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Introduction

The motivation of this work arise from the
following raised by B; Gordon ( see [{1 g B28: ),
who asked for integers Q4 3 Qz ,.;;, 05 none
of. them Q. or :tﬁ; so that:

8 B .

Qu 85 % | < A = | a5 a3 a¢
2.
NN D

Denoting for any matrix ZL , by 4&2‘ the
matrix whose components are the squeres of the
elements of _A, we shall prove thét s more generaliy)
for each &@.N and M%% there exists
matrices AQMMLK)With !Q;Sl";v,& such thatg
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In the first sectibn we deal with the case M= D
and obtain a solution with four independent parameters;
The general cése is treat in the second section by
a reduction procedure from /M to M»z_ and by
a separate treatment of the case AAt—Q :

The M - dimensional solutions given by our
method have ()(JMZ) independent parameters.,

In the remaining section we treat the following
ﬁore general problem:

" For what = (. m % L A, ) there exists
A';(Qf")eMM(Z) such that \0{;“)!{ for Aé(,jg_m
det & =4, end MAL;A& G

We shall prove that for M32%  the obvious
necessary condition A,"’:E—Az' ( mod 2 ). is -&alsg

sufficient.

1., The unimodular case M=7

(i) An effective example to the Gordon's problem

We start with a matrix having the following form:
wooa b
T
Yb pA F
Tﬁe equation MA'&&. become;
X = &«Q?L"s-—w‘)(b—a)«be\fs»bm Ll
and okﬁ.i(A.)_::ﬁ, yields:

2
e BT olh —'ro:"p}::. \. (1-2.)




Tl ——

FI{O@ ( fi;_d ) and ( 4.2_) it follows:
g o i i 2
_.»r.'z,.i,gqpﬁi@%)ﬁ««gﬂ%-&ﬂ@gﬁ)...F‘*(_Q_"es)(ﬁ;?v»@@) T
+zr ke azl‘bt)&- b G?“)‘éz' =4

This equation is simplified considerably if we choose

S , 80 Vwe have:

(a4 N{&—Wz(zy’v&) £l b (t42p) + o (n -2p) =1

Denoting 2 =a- we obtain the following equation

in the unknows + sl oy L and F

" [%}P&P—e) + b2 (1-2p) —t—f:?’]« X3 L?ﬁl_«) 2 F"»e o (-4

Now we observe that the coefficient of u{l  can be

decomposed as'the product:
(%F..b)Q%(?_o -b) - s)

Moreover denoting A-_—_ :}F ) T and B ::—%(F.-q)..—lp
the coefficient of ol in ( 4.4 ) become Q@—Eﬁﬂ?ﬁhﬂ)

and we obtain an equation which is linear in ﬁy and Tﬁ

LAB + K (h-BY2p=0) 4§ =o

We must have cﬁ) f@-Q and for this we choose &:zJ -

It follows:




s

B(zi?“wi) — L@M)
BLp-» + ?—g'w'\

el
=N

which has infinitely many integer solutions .
A solution in small numbers is for example: e
p =3 A S v B =S8 from which we

obtain the matrix:

%% 262 19y
2 a =
2 & 3

which has the required properties .

(ii) A four parametric solution

Here we follow the same procedure as above, this

time keeping as much as possible independent:parémeters.

-A
Firstly, insted of the minor \ v v we choose
PP i
the following one:
AR+ 1 cde « L& €

1 de

In this case simplifications similar to those from ( i
may be obtained if we choose a{::&,i% . So we start

with the matrix:




e de i cde v tre (Mi»)

® 4 de 4

The equations ( f.§ ) ok 4.0 )y ang lﬂg) become

respectively:

)(-\*(bUkQ.v!a):: % (41)

7’\2(20&.‘.& w2de +2de -M) A ’L(-?_Q ea+ LM&%—&)L&O%—J:Z )3 =4 (l-g)
\?’l[(ac.»b)l(\%f&e+w§e w2de 1)+ 2¢ce o (Meﬂ}@"&”;t,?«ﬂm
=
_ 2 {oe-b) 2d c e «2de wade +4) + | :
o (ae-b): o

2
+2dce rode rade —o

Here we put z=ac-%H and the coefficient of T&L
ime b9 o) - i

' 2 %
:Lc[%lﬁe& +d) + az(2de+q) + < a]
which is also decomposable. Denoting by:

A :%L‘;QQ'{'Q) X : % = %“Q Q&

and observing that A»»efﬁt,%~ the equatidn ( 4.ﬁ )

becomes:

Q@AB %@(Ame%)@o‘:}ce w2de ade+ 1) + il

S A?" LR [} s



2
We must have [e&oQ + @.0{4‘-&@@ and for this

~

we put c;ﬁ:a??;;g\e, . It follows:
&QF (2693-44) “*ﬁ?{
§B +pldar)

-
m

where i:: Q&Q AR O . We observe that A can

be made equal to zeihk by choosing:
e = 2_@,‘3}\ (Zoﬂj‘ﬂ) “‘“3;\?%-"'"'}?\(‘2@‘&\2&:’1“)""1(")

and we obtain an integer % if we put \x-:»e.fl .
In this way we obtain a solution with four

independent parameters € , C , F ; ﬁ

-Mgﬁcei—\w‘&f»ﬁcgi
O Qﬁii*t'« Q@&;?Q_ -a::(ic,:lfﬁe_ egjb % QP&Q f’ fL

'52__ -5'2.,‘2...

b :‘3%%-&'%&‘5% 1 *'ig‘ﬁﬁﬁe’eﬁf#hfb ce iﬁﬂﬁgce;@i
-;(L%Q{L : '

29
where: 2“&03. i’fﬁ*‘c’*’g
2. The M - dimensional unimodular case

Proposition 1; For any M7 % there exist a

Solution of M(Q;C\ ':.C:QE}(O}:‘\ w A wath Ay =



?

nonconstant polinomials with integer coefficients

b
%-(MQ.,.N\JZ)*S'("‘) )pgrameters .

i

Corrolary: Forrany '%;,&t*‘gal  and M2 there

exist &(Qﬁ) ) ‘Aé MM L’Z) such that
&@'(&;Q ;M—k&?’i) = A and \q‘-i‘},/!& for AL \ M

Proof of Proposition 1 ; The idea is to construct
a M -~ dimensional solution ._,(Q ) such that
o\“-‘:o‘z\. -,-_Q,si for {v:.'{,,te).”)!v\ . Denoting

Qgy = A ’ @{m-:,ia ) qaizﬁ. y Rag=d Azy =€, Qfgz?fo 5

a-e b-f et > -%

= D = v .2
i T e ol Jd7-

.Ha

we have:

OQ&_\, LQ\94 ' = A 0@'(‘1;3')3&{'3&&&

« dek Lo .
OM x)) 3¢ l(?

supposing the case M=2  solved let U\‘\)"%‘w‘s%’*‘\
be such a solution . The components ‘! ,11 Gy & m 3 } % 42~
are clearly new 1nd@pendont parameters so the result

93311y follows if we show that the system

Ao | (2.4)




has a three paremetric solution .
Denoting ﬁ% =0 - Q ; r&:—n‘am“ﬁ_, " C- c-e -

})ttﬁ”j@ the two equetions become:

AN-RC =)
A (Aaze)(dazt)-Re(B 2 ) (8 x2e) =4

This system is equivalent to:

heBe =l ‘
o B —ab) —4d+h
26 + A0 B0

(0.9

o
-

The second ‘equation dn (. 2.2.) has the solution:

ex (4D -BE) (e ~Ab-) +4D -4
f. Limasih i)

Using for the first eguation in ( 92 9 ) the solution:

i

Aszv{j}#l )6?2%@&4"‘}\-1’5 ) Q‘»T-Q,v( )"B :%g*q

we obtain for &, b , ¢ , cﬁ - i;» nonconstant
polinomials in ol 15 . and .Y~ which have
integer coefficients.
To conclude the proof of the Proposition 1
it remains to give a four dimensional solution with

at least two independent parameters.




Tn order to obtain simplifications gimilar to
 those from section 1 we begin with a matrix of the

following form: ‘

L

Y pe (2.%)
‘A" ‘é B

e bR

The eguation &e&A~%i_becomes Xz.N+QKQ~ED and

substituting this in ek La\\z\) = A we have:

3 U‘MQLU%FQ’—% lyp+bp+t) ~la tzjam?'(%f'» = (2.4)
& 'l(’l? fﬁ)“:}l - 2»(‘) ant')(l&";b"%ﬁ"f F'Z’—k- Qz?ﬂ) +§ Pg-(—ﬂl{ FL-(- éf =0

Let 2z T . The coefficient of \Q‘L is:

%1@?3 +te YL+2P‘) “2b% (2.?41)7}_ z(lrﬂ) Lol

and we observe that for c&:;PQ: a decomposition
similar with ( b ) holds" .~Denoting
A:(?M)%—# Lo ’ B:?:} + b the equation ( Q.Li )

become:
filapriphb U2 t) 3 =2

where:

Q': 2{?&%5’?‘}«%’5? ':»?K‘?- P«H)(?&")ﬁ ;




Tn order to have ‘}{3{_ we choose ?:\3"&: It
follows ; ‘ :

o @QQ%_+4) 4 e T B2g 1) -T QE?MZ&? i)

’ %\g“(zw') -4 (29 +1) ’ by (2pt) ~(291)

which equals = 2& (\i?*%%) for:
B = —tl2pat)(pey) ~2¥ lp3)2g «t)

So we obtain a solution with two independent parameters

( x} ang & =) bypoenbstituting dn ( 2% )
X = t=plpaa)(2p-t +2029 +1))
o = pElpan) (2p-t +2(29 1))
b~ -tlp ﬁ)[gmﬂ 42029 +1) * F('LF ~1)+2pl 2.3,-{4’)]
o - —%&ym[u? + (29 44) 4p (2p-) +2?C’2~3¢“ﬂ

9.1 '
where P:;xat' o Sanid 3“:'?“{7 '{“i{» %3}» . The proof
of the proposition 1 is now complete .
Remark: An example in small numbers for the

four dimensional case is:

— 2049 20%¥ o - 3BT e LAL
2- % b Ny
% r e 3 Q

/i 2 2. 3
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and one for ( Q;./‘ JEter 8 SR

% G
Dz % i

20 92

Taking into account the example given in section 1 (i)

we can give for any M7 % an effective solution.

3. The problem for a general quadruple (™M ‘%- i &1 y Do)

For mv,4. o bao Ba and QZQZ
let S( Moy s ay8;) -«-SkA:(qxs)eMMLZ); ek A =8, ,
0929‘5’42:&2_ and la\‘il?’& for QQC‘)*&M} .
In this section we shall study the following problem:
Being given & quadruple (M , & y By 5 Ao ) how
cen we decide if & ( m e B, ;, 8, ) is empty
o ot T o pufoaf % AR S & aibha ) 1s non-empty
how we can find an element of it 7
First of all we note that if Aﬁ’:fi Ag. (- mod 2.)
then ‘% ( m ,&. » &y ,AL);—,%) o Inthe
following we shall always suppose ‘,{3,,‘;.;&2_‘ (. mod 2 )
The reduction step from pm to M-~z
used in proposition 1 show that for any XQ;?(D the

following implication is true:



oo { D

g(\mj&') A‘) Ag,) ?ﬁ: é) “;‘)%(M4'?wiéﬁ)&q)éz>%ﬁ—

joreover if we have an element -ﬂ% from
C ﬁ, ) r 37 o) X % .
> (M s e BDqg 9 by ) we can eonstruct an.

element = B from < ( a2 'gt 3 éu\ ,bg_) :

Bl The cage m=2 . We have Q (M &:&. s 454 ‘, ,4;,2 )#¢
if and only if the system:
s | |
£ =02

is solvable in integers a b o B Al of
absolute value ‘),& N - &1::,0 then

4 (2,%,,5,%,&7_)—#35 if and only if &,= © .
If byt o the solvability of the system ( 2.4 ) is

.equivalent to the following condition: The numbers
% %
AZ‘*‘A%‘ &2"&;
qq‘;— s and K= are integers
24, &by £

and have divisors d', a, oy fa, such that:
Gy Qe
Az- Q [M.‘;M 9{@ [y 5& 4 = st )
iRl 30,
Thus if O+ 0 then S (2 , Lo b 8 0 18
finite and the above condition gives an algorithm to

find all its elements.

3.2, The case M=%

sSuppose D. o0 A.LJ#-‘-O . Then fer each 'g’;‘?;»o




6 Ce k. By 85 ) is.not empty ( thus it is

infinite ) . Here we do not have a pafametric solution

but we shall give an algorithm to find ( infinitely meny)
solutions via the theorem of Dirichlets on primes

in an arithmetic progresion ; More exactly given 4& , o

Az¢ O let us compute the number

by 9 -n 2 i : : 2
A’;Qq‘i’&qég“’MA‘&g and find a priue & Ny g (& ,{@Q\,@&)
in the arithmetic progresion %8&,{\&« 4+ i ; M ﬁ\\% .

Let .ff\ be as in ( 4.6 ). The equations ( 4.'%’ 5
Cah8 ) and ( 4,9 ), ( A lo ) from section 1

becomes
X+ plac-b) = Ay
X?'(?.uﬂ) % 3‘3\! =h.
(;' [(aﬂ ~b) (2ut) +v] ~ 2l (ae-b)2u) + £ (2uat) = By =S

o.f§ AD + @Al%(&-e%)('z\m) 4+ u:ﬁ’; e =o

where:
W= dee «derde e “2eae + (2dew)(Ea-t)
- ‘
Ay -4
4 = 2ldest) tea | Brdta, W= 2 23-

It follows;

plusyri | \2.2)




Uby 4%
B A 2ux) = ———

e :
| Qf{g% 4+ & 2u)

It
'fr,hen_ we obtain for A , the integer value:
e A (2uxy) =\

P

2 (R
if we put  S=k. - and Bz (.Qb‘“\ (2u44) ”‘f"’\(‘z‘“ﬂ)*uﬁz*\‘)/@

From (%9 ) esnd (%% ) it follows; :

s, =8,  (Mmedp) (%.4)

Now let T, =g and choose € which verify ( N.4§
Then ( 3.2 ) end (%) will be valig if d.

satisfy the following congruence:
S bl - -
S N U (B,+D) vk s, To (mod g_)

This congruence ( of degree 2 ) has solutions because
g : 4 : . '
the discriminant 1s &’E'A which is & square ( mod 9 )

from our cnoue oif! ﬁ ( I k=% ﬂf‘ % i Q‘EZA

then k ) Lﬁ\) ; but for 4 odd we have
=i ‘
R @ and also \) L > A
S0 k -4 \3
uow it is elear that for and e‘i large

enough ( which verify (%.2L) and (3.9 )) the

absolute value of any element of A will be ?,{;L S

).



and this complete the proof in this case.
Observe that this proof does not work if éqwm--
or &*z"-’*u so we must treat separately these two cases,

Suppose now #A,=9 ., In this case we choose: 5

o ip GL-H:
A._._ el e
€ ’;@ RAL.
Q:ﬁ\

el

P
Then <O§,@'é§rno and MAZZ 2—’1 C_ofk\‘

151 a b g S A are choosen so that ad.be = 4,
. APy : A et

then for € = O+« = =0 ‘%tb.ﬁ. _%,QQ we obtain

suppose now A.l-:.:o . It is sufficient to econsider

the case Ap‘ =2 . The proof is based on the idea
from section 1 (i) and we begin with a matrix A in

the form :

S ptl B
rron  dex A =2 we have  X- &(('Ow‘o‘) =4

and substituting this in oﬁ,e;&-.Al:: (o} we ob‘tain :
. : %
o [cf’ (T}m ;v) —ab (21:2»%) ol ()‘}* Fﬂ + 2xlock) (’Zfz“ff) 2o ~() =©
‘ L}
Denoting -@g‘:—ﬁk\)-'ﬁ?w\? 5 E) ':-‘QF”QF»Q we obtain:

“ilA—% A 294 (A-*%)(Z:Fzmi) A2 (?T;’la«v) e



1 and: by puting A-"‘:'- ?.A-'i

N

o~

i?.i-?’wf\ o b(’?* we have i

A% o« 28,-B) +A

An integer solution for this

for for which

equation is:

A= oL 15 = 9wt 24 A

so we obtain ‘.-;; - -«Zv( 4+

TR B o |- 2ot 4 2¢ ~1 ) 4 A

Observing that o-b OW}) and {??:’) O(‘X\ it

results that | o-b ) %Q\K%)

. put AN OQDL)

and B'&O(D@> so that O&'X:O(\%Z’) and b O(Q’{b)

noteing that the eguation 2?"-

many integers solutions we co
for ol sufficiently la
From the reduction ste

case M odd , M7 ¢ 1is 8

2.5 The case Mm=4 .
ye shall prove that
and we will show how 1o find

Tor a ‘{é’(?} matri

A has infinitely
nclude that \Q{i\ % L

ree .

o) it followe now that the

1so settled.

% ( é? ;& ya&q 1‘5'2,)“??6
elements of 1it:

- T’:*(‘é“s‘g‘) 1ed el 4&3.‘:?:

A v ‘
denote by 'T‘"{%) 44,'.'!3'@&4 the WxY natrix
glven by {t(} = -h} ir 4eced end A&y¢3d
and 'é“:g = Tl '&,3 for delteh . We consider
now the following unimodular matrix:

et T



I e S

Frp-t prt 4
'@ e (}“’?"'( 'F P——%
‘2?'2"»-\ Zr-ﬂ Gdel

Tt has the following interesting property: If we adjoint

a forth row oo .y L, L ) to obtain a L
Y S 2
matrix e then MQ ;e\?'-—%\: v SeEll
& )
a,§%&§=;Q2+¢3) then ¢ is unimodular. Denoting

U the matrices obtained from C

by B e €
by changing the first two columns ( and respectively
. N‘ f?
the first with the third ) then OEQJ\’ 2 and MQ“
are non-null polinomials in o S b and F .

Fix now AR and ? ( large enough ) such that:
P~ O~ '
9\7,9%— ) b?,‘@e. ) FZAQM-%_ )c@e}c‘#o,o@d’(‘."tgzo

We adjoint now to ¢ a fourth column -( X5 5 Y, , Fo Sk

to obtain a matrix .h such that:

&E}fb:—ﬁ}«

This clearly may be done because % is unimodular.
Adding to the fourth column of }} the firet three
columns multiplied by ® ; ' and \b'\

respectively we obtain a matrix -A :




el

S T

Gl el
2p 4 2141 Z;M 2
%

which verifies:

ded & =0y

we want to choose Wiy T5 and Vk such that:

Aok k. =By (3.5)
and:

), 1=t 14wk § o

The equation ( . Y is of the form :

2&{5%-%2&\&%+l{5\}q%wfﬂﬁih*‘\'z{b‘f’?'*’?\&%ﬂ-

a2 (% b
] { =
where 'QQ;.—‘OQ.&:%'Q":{: (] y qz_-:,noQ.d't: #O ’QB:WQ{{“Q”&

It follows:
- debDsy
—~0\‘°’~’P“5°‘§ %’:» 9.+ "’*"’"““”“"’"‘”

%—M

e
L et

F+MQ2’+ ba

which gives an integer * if we choose mee(q,: l03+4

( note that dek D,z dakd=s, 28, ( mod 2 ))

B



—1q -

Tn this manner we obtain an element A. of
S (.[f' ,AL,AQ,A?#) ( From Q, #0 y Q. ko it
follows that X 4 13 % T € are polinomia;s 1 o
of degree exact two so we can choose ©& large enough
such that (%.6 ) holds )

This conclude the case M=N and from the
reduction step the case M even , M‘?;@ 2%
We can now state the following proposition:

Proposition 2: For any M7;% , /fée i - éi )QZQ Z

Ai?- Do (mod 2 )} it ean .be find a matrix —A ;(q;i)QMM\z)

such that:

1y dek A = 8y
2) R

5) \Q‘Qj\?/i& for {&‘:;JQQM e

e AN SR




