphism of U-a1-
gebraic groups and the”morphism VQZG~4 A% induced by it induces
our morphism [T— ﬁ; We are left to prove that K=Ker(G —A%) is

trlvibale Buty 1F K ls nehtrivial lts group KA(%) of A-U- points is

A
nontrivial contradicting the injectivity of "(U) — AY)=AY).

Jp==eh)s IF Ples [T 15 as in &) then the fmage of G(FY) =
--4>G(F) is 8 A-stable-subgroup of B hence trivial. So G(pY) == ()
Ps.trivial; soof! =% s trivial.

LY ==23) Sinece [kﬁf“] is linear (v 1s reivial <o {7 is
commutative. By (h.4) B_is A-stable. By 4) B is trivial. Now
assume 3) does not hold hence there exists a [f-stable subgroup
H#0 ‘of B. Since H is unipotent, it is irreducible. Letting Fﬁ:H[}

we get a contradiction.,

NA
(b.6) Let A an abelian |- variety of dimension g and A

be ‘the Yuniversal' jextefsion of A by B=Gg. By [%21 (5.8) the deri-

n % . ; . . . . ; .
vations of d uniquely lift to pairwise commuting derivations in



A ~ g :
A(A). So we may consider the f-A-group ﬁﬂ; we have a natural mor-
3 Eavi /\ ravl ; A
phism AA«?A induced by the projection A—>A. We are dookling for 4

; - ‘IV A S o
criterion. fior AA-Q A to be an embedding (equivalently for A-—>A to
be injective). Assume. for simplicity. that U s ordinary.

Note sthar i f g=l-and if j{:Deer“?H1(A,TA) is the Kodaira-

: P A
Spencer map then if f(§)¢o then ﬁd~9A is an embedding. Indeed by
474
(4.2) it is sufficient to check that Ga=Ker(A°-9A) is not ¢f-sta-
ble; but if G, was y- stab]e)by 1}2.](3.h) f would be locally fi-

P4 - 5 a4
nite on A hence by LBQ](1.6) A would be defined over ]{ hence so
would be A)contradicting the. faet that~f(§3#0.

The proposition below generalizes the above remark for ar-
bitrary g2l. First we may consider the Kodaira-Spencer map once
again; identifying H1(A,TA) via cup-product with HO(A,TA)®
@H](UZ)=Hom(HO(IlA), H](dg)) me may consider for any element
Ve H1(A,T ) its determinant

- 1 ¢ 1
det ¥ & Hom( A (L), A v (D))~ F

(4L.7) PROPOSITION. In notations above assumedet;f(53¢0.

~ns N
Then A, A is an embedding.

A
Proof. We shall use notations from [ﬁé](S.S)—(S.]]) with
: 1
C=A. In particular in our situation the classes a],...,agéH (dl)
- 1
of the cocycles (aP.) > in loc.cit, form an- F-basis of H (di),
vl spey
By [521 p.48 éw is obtained by glueing together derivations of the

form

(9'8']) ‘?i:ei*Zxk"k’%%“"?k"k”"?) ”"32”;

.whergireca]] that (xk)k ls abasis of E=Xa(8). Moreover 1821(5,10.1)

implies




(h.8.2) J»(5)=Zakvk

By (hko2) it s sufficient to prove that B contains no . hon=
trivial S—stable algebraic subgfoup 81. Assume there exists such
a By. If B,=B we conclude exactly as in the case g=] fef thig)d
by ugfng (hi2) and [hzl (3,&), (1.6). So we may assume l&dim B,£g-1.
Now to the surjection B~#B{=B/B1 there corresponds the exténsion
Cl=C/B] of A by B/ Which is obtained by glueind together the spectia
of Ai[ﬁﬂ1 where E€=Xa(B‘)é'E. We may assume x],...,xr is a basis of
E/, 14r€g-1. Since Ai[El] must be Jx-subring of Ai[E] formula
(4.8.1) shows that v, =0 for r+14k€g, Then formula (4.8.2) implies
detf(§)=0, contradictfon.

We close’this paper by dictssing "logarithmic derivatjves!

associated to f-A-groups.

(4.9) Let G,H be irreducible algebraic 7 -groups with 6

acting on H by Q{-group automorphism and with H commutative. By
53 . oo .

functoriality G will act on H,. By a [Jl~cocycle of & in H (or
crossed [N-homomorphism', cf, [KZ] we shall understand a morphism
of AQA-schemes f:GOla HY which makes commutative the usual diagram
expressing the cocycle condition (the diagram being in the category
of A -schemes over ). Giving-such a Y is equivalent to giving

3 ’

oo ! s
for any reduced [ -algebra R over U a cocycle of G (RY2c(R’) in

. i o | £
“(R)=H(R') T.e: of a map ¥p:G(R )=»H(R") satisfying

(5.9.1)  Yolxy)=¥ ()ex¥ply), x,y€C(R')

The set of all [\-cocycles of G in H will be denoted by

1

Z G, H ®
A< )

In particu]ér, in the above definition we may take H%{ﬁ@)

(viewed as a vector group) on which G acts by adjoint representation



or more generally H=JQG)N for some N21 with adjoint action on the

components. Assume G and H as above. Then for any Ye (G,H)ﬁlthe

1
1 g
[ ~subscheme Gv:=‘P (O)red oY ol B group A =-subscheme
o ;
of Gy [F.e. the miElsiplication antipode and ‘unitoon 7 indute &

multiplication, antipode and unit on G ).

Indeed, it is sufficient to check that for any reduced

! v
A-algebra R over U the set G?(R-) is a subgroup of G(R'): but

GY(R!)=3xé}G(R); ?R(x)=0} which clearly is a subgroup
by (4.9.1).

The proposition below shows in particular that any f-A-group
"7 can be canonically realized as the kernel § of some suitable /-

¥
coeyele M of GaGlR) Jindle)™:

(b.10) PROPOSITION. Let G be an irreducible algebraic

ﬂ~group.There exists a natural injective map

|- L R Zé(G,J(G)m)

/7

assigning to any m-uple §=(Jw,...,5;)éwﬁ(G)’nt of pairwise commu-

ting elements in A(G) 1ifting the derivations of’u aflcocycle

€?=(€g ,...,€J7 ) whose kernel G o is isomorphic laes a group sche-
] m ¢

me with A-action) with (G,g) (i.e. with 6 equiped with derivations

) i

TR
Uys ¥

~ & F
Preof., Let S:(é],,.,,gg)é;&(G)lnt be as in the statement of

e t0) . Te define @J} we must define for any reduced f\-algebra

: 1 .
R over@{, cocycles (KJE)R:G(R')_%KUU@%LR behawing functorially

in R, We define them by the formula

= |
xS?LX] -(YF: R

(4%.10.1) (ef’fi)R(x):L



’ . K e
where for any x¢G(R') we denote by $? the derivation on Gi&?

e | I AT, s Pl
deduced from G and R and Lx:beﬁR >CE®R is induced by left transla-

then with . x. That (géi) e (6)®R follows from the fact that

R X

J Y
y = X ) o -
Derp (Vegr agr’ HO’”G@R<QG@R/R’(/(]G®R) O (L g /)

- O x’ -
=H <"QG/“)®@{R Del (}’ (57

from, tdentification of(((G) with the right invariant members of

Deﬁu(dG,&G) and from the following computation (with/MR;#®1R)

Jetr 07 *SR)=/3~RLXSRL;] - p iR -

X
2 ReR, -1 R¢R
=(Lx®]?/b& (g‘ Lx -/,'. 5 =

1

=(L®1) (SR(X}]jFT@éR)/JRL; - (SR@AH@;YR)/uR:
=((L,@) (FFo1+188%) (L] o1 - (5R@1+1@SR>>/AR=

(o B )Q@”/A

The fact that (@a) are indeed cocycles follows by immediate compu-

R
i
tatlon . fo cheek injectivity of 6 assume @fﬂ=€f., 12i4m for some
int )
(5},... ? T g],..w Cf Je A(G). Then if 9 = n_ (f we get that

keBm8y L ofon. ekl xeG(U), Since the 8i’s are @4— linear we get
that @i is a left-invariant vector field on G vanishing at the iden-
ity of Gyshence Si=0 for alkl i and injectivity of é’ follows.

To check that G€§2(G,§) it is sufficient to show that for all redu-

ced l&~a]gebra R over Q{ the sequence of polinted sets

Spec R, (G, S) —=» Hom (Spec R,AB)=G(R") ~—— e

h-z;;Hom[l Sch

\-S¢ h(

s L)



- T

If x:Spec R->G is a /A ~morphism, clearly the left transla=
tion G®R - G&R defined by x is a A-morphism, equivalently (fy:)R(x)=
=0~ for all i. Conversely if the latter happens, since the unit
Spec R—3 GGR is a A-morphism so will be its composition with the
left translation by x which is précisely xv Oar proposition g prox

ved‘_

(b,11) COROLLARY. Let [ be an f—A—group, Then there exists

)73

A
a natural morphism of f-manifolds €7:0-9(£(G)m)a(where G=G(W))
such that ?724;](0) (isomorphism of /\-manifolds). In particular

there is an exact sequence of pointed sets
11— —c) ~~-~€-'3~@~)«——'7,,( (&)™

Moreover the image of 61(U) equals the set of all m-uples

(91,...,@m)éo{o(ﬁ)m syich that gief‘j@i for . a1 550

Proof. Everything but the last assertion follows from

(4L,10)., The last assertion follows by arguments similar to those

(4.12) Remark. If [T is a split f-f\-group the map '4n

above is of course Kolchin’s logarithmic derfvative in Dﬁ] . Morep~
ver If For ifstabice P=AO with A, an abelian TC~variety then the
logarithmic derivative gﬂ has a nice ''geometric' interpretation

(cf [?21, section 2): if we let A=Ao®fu then é#ﬂ):A(%) el L)

is induced by logarithmic el Ehves o cocycles H](AO,@%).Mq

==} H1(AO,GD) where A® is the dual abelian variety of A, |t would

be Interesting to give such ''geometric' interpretations of é}f for
f- A-groups | ' which are not spfit (or even non-semisplit). In par-

NS
theulan it is reasonabile to: believe that iffﬂzaﬁ Cef, (b.6)) then



= PR

the map éﬁ can be expressed intterms of the "multiplicative ana-

logue' of the Gauss-Manin connection (cf. [%2}).
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