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. Brownian oscillations near the

~ boundary of a nypersurface

by L. Stoica

This paper continues the study begun in [S]. To describe what kind of problems
are treated, let us simplify the hypotheses here, in the introduction, and consider the
brownian motion in the strip D = (~go,e) X(—l,l)CRZ. Let us denote by X this process
endowed with its structure of standard process and set K=fxeD: x2 =0},
vE ={ xéD:d(x,K)<EY , for ge (0,1). Also denote by Ki(u}) = the number of times
the trajectory X (w) hits K after wisits outside V E, hefore time t. The functional
KE= (K Et) depends only on the behaviour of the component th of Xt = (th,xtz).
Tl;en, one can easily deduce, via the approximation theorem of the local time at 0 for

Brownian motion in (-1,1), that

mek = A

exists a.s. The functional A = (At) turns out to be a continuous additive functional

uniformly distributed on K, in the sense that it can be represented with the (one

dimensional) Lebesgue measure, y, in K as follows
EX(AQO) = S‘Kg(x,y)p(dy), x € D,
where g(x,y) is the Green function in D. Further, let us set
Bal e K six) COYand bt =3 L i
=1 X€E + X 5 an t = O’t] H \s <
Then we can show the significance of Proposition 8.1 in the text by the following
relation (which is a consequence of Propbsition 8.1)

g R
limeM :5) 10X Jdh .
g t [O,t] H s S
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Now let us denote by o ={ xe D : dx,H) <e ¥, EE(0,1) and set Ht(w) = the number
of times the trajectory X («w) hits H after visits outside FE , before time t. As a

consequence of Proposition 9.6 we have

Z :
limeH = 1, (X )dAs.
g0 U g},t] H™'s

Thus we see that ¢ ME and ¢ H‘é behaves similarly when ¢ —= 0.
. S ke
In this paper we preserve the terminology and nokion adopted in [S]. Moreover
the sections are numbered in continuation and we refere direct to relations ‘and
results proved in [S] just by indicating their number. The first section of this paper is
Section 8. and is devoted to the proof of Proposition 8.1, mentioned above. The main
" result of Section 9,is Proposition 9.6. Then, in the final section we use the preceding

results to treat the case of a compact hypersurface with boundary.

ey
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8. The functional with density in a niece

of hvperplane

Let, L bée an operétor of the form (1 2) with cEﬁ
d ai£Y?2+M(R yih Y§]+ RS 0 L LN These assumptions Bl
gure.the existence of the dual L*, As in Sectfon 3 we set
Dl={xéRd;}xdr<l} and K={x€Rd:xd=0} and X Qifl be an L-diffusion
In D]. Moreover we will assume that L coincides with 1/213 outside

a compact set included in ﬁ] (e, —1/23-. and b =0), so that

X behaves like Brownian motion outside that compact. The Areen func-
tion associated to L in DI is denoted by o’Aand the RFreen potential

J

in D] of a measure V is denoted by él. We will need also the mea-

-

sure A introduced in Section 3.
We consider the numerical values'q(-zq G_E-NJ+OCJ

such.thatfnf<%q' i=1,...,d-1 and denote by H={x€K: xé:[n {7”]
Pl d«{leth respect to K and €€ (0,1) we consider the functio-

nal A; given by (2.1) and the functional ArE given bv

S b (x)dA ;
o, t] |

The potentials of these functionals will be denoted

by u and u
' X nf x‘ H,€E
ul(x)=E>(A), u (x)=EX(AS), XD

Our first aim in this section will be to prove the following result.

Proposition 8.1

There exist two constants C>0 and £6>0 such: that
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“for awygéfo,éo){ where kHleez" Moreover the constants C and é()
are independent of H (i.e. of the values Q{;@?).
In order to prove the above estimate we need some

’prepérations. We begin by eétabiishiﬁg the following notation:

He=CxeR%: [xY< 172 -z, x‘e[n;+z,7&'i’-aj, TR e T

e foenle Pl 1 7923, there exdists IGd-] such. that.
x € R\(Oz{-z,'q’{fr?:)} ,
Mt={xéRd:lde§1/2-Z’, x¢H-UN, }, :
Eg={xer%: [x9<1/2 +7, xk (yzi’—z,;qffﬁtz),ézl.., -1y
E={xeR%: ] x9< 1, xfé (=gl 410, A=1,.00 010,

The number @ "is arbitrary in;EO,l/QJ, so that all these sets are
contained in D]; Since we méy haveVQ{= -000r'nf=+oo we should men-
tion that in the above notation the usual cbnventionscwifz=00,
-0 X T =-es are in force. We also observe that the case HsK :is tri=
vial, because then estimate (3.13) produces a sharper result. Thus
Proposition 8.1 is interesting only when one of fhe values Q.{ or
Olf, 152 )y cnsanlmleils finife: Next we will establish two lemmas.
Lémma 8.2
Let p(x)=Ex(TH<'”)\E). Then there exists a constant
o 1 :
¥> 0 independent of H such that

p(x)€1-%CIxY -172), xee, [x9>1/2 :

_p(x)gl-T(xi‘-"l’i{), x¢E, xi?‘z’i’, S
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CplxQI-FmE-x"), xeE, xkn !, igd-1,

" Proof of the lemma

i

The proocfs of a]f.thrée estimates are similar.
So we are going to check only thé iast one, Assume thatf%{)~°°’,
for some i¢d-1 and—lef us ]ook at the strip B={xeRd:xié(Q{-l,?§)}.
Eet h be an: L=harmenie Function In.B snch. that h(x)=1 if xi=y{ and

h(x)=0 1f xr=qg-!. By Lemma 4,3 we get a constant ¥ (independent of

‘thg strip) suech that
(8.1)  h(x)X1-¥@é-x'), xes.

But one eaéily observe that the function p, which i's also L-harmonic
in.EN B, is dominated by h on the boundary 3(E)B). By the maximum

principle we have p¢h in ENB. Thus (8.1) gives us the estimate in

the statement of the lemma.
Lemma 8.3
There exist two families of excessive functions

{rz:ae(o,l/h)} and {rf:z€(0, 1/4)} such that

rg=Py rg 28C on DNE &

hrali€ e sirgll ¢

\
\

where ¥ and C are strictly positive constants, indenendent of % and H

‘Proof of the lemma

LetY be the measure which gives the .representation



p=85 for the function of the prékedingilemmé.'Then we put 3?61
and claim that this function is bounded by a constant independent
of H and satisfy

(8.2} q - PD\Erq p- o O.n.Ho,

1

with. ¥ furnished by the preceding lemma. Let us prove these facts,
e . :

Let o be the Lebesgue measure in R and/L(X’r)ng(x,r)Uhf From the

estimatiohs (1.13) and (1.14) we get a constant C%0 such that

d
G/‘{'(X,r) (g/)scr ’
providéd‘that x,yeRd are such that |x-y\>1/4+r and

Suate, 13 (0870

for any xERd. Therefore, on account of relation (1.21) we deduce

o E 2 =1, .2 d-2
G/,L(x,r)(X)>r it ),
as soon. as rlllh and)<GHo. Thus we..can’ choose: a constant k such

E E . PN
that k%kbl on Ho’ and hence kg >p. By Lemma 6.1 we have k%uE’i-

/u(
‘ 1

As we have seen in the proof of Lemma 5.11 the function %#_15 boun-

ded. Thus o ‘is bBounded.: To prové estimation (8,2) we observe that,

for xéHo, we have

ifx)-qu\Ecifx)=o(x?-PDf\EZp(x).

Then by Lemma 8.2 we deduce
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P (x)1-F¥ ¢ .

P
Since p=1 on Ho,.this relation may be written as
p(X)-PDI\Ecp(X)Z*?)

which proves (8.2).

Now we define rng \Ezq +¥%, Obviously these

D
1
functions are uniformly bounded. Relation (8.2) shows that qAT, =

=ry on Ho’ and hence
PH %qurz.
o
On the other hand rg =a+¥gon DI\EZ’ which fmp-lies
PHorcgq on Dl\E‘C'
Writting q=wt—fz; this inequalify becomes the estiamte of the state-

ment. . .

To construct the functions ré we begin with

Fz(X)=EX(THé<TD{\E). The proofs of Lemmas 4,3 and 8.2 show- that

; ptS.]fYZ on 'E\EO,'

with a suitable ¥ . Thus we have

: PDf\EopC(X)él-x-z x€E,

and hence




pz-PD1\EOpE2§’3 on He.,

' ; : E
Let szethe measure which express the function P, as pﬂ*sz‘
Then we put rf=g . The preceding inequalitys®_the statement. To

G Ty S < g :
5 57s Tam That pprininag e
check the boundedness of the family{?{} one should remark that the

function p of Lemma 8.2 satisfy p}gz in E. Then Lemma 6,1. implies

q)ré in D, which completes the broof.

Proof of Proposition 8.1

Let us denote by » the measure which renresents

' 4 ' s 1 : :
the function u as a Green potential u=G, . We know that ¥ is sup-

ported by the set{xERd:lxd[QE,} . We choose €< 1/4, so that V¥
will be allways supported by the set HZUMKUNz' Let B be the functio-

nal given by

' €
B S 1 H(Xt)dAt'

£ fo,t] KN

and set v(x)=Ex(&m), xED]. Since AE=AH’%+B we have u=ugt+v and conse-

'quently

1
uH_Gﬁo.v ; V-n‘f"*’/

where f,}’ are Borel measurable nonnegative functions such that

Y+f=]. Let us putW"=1NB.YJV and look at the potential G%_. We have

where the last inequality is given by Lemma 2.4, Since HCH_ we obtain

1 1

ol ;
GW PHOCW—S Then by Lemma 8.3 we d?duce
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: el e
%—Pﬁoﬁvé(i/%“d(rc-PHorZ) on D.NE

-

~and from Lemma 6.1 we get G%§(E/$B}gﬁ. Finaly we may write

(8.3) G.-jrrgceffe. ‘
Further we put 7’/= y .y and similarly deduce
. eE = < e |
(8 3y PR ca/z
The proof of this |nequal|ty begin wnth
1
Gw’—PK\EO szv Py Eovsv PK\HVSE'
Since P fliop el ¢
nee Po o0 SmEiuE Tyt R 0R
150 o] s
\. : ri L G] <€
- 2 S »
| 1! Dl\Eo iy
1
> < o /
Gﬂ’ PDI\E \(E/rZ)(r PDf\E z) on HZ .

“Then,using Lemma 6.1 we get the estimate (8.31),

'

Further we choose two families of functions
Tt :ze(o,l/u)},{hz:ze(p,l/h)} such that, fp,hg€6(D,) f.=1

and

!!fﬂ ZSC?_Z,HthZQCCh ;

with a constant C independent of G and H. Then we may write

¢ =fr—lew{/+]ME(\f—fE)+lNE a(f ,
; e & S / o T *
Py =ty y - +TT+IM?;(T ft)» ,

and hence

on

fz =0 on Ng, hgz=1 on Mg, ho=0 on Df\sz, 0gf &1, Oshzgl in Dy
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where we set g =1M ¢Q. Using Lemma 8.4 from below and estimates
: 14
(8.3) and (8.3f) we see that the right hand side of this inequality

is dominated by

o i -1
lec'V'-sz'?*‘—F‘Ghz"”“ hgﬁ}»c(e"@ +zing ).

Then using Lemma 8.5 from below we get

1)3/2+C(£.“E—]+31n3"1).

'tu -G [<cz; Sl

we obtain the estimate of the statement,

Takingg =(€1n £” )‘/6

Lemma 8.4 :

For acR, >0 and 1EAY o e dat) coek Bila, 2,0 )m
={xERd:xd=0,lxi-a]§?§} and M(a,G,1)=1 Ala,7,1) ,6 : where/4 is Lebes-
gue measure in K. Then there existsa constant C30 independent of a,¥,

such that

oz, demne’s w0,

Proof
In order to prove the lemma we will compare the freen
. ol

: r
function g] with that corresponding to the operator L=1/20s Let g :be

the Green funciton in D1 associated to Tﬁ We claim that
: 1 ~l i
(8.4) g (%, yIC0d (x,y), X,y€D,

with a constant C>0. Here use the fact that L=1/24 outside a compact

set M. First we remark that relation (1.19) allows us to‘'estimate



the fﬁn;tion G{x,y)-gf . §¢.so th§t to deduce 
]x-yf2-15034(x,y)
for X,y in-a neighbogrhood of M. By estimate (1;13) we deduce that

for x,y-ln a nelghbourhood of M. For fjxed X,Soth functions'gI(x,y)
aﬁd El(x,.) are harmonic in Df\M and vanish at the boundary g D1
Therefore,by the maximum principle we deduce that the inequality
(8.5) holds for any y€D,. .

Again by relation (1.19) we deduce that there

exists a constant C>0 such that

A

\

lx-yiz_qgcgi(x,y)

for any yéDi and any xEVy, where V_is a neighbourhood of y. Thus

we deduce
1 ol : :
g (x,y)Cq (x,y), yeDy, xéV%.

Taking the best constant we deduce from this ineauality and (8,5)

fhat
1 w1 _
g Loay)CEe (i yy)ion Ml)V?.
Ak 0 :
Since the adjoint L* also coincides with T*=L" in Df\H, the function

g e yy) s harmonlc (as well as q " inD \MUV% By the maximum prin-

ciple we geéYé%Qumate (8.4),
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Now’weAestimate E’usfﬁg relation (5.4) and obtain
g (AX.\/)'SCE!‘ (%, gl IX’-—y"}Z_d()x"\/"l Ll
s ot S o Bl
where x,y€D; and x=(x/,x"), y=(y*,y ), Thus we aet

ﬂei(a,z,i)“scg‘y’iz-d((v’l2+16)'1dy/;
Oz

d-]:!yd-1

whereOgm{y/eR ‘<’6}.‘ The inequality asserted by the lemma

follow by direct computations.

Lemma 8.5.

With the notation in the proof of Proposition 8.1 we have

\
| &} -GL%,QC(Ufu2+1)£‘(2(h18'1)3/2,

fop
for each'fﬁﬁz(D]) andEE(O,EO). Here C and 60 are constants.

The proof of this lemma is exactly the same as that alven:for
the i;equality (7.18). It is based on the fact that the adjoint
L® is also of the form (1.2),

Now we go further and consider a functional withAdensity

fegé(K) defined as follows:

Af»f=,S F (X

3
; : s T
3 s .

1
The expression on the right hand side make sense because the funcs
tional af 'c&cxrges onlytbe moments t such that XteK. £ 5320,

the functional Af’E is increasing. The potential of this functional

has the expression

| Foe el BRSPS N e
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where Mf(x)=Ex(f(Y(T]))), with T, defined In Section 2. The proof

of this formula is the same as that given for relation (3.7/). Let

us recall that,for fE%O(K))the function Mf may be described ana-
lyticaly as follows: denote by h the L-harmonlc function in DI\K
satisfying the boundary conditions :

h(xf,0)=F(x,0), h(x{1)=h(x/-1)=0, x/er?',

Then denote by 1 the L-harmonic function in D¢ which satisfies
the boundary condition 1(x)=h(x) for xGDDQ. The function Mf takes

the values Mf(x)=h(x) if xéDfx%iand'Mf(x)=l(x) if xeD, .

Further we shall denote NE= 0

M

M and, as it was proved at

ot

n=

(3.8), we have a constant %> 0 such that “Neﬂs(ﬁ‘s)q. Because
of the above analytical interpretation the following proposition
and its corollary may be throuaght of as a result of partial diffe-

rentlal equations.

Proposition 8.6.

If f is continuous with compact sunport in K; then there
exist - C>0 and EO>0 stuch = that-for eachiff(ogéo) and 9€(0,1) "the

following inequalit’'y holds

e fop e 95796 0 (1ne TN 7O 1 +cwie B,

Tk S iy
Where ["(f) denotes the diameterysupp f and w(f,¥) the oscillation:

W(FB)=sup IF(x)=F ()] tx,yeK, Jx-yled}.

Proof

t
d-1

d-.1)62 we set

For 0>0 and k=(k1,...,k



S i

H(‘o‘,k):{xeRd’.‘:kiF(d—l) ‘/2 ey +1)’5(d peleE o ek

Then the diameter of H@E,k) is & and identifying Rd-é:K we may

write K=U H(S,k). Let {H(?S‘,kj):j=1,_....,n} be the family of those
e k ) 4 - o

cubes which have non-empty intersection with supp f.

The number n
felbes s shan CaE 2 ©

. He put

2 1/2
¢ E,:fy(d kj)”H(&‘,gJ.)

and consequently deduce {f=- ?H {F s, ”ENE(F f)ﬂ<3“ Y (£ R
”Gfm ?1&0 w(f,¥).

Further we intend to apply Proposition 8.1 with resnect to

a cube H(y k). In order to do so we first have to remark that the

boundary of H(? k) s a polar set. Thus, by Pronosition 8.1 we get

“QN%; -G%'Jgt:ni[fu‘g”é‘ Gine

which combined with the oreceding estimates leads to the inequality

in the statement.

Cbrollarv 827

f feﬁ’Rd—1 is such that lim f(x)=0, then the following re-
bl
lation holds lnm(]tN e F l— 0.

=50 £l
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9. The case of a half-hyperplan

- . In this section L is supposed to be an operator satisfying

the hypotheses of the preceding section. We preserve also the nota-
ExALep LT '

F}on,'%his time H will be a fixed half of hyoerplan H={xeK: xd—L 0%,

e _
s Wk are going to study the oscilations of the process X near H.

Besides the neighbourhoods D¢ of K we consider a family (Fk)eé(o,l)

of open neighbourhoods of H whfch is assumed to nosess the followina
properties:
(9:1):° )R € D¢
ii) 4 xERd:xd—1$ 0, lxd[<€}c Fe
Iif) if x¢dF, 0 D, then the distance to H, d(x,H)-satisfies
LR the estimates ZZES'd(x,H)$3—1E, with a constant T € £0,1)
independent of & ., .

iv) the boundary dF. is smooth,

An example, which suagests how the sets F¢ are, is obtained by

taking FE={xéRd:d(x,H)<EI§. We need the following stopping times:

T=T, 4 55T

Ry=0, Ry=S+Red,

=Qn+Q1°6(Qn). The functional we are intersected in is Ce=(C%)

e Tl Tom i TaniTete T =T 4T 64T ),

b=, D1 1 54

=Rn+R]°.9-(Rn)’ 0"o=0’ Q1=Q*R°9Q’ 0‘n_+1=:

n+1

Rn+1

given by

Caes
g- =& 1 e
t n=1 {0 &t%

n

. Bounr/a
O0f course the new aspect o# the problem is produced by thé\*ﬂg//é%&ﬁ.

> introduced

. c ° °
We will compare the functional C~ with the functional A
in the preceding section. It turnhs out. that both funttionals have

the same limit. To prove this we need another functional € defined

by



¢ =
::E i
%t 21]“‘

? ; Yk
ngt} . 5
; . ot Hy& o € i
which will help us in comp-aring A with C . The next lemma is
a deterministic result, which can .be proved by direct manipulation
of the stopping times using the methods of Section 2, narticularly

relatlion (2.5).

Lemma 9.1

Lettws be such that t—?Xt@U) is continuous and kzl such that
Xt (W)éH. Then there exists 131 such that R]@U)=Tk@u).
k
From this lemma we immediately deduce the first inequality

of (9.2) from below. The second inequality is similar:
, H,E € ¢
(8:2)e HoPCB G a, s

T~he reminder of this section.is devoted to the proof of the

asymptotic equivalence of the three functionals.

Lemma 9.2

For a€R and £>0 set Do ={x€Rd:[x#<£ ,xd-
d

t_]=é}; Then there exists C,¥ and Eo>0 such that

1>a'}and Ta=inf{t)0:
+ X

PX(T <S)SC exp(- (x4 T-a)ye™!),

for each x€Dg a,EG(O,EO) and aéR.

]

Proof

We put f(x)=(2-(xdz—l)z)expt(-(xd-1-a)5€_]) and compute

Lf(x)=£-1exp("(Xd_1‘a)xg_1){2—1f—2add+h§xd£-1ad’d-1+
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Since add has & strictly positive lower bound and Lxdl<i, it follows
that we may choose & and €, small enough so that Lf$0'in Do Fon

14

the function f satisfies the

eachEQ(O,EO). On the boundary of D&,a

: condltidns:
— f{x)31 if x97 =2 and 1x%ige,
— f(x)20 for any xe€aD A
E’a ey
The maximum principle shows that the function u(x)=Px(Ta<S) satis-
fies the inequality ugf in DE o This implies the estimate stated
by the lemma.
; . d-1 :

~ Further we will use. the notation H$={x6K:x s:P} for ae R and

-'H_«fﬁ;'lfll=0 then H =H. Tf.% is.a subset of H then B"*% will denote

the functional
e oL v
t M:s S
{0, t]
Lemma 9.3

There exist the constants'C>0,§'>O,f3o>0, 80 (0.:1). sch that
N - ) N &
E* (BEHPE g X (RN ey € ) exp (-Tpe” e (Al RN Hrp) oy
for each xeD,, g€ E-w,o),?e(OJBO),26{0,€b),
Proof
For each k31 we put nk=n(w,k)=:sup{n:Tn(w)ngGu)}. Because

R1>,T1 we have ny1, a.s. Also one easily see that the followinc in-

clusion holds almost surely

(9:3) {Rk<°°}C~f,Rk<Tnk+1é g

e I (7 Sy = YT O o e e Y e L N o L L Y 1 U T fraiectories
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of the process one can deduce the inclusion

{R <o, X(R,)E by, x(Tnk)e K\ () Y C

c i so-e«(Tnk)w ey )Y,
k

Hx Hax

which holds almost surely. From this inclusion one easily deduce

ka8 )

{R <0, X(R )eHHyYC “nf"‘?» X(T_ )éHp ,._PSU

U {Tnk<w, X(T, JERN (g i) Ty # T )< gog(rnk)g ;

Then this inclusion and (9.3) implies (a.s.)

18

>0 - .
== Xk Je i S L
=7 LR . ax n=1{Tn@“X(T éH\Hr-P}

= 1 LoXET RS He ), T w('r )& 50841 )
+§::1 {Tn<oo n'€ P\ £-p HNH e 5.

Taking the expectation we get
N ot
ex (™ ISy X (Al g B 4
o o
where we writes for the sum

%19 ({T <0, X(T ) K\(HP\HY. TR oe(T )<s 08(T ) I},

By the strong Markov property, the general term of this sum

may be written as

Xi7,.) , :
B e H,~<S) T <o K(TERN(H Ny o))




e

P (T, S50 axbile 96,

for each,xéK\(H?\Hrm?). Therefore the general term of & is dominated

by
C exp (—p‘é'e" )P (T, <22, X(T")E, K (HEN 'H,.;P)‘) :

This leads to the inequality stated by the lemma.

Lemma 9.4

e exist two constants #€(0,1) and 606(0,1) such that

Ther

P"(R<s)§&,

for each x € F.ND; and EG(O,&O).

> Proof\

We put ue(x)=Px(S<R), x€D. , One easily see that the ineaua-

lity we have to prove is equivalent to

(9.4) 0<inffu, (x) :XGBFET\ D, , €€ (0,&0)}}

The function ug is. L = harmonic in Q? H and satisfies'the

boundary conditions

uﬁ(x)=1 if \id\= £ and ua(x)=0 if x€H.

To prove relation (9.4) we introduce the sets

E’=£xeRd:]xdﬁil,lxiL<ZZ-1, i=1,...,d-l},



o
e

Faiorl ol o ol o a0 00 il s ie T %,

A ={xeRr :\xd[= Lol 3

where T 1is the constant appearing in (9.1.iii). Then we choose a
domain E with boundary of class\tf such that ECZE/ EOH=#, [ QE=
u—rﬂD and ACYE. Then we have I” (1 9E= B ﬂéD c:h. Now for‘proxnt
i*SDF 1D we set y= (2",0,0), x=(0,g 1¥d 1,& Fa ) and conseauently
Qe have @ =¢x+y. Condition (9. 1. 014) implies xe[". Further we intro-

duce the functions
Y =
v (x) ~u£(ex+3),
1 i pde2 | : b 4
with y of the form y=(y",0,0), y"¢R .. Such a functlon is L€ - har- .
monic wlth Lé given by v
' d
Lgu(x) S -@,x+y)D )+£Z:_b (Exky)D ul(x).

ij=1

Each function vg satisfies the following boundary conditions

%g?o on QE and VZ =1 dnjx

‘Now,let f be a fixed function FEE(DE) such that =1 on Fi3E
and f=0 on JE\A\ . We define the function WZ such that it fis Ly"

harmonic in E and wZ=f on - E Since fva on JE, we get wZ Vil S maiE

Y
£ €

Therefore relation (9.4) follows once we have proved that

(9.5) 0<inf{w’( xer'it(o > ) y=(y" 0,0),y"eRd-2§.

\

In order to check this relation we are going to anproximate each func-

tion WZ by a function w’ which is choosen to be LY-harmonic in E with



P
=
[4

Ly'=§§:j aiJ(y)Di.
Iy)=1 R

(which has constant coefficients) and to verify the boundary condi-
tion v'=f ongE. Then we assert that there existsa constaht C inde-

pendent of y and ¢ such that
(9:6) = Iw? - wYlg ce

Now let us prove it. First we remark that the family of ope-
rators (Lz) possess the same constant for the Schauder estimates

and hence

& e I P

Then computfng

of

P o d :
LY (wY-wY) (x) =3 (a'd(y)=a’d (yrex) ), w? (x) 4857 b* (y+ex) 0w (x)
i i’vi=1 l.’ & k__.] é“

weA'deduce
lLy(wz 5 wyS(XHé Ce
_Furthgr we take h(x)=é(1-(xd)2) q;d compute
LYh=-2aadéfy).
Choosing a large enough'weAébtain Lyhg-l in Dy. By the maximum princi-

ple one gets \wz—wyhgcsh, which implies the estimate (9.6).

Now we observe that, on account of ineauality (9.6), relation

(9.5) Follows: with- accsudtable ¢ - from the next relation
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(9.7) 0<infiw’ (x):xel, y=(y“,0,0),y“éRdm2}

l)& .
So we have to prove this relation. Let M(C}Vthe set of all
constant matrices U=(u'd) with d columns and d rows which satisfy

the relation

e W sigcelgl?, yerd,
Ay |

‘ 2
with a constant C»1. The set M(C) is compact, as a subset of it
For each UEM(C) we denote by w(x,U) the function which is L s enoni e

In E with respect to the operator

: u d .
Lot u JDi.,
i, j=1 ?

andsatisfies the boundary condition w(x,U)=Ff(x) for x€dE. A standard
argument (as above) shows that w:E x M(C)—>R is a continuous func-
tion. Also,we have w(x,U)=f(x)=1 for each U&M(C) and xel N3E. Moreo-
ver wix,U»0 provided that xe¢E, pecause E-is .connex. e conclude that
wols steictly positive onf M(C). Since this set is comnact we dedu-

ce -
0<inflw(x,u) :xel”, ven(c)} ,
which implies (9.7). The proof is complete.

Lemma 9.5
There exist the constants ®€(0,1),%>0, c>o,€oe(0,1) and

¢

P0>0 such that

eXlel JEER(6S) + :

+0(1-8) " T+ (8BIH-p F ) ec exp(-Dpe NEX(sM-pr®))



.
for each xgbl,gﬁ(ﬂ,ﬁo), fze(o}Fo)-

Proof

In order to distinguish the functionals B¢ and C® we intro-
duce the stopping time Qf defined by 0f (w)=q, (@) if @;w)<Sla) and
,uqi&m)=@@ P f Q](@ﬂés@w). Then we set Qé%1=%g+ch%(Q;) and assert. that

for each w such that the trajectory t»@xt(w) is continuous the folle=

wing ecuality holds
{ Qn(@a)) s 1Y 13= {Rn(w) 10y 1}%}}({10{ Rk(w)+Qécﬂ'(Rk) (w) :nx1}. |

We do not insist on the proof of this deterministic equality. Ve
remark instead that the sets appearing in the right side are mutually

disjoint. This shows that,almost sUrely,we have

(9.8) ettt U

s ;
= e el ey

Before going further and estimate the double sum in the right

hand slde, we will prove the following estimates .

(9.9) ' PX (0] @), xéd,

- (9.10) P"(Q{.<oo)gec exp(—“o“[sa“), XEHNF’
where #€(0,1) is a constant. We may write

£53045)

P"(Q{@o):,ox(q + ReBy

On the set { 0<SY we have s=o_+sw-a’q and xQeaFF_OD2 , which implies

p* (qf<e0) =E* (0¥ (Q) (Res) 50¢s)g 8P (2<S) «
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For the last inequality we have used the preceding lemma. Relation

- (9.9) is proved., If >-<4§5H'_£g we can dominate the last expression by

using Lémma 9.2 so that we aet relation (9.10).
Now let us calculate the expectation of the general term

appearing in the double sum in the right side of (9.8):

(9.11) - P"(Rk + Qr{o-@"(Rk)@) =

=EX(PX(Rk)(Q;<ao) iR, <e0, x(Rk)eH\H_' )+

K p

+EX(PX(Rk) (Qr{«,@) ‘R <oa,3((Rk)é s

< P

From the inequality (9.9) it follows
P"(Q,{<w)@”, XD,
and from (9.10) 
-:Px(Qé<xJ$3n§exp(—EF£-l), if.xéH_P i
fhérefore the exPression (9.11) is dominated by

7 (P (R, <20, X (R, JEHNH_ ) +C exo (5 pETT)PX (R w0 X (R, JEH_

. Si

& 3

Then, taking the expectation in the equality (9.8) and using the
above expression to dominate the general term of the sum, we obtain
the inequality asserted by the lemma,

Lémma 9.5 and Lemma 9.3 together with relation (9.2) show that

C% is-asymptotic esuivalent to AH’i. This can be seen in the proof

of the following proposition., We denote by u(x)=Ex(Ci) and A =

=1Ha& ) ﬁ introduced in Section 3,



.
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PrOposftion 9.6

" There exist two constants C>0 and £o>0 such that

=

are P

1

I
Ay
for each E&(O,?;o) .

Proof
On account of Proposition 8.1, the estimate follows from the

next

\EX(AHOQ,E)-EX(COE)\\{ C&1/6(1nﬁ:])7/6; x€D

N\
N\

Then, because of relation (9.2), to prove this inequality it suffices

to estimate

Xé‘x H e Kot SRk
BB =m (n ) o E(GE)-E"(B_).

oo

Lemma 9.3 with ¥ =-“>(HyFﬂ) and arbitrary p yields
Hait
) : g =1
EX(BEICEN (A L ) 4 ¢ oexp(-TpeT!y,
£
because EX(AE;HP ’)QEX(Aijgc. This leads to

EX(BQ-EX(ASC’%)SEX(AE\ Mot Y e exp(-‘E‘Fa"),

Then we use again Proposition 8.1 to estimate

bl

o C£1/6(ln>;_-1)7/6,

X HXNH & 1
=

f



1 i{

where K(?)mTHwVH.x‘.

8.4 so that we get
X o€ H,% L - 1 6 ‘ 6 -1
(9.12) E*(BZ)-E (A )e(prnp™ 4 €70 (1ne™ ) T/ Crenp (-¥pe
Further we use Lemma 9.5 and obtain
B H\ e ) - o
B (C5)-E* (8060 € +EX (B M=p Sy rexp (-¥pe” )X (8H2p 1))
Then we apply Lemma'9.3 to evaluate the last term

T | T <
E ,(BQP’. )$Ex(8w\$c,

and also

N
p -

H\H . H\H

E* (B "t et (n P )

20 S exp (-3 RE™ ).

The right side of this inequality is evaluated by Proposition 8.1

and Lemma 8.4, and hence we obtain
EX(BS:H*fa’E)gC(Q}/6(1n£ 7/6+P]“F +exp (- E‘FL ‘

From these estimates we conclude

“]/6(] 7

Ex(Ci)—EX(B;)QC(t /6+Plnp +exp ( ‘5}36

142
g/

TakingP = in this estimate and in (9.12) we get

EX(c2)-E* (a1 )<cz”6(1 Gl &

LY
i

This completes the proof.

The potential G;qa)may be estimated by Lemma
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10, The ca-e of a‘hypersurfacé with boundary

The estimate obtained in Proposition 9,6 allows us to treat
a hypersurface with boundary by the method used in establishing Theo-

rem 7.2. The details are omited. Here is the result.

Theorem 10.1
Let L be an operator of the form (1.2) in Rd(d;3),\such that
. % ; e
atkﬁ2+ (Rd), béﬁf1+M(Rd), i,j=l,...,d and c=0. Let K be a compact

hypersurface with boundary of class‘ﬁ3+&£ and let us denote

_a(x) Zﬁ 'J(x)n (x)nJ(x) x€K NIK,
i,j=1

wheresn lx): d=1,.. ., d are . the components of a unit vector normal
to the hypersurface at X. Let/u be the surface area in KNJK and

,1 =a f. Assume that X is an L= diffusion in Rd and Ae

is the functio-
nal defined by (2.1) for each ¢> 0. Then there exists a continuous

additive functional, A, and two censtanbs, £20, £o>0, such that

(10:.1) lim sup[A -A l 0y G,
¢e>0 t
(10:2) g2 sup‘A -A |2 ]/2< &]/12(1n2_1)13/12,x6Rdﬁ6(0,€0),

G e i) xert
; K

. The proof of this theorem follows from the next estimate

of the function u(x)=Ex(Ai), xeRY

(10.4) (u-nwlgce‘/s (ln€—1)13/6,£&' ?(O,EO').

Lo e AL e bive pepieait ling o sitep with step the reasoning whic



\eéd§ to the éstimaté of Lemma 7.6. instead of estimate (3.f3)‘used'
in the proof of Lemma 7.4% one should use Proposition 9.6. Nf course,
diffeomorphisms liké those defined above Lemma 7.3 are needed again.
However, in the case when the domain of a diffeomdrphism contains a
plece of the boundary @K, then one should take care to tranSpoft
that piece onto a piece of the boundary of ‘the seml-hyperp]an The
relation (7.137) do not hold near the boundary. lnstead¥”ﬁnd|t|ons
(9.1) are fulfilled.

Finally we mentlon the féllownnq theorem which can be stéted
as a purely analytic result. It can be proved by the same method as
the preceding. Under the assumptions of the preceding theorem we
set V€={x€Rd:d(x,K)<£} nd: for feflK) define h te be L—harmoniﬁ
in RQNK satisfying the boundary ;onditions k=f on K and
1im h(x)=0; also we define 1 to be L-harmonic in Vg with boundary

Jx} o0 ¢
condition 1=h on PIVE

=h(x) if xeRd\V che MEbg =) (i f xﬁVE; Thus M:Y?(K%4¢€O(Rd) is =

Then. we define ME:RS—>R as follows: Ui G

linear operator and, as one can easily see)HMu<il. Then the opera-

tor NE=ST H® i35 well defined.

Theorem 10.2

For each f€'€(K), one has

vim en®s - &l ||
e fal
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