INSTITUTUL DE MATEMATICA PENTRU CREATIE
STIINTIFICA SI TEHNICA

ISSN 0250 3638

UNIMODULAR MATRICES WHOSE COMPONENTS

ARE SQUARES OF A UNIMODULAR ONE

by

A. DANESCU, V. VAJAITU, A. ZAHARESCU
PREPRINT SERIES IN MATHEMATICS
No. 24/1989

UNIMODULAR MATRICES WHOSE COMPONENTS ARE SQUARES OF A UNIMODULAR ONE

by

A. DANESCU*), V. VAJAITU*), A. ZAHARESCU*)

June 1989

^{*)} Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bucharest, Romania.

UNIMODULAR MATRICES WHOSE COMPONENTS ARE SQUARES OF A UNIMODULAR ONE

Alexandru Dănescu, Viorel Vâjâitu, and Alexandru Zaharescu

Department of Mathematics, INCREST, Bd. Păcii 220, 79622 Bucharest, Romania

Introduction

The motivation of this work arise from the following raised by B. Gordon (see [4], F 28), who asked for integers q_1 , q_2 ,..., q_3 none of them O or ± 4 so that:

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_4 & a_8 & a_9 \end{vmatrix} = 1 = \begin{vmatrix} a_1^2 & a_2^2 & a_3^2 \\ a_4^2 & a_8^2 & a_9^2 \\ a_7^2 & a_8^2 & a_9^2 \end{vmatrix}$$

Denoting for any matrix A, by A_2 the matrix whose components are the squares of the elements of A we shall prove that, more generally, for each $k \in \mathbb{N}$ and M > 3 there exists matrices $A \in \mathcal{H}_{M}(\mathbb{Z})$ with $|a_{ij}| > k$ such that:

A. A. A.A. A

In the first section we deal with the case M=3 and obtain a solution with four independent parameters. The general case is treat in the second section by a reduction procedure from M to M-2 and by a separate treatment of the case M=4.

The M - dimensional solutions given by our method have $O(M^2)$ independent parameters.

In the remaining section we treat the following more general problem:

"For what $(M, k, \Delta_1, \Delta_2)$ there exists $A = (a_{ij}) \in M_M(\mathbb{Z})$ such that $|a_{ij}| > k$ for $1 \le i,j \le M$ det $A = \Delta_1$ and det $A_2 = \Delta_2$?"

We shall prove that for M>,3 , the obvious necessary condition $\Delta_1 \equiv \Delta_2$ (mod 2) is also sufficient.

- 1. The unimodular case M=3
- (i) An effective example to the Gordon's problem

We start with a matrix having the following form:

$$A = \begin{pmatrix} x & a & b \\ x & p & p-1 \\ p & p+1 & p \end{pmatrix}$$

The equation dotA=1 become:

$$X = 1 + p(\beta - \alpha)(b - \alpha) + \alpha\beta - b\alpha$$
 (1.1)

and det A2 = 1 yields:

$$(1.2)^{2}$$

From (1.1) and (4.2) it follows:

$$[1+p^{2}(\beta-\alpha)^{2}(b-a)^{2}+(\alpha\beta-b\alpha)^{2}+2p(\beta-\alpha)(b-\alpha)+2(\alpha\beta-b\alpha)$$

$$+2p(\alpha\beta-b\alpha)(\alpha-\beta)(b-\alpha)[(2p^{2}-1)-p^{2}(b^{2}-\alpha^{2})(p^{2}-\alpha^{2})+$$

$$+2p(\alpha^{2}b^{2}-\alpha^{2}\beta^{2})+\alpha^{2}b^{2}+\alpha^{2}\beta^{2}=1$$

$$(1.3)$$

This equation is simplified considerably if we choose $\beta = \infty$, so we have:

$$(1+x(a-b))^2(2p^2-1)+x^2b^2(1+2p)+x^2a^2(1-2p)=1$$

Denoting 2-a-b we obtain the following equation in the unknows 2, α , β and β :

$$x^{2}[2^{2}p(p-1)+b^{2}(1-2p)+b^{2}]+x^{2}[2p^{2}-1)+p^{2}-1=0$$
 (1.4)

Now we observe that the coefficient of 2 can be decomposed as the product:

$$(5b-p)(5(b-1)-p)$$
 (1.2)

Moreover denoting A=2p-b and B=2(p-1)-bthe coefficient of α in (1.4) become $(A-B)(2p^2-1)$ and we obtain an equation which is linear in α and β

$$\alpha^2 AB + \alpha (A-B)(2p^2-1) + p^2-1 = 0$$

We must have $\propto p^2-1$ and for this we choose $\propto -p-1$ It follows:

$$A = \frac{B(2p^2-1) - (p+1)}{B(p-1) + 2p^2-1}$$

which has infinitely many integer solutions .
A solution in small numbers is for example:

p=3, A=10, B=-58 from which we obtain the matrix:

$$\begin{pmatrix}
137 & 262 & 194 \\
2 & 3 & 2 \\
2 & 4 & 3
\end{pmatrix}$$

which has the required properties .

(ii) A four parametric solution

Here we follow the same procedure as above, this time keeping as much as possible independent parameters. Firstly, insted of the minor $\begin{vmatrix} P & P^{-1} \\ P^{+1} & P \end{vmatrix}$ we choose

the following one:

$$\begin{pmatrix} x & q & b \\ ep & de+1 & cde+c+e \end{pmatrix}$$
 (1.6)

The equations (1.4), (4.2) and (1.3) become respectively:

$$X + \beta(ac - b) = 1$$

$$X^{2}(2d^{2}ce + 2dc + 2de + 1) + \beta^{2}(2ce^{2} + (2de + 1)(c^{2}a - b^{2})) = 1 (1.8)$$

$$\beta^{2}[(ac - b)^{2}(2d^{2}ce + 2de + 2de + 1) + 2ce^{2} + (2de + 1)(c^{2}a - b^{2})] -$$

$$-2\beta(ac - b)(2d^{2}ce + 2de + 2de + 1) +$$

$$+2d^{2}ce + 2de + 2de = 0$$

$$(1.9)$$

Here we put 2-ac-5 and the coefficient of 3^2 in (4.9) is:

which is also decomposable. Denoting by:

and observing that A-eB=2 the equation (4.9) becomes:

We must have $\beta/ecd^2+ed+cd$ and for this we put $d=\beta/c$. It follows:

$$A = \frac{Be \beta (2dg+1) - gd}{c\beta^2 B + \beta (2dg+1)}$$

where g = cde + e + c. We observe that A can be made equal to $2e_2$ by choosing:

and we obtain an integer B if we put V=ef.

In this way we obtain a solution with four independent parameters e , c , β , φ :

where:
$$g = c^2 e^2 + \beta + c + e$$

2. The M - dimensional unimodular case

Proposition 1: For any M7,3 there exist a solution of $det(a_{ii}) = det(a_{ii}) = 1$ with $a_{ii} =$

= nonconstant polinomials with integer coefficients in $\frac{1}{2}(M^2-M-3+5\cdot(-1)^{M-1})$ parameters.

Corrolary: For any $k \in \mathbb{N}$ and M73 there exist $A=(a_{ij})$, $A\in M_m(\mathbb{Z})$ such that $det(a_{ij})=det(a_{ij})=1$ and $|a_{ij}|>k$ for $1\leq i,j\leq m$.

Proof of Proposition 1: The idea is to construct a M - dimensional solution $A=(a_{ij})$ such that $a_{1i}=a_{2i}=a_{3i}$ for i=3,4,...,M. Denoting $a_{1i}=a_{2i}=a_{3i}$, $a_{12}=b$, $a_{21}=c$, $a_{22}=d$, $a_{31}=e$, $a_{32}=f$,

$$\Delta = \begin{vmatrix} a - e & b - f \\ c - e & d - f \end{vmatrix}, \quad \Delta' = \begin{vmatrix} a^2 - e^2 & b^2 - f^2 \\ c^2 - e^2 & d^2 - f^2 \end{vmatrix}$$

we have:

Supposing the case M-2 solved let (4;)32:; 5M be such a solution. The components A; ,45:5M, ;=1,2 are clearly new independent parameters so the result easily follows if we show that the system

$$\Delta = 1 = \Delta'$$

has a three parametric solution .

Denoting
$$A = a - e$$
, $B = b - f$, $C = c - e$,

b=d-4 the two equetions become:

$$\begin{cases} 4P - BC = 7 \\ 4P - BC = 7 \end{cases}$$

This system is equivalent to:

$$\begin{cases} 4b - 3c = 1 \\ 4 = \frac{e(3^2c - 40^2) - 40 + 1}{2e + 4^20 - 3c^2} \end{cases}$$
 (2.2)

The second equation in (2.2) has the solution:

$$e = \frac{1}{2} (A^2 D - Bc^2) (B^2 c - A D^2 - 1) + AD - 1$$

$$f = \frac{1}{2} (B^2 c - AD^2 - 1)$$

Using for the first equation in (2,2) the solution:

we obtain for a, b, c, d, e, £ nonconstant polinomials in &, B and W which have integer coefficients.

To conclude the proof of the Proposition 1 it remains to give a four dimensional solution with at least two independent parameters.

In order to obtain simplifications similar to those from section 1 we begin with a matrix of the following form:

$$A = \begin{pmatrix} x & a & b & c \\ y & p+1 & p+2 & p+3 \\ y & p & p+1 & p+2 \\ y & p & p & p+1 \end{pmatrix}$$
 (2.3)

The equation $\det A = 1$ becomes x = 1 + y(c - b) and substituting this in $\det (a_{ij}^2) = 1$ we have:

$$y^{2}[(b-c)^{2}(4p^{3}+14p^{2}+6p+1)-4a^{2}+(2p+1)^{2}(b^{2}-c^{2})+ (2.4)$$

$$+2(2p+1)b^{2}]-2y(b-c)(4p^{3}+14p^{2}+6p+1)+4p^{3}+14p^{2}+6p=0$$

Let
$$2=b-c$$
. The coefficient of y^2 is: $\frac{2^2(4p^3+10p^2+2p)}{2^2(4p^3+10p^2+2p)} + 252(2p+1)^2 + 2(2p+1)^2 - 4a^2$

and we observe that for $a=p^2$ a decomposition similar with (1.5) holds ledenoting $A=(p+1)^2+b \qquad , B=p^2+b \qquad \text{the equation (2.4)}$ become:

where:

In order to have y 2 we choose p=yt . It follows:

$$A = \frac{-By(2g+1)-g}{By^{2}(2p+1)-y(2g+1)} = \frac{-B(2g+1)-t(2p+1)(p+3)}{By(2p+1)-(2g+1)}$$

which equals -2+(p+3) for:

So we obtain a solution with two independent parameters (γ and τ) by substituting in (2.3):

$$x = 4 - p(p+3)(2p-1+2(2g+1))$$

$$a = pt(p+3)(2p-1+2(2g+1))$$

$$b = -t(p+3)[2p+1+2(2g+1)+p(2p-1)+2p(2g+1)]$$

$$c = -t(p+3)[4p+4(2g+1)+p(2p-1)+2p(2g+1)]$$

where p=yt and $g=2p^2+4p^2+3p$. The proof of the Proposition 1 is now complete.

Remark: An example in small numbers for the four dimensional case is:

$$\begin{pmatrix} -2049 & 2050 & -3085 & -4110 \\ 2 & 3 & 4 & 5 \\ 2 & 2 & 3 & 4 \\ 2 & 2 & 2 & 3 \end{pmatrix}$$

and one for (2.1) is:

Taking into account the example given in section 1 (i) we can give for any M7/3 an effective solution.

3. The problem for a general quadruple (M , ℓ , Δ_1 , Δ_2)

For M7,2, k70, Δ_1 and $\Delta_2 \in \mathbb{Z}$ let $S(M,k,\Delta_1,\Delta_2) = \{A=(aij)\in M_M(\mathbb{Z}); det A=\Delta_1, det A_2=\Delta_2 \text{ and } |aij|>k \text{ for } 1\leq ij\leq M \}$. In this section we shall study the following problem: Being given a quadruple (M,k,Δ_1,Δ_2) how can we decide if $S(M,k,\Delta_1,\Delta_2)$ is empty or not? Anf if $S(M,k,\Delta_1,\Delta_2)$ is non-empty how we can find an element of it?

First of all we note that if $\triangle_1 \neq \triangle_2 \pmod{2}$ then $(M, k, \Delta_1, \Delta_2) = \emptyset$. In the following we shall always suppose $\triangle_1 = \triangle_2 \pmod{2}$

The reduction step from M to M-2 used in proposition 1 show that for any k>0 the following implication is true:

Moreover if we have an element A from S (M , k , Δ_4 , Δ_2) we can construct an element B from S (M+2, k , Δ_4 , Δ_2).

3.1. The case M=2. We have $S(M, k, \Delta_1, \Delta_2) \neq \phi$ if and only if the system:

$$\begin{cases} ad-be=A_{1} \\ 2d^{2}-b^{2}^{2}=\Delta_{2} \end{cases}$$
 (3.1)

is solvable in integers a, b, c, d of absolute value > k. If $b_1 = 0$ then

S (2, ℓ , Δ_1 , Δ_2) $\neq \phi$ if and only if Δ_2 =0. If Δ_1 \neq 0 the solvability of the system (3.1) is equivalent to the following condition: The numbers

 $a_1 = \left| \frac{\Delta_2 + \Delta_1^2}{2\Delta_1} \right|$ and $a_2 = \left| \frac{\Delta_2 - \Delta_1^2}{2\Delta_1} \right|$ are integers and have divisors a_1/a_1 , a_2/a_2 such that:

Thus if $\Delta_4 \neq 0$ then $5(2, k, \Delta_1, \Delta_2)$ is finite and the above condition gives an algorithm to find all its elements.

3.2. The case M=3.

Suppose $\Delta, \pm 0$, $\Delta, \pm 0$. Then for each ℓ

6 (3, k, Δ_1 , Δ_2) is not empty (thus it is infinite). Here we do not have a parametric solution but we shall give an algorithm to find (infinitely many) solutions via the theorem of Dirichlets on primes in an arithmetic progresion. More exactly given k, $\Delta_1 \neq 0$ let us compute the number $\Delta_2 \neq 0$, let us compute the number $\Delta = \Delta_1^4 + \Delta_1^2 \Delta_2^2 + 2\Delta_1 \Delta_2^2$ and find a prime $\Delta_1 = \Delta_1^4 + \Delta_1^2 \Delta_2^2 + 2\Delta_1 \Delta_2^2$ and find a prime $\Delta_1 = \Delta_1^4 + \Delta_1^2 \Delta_2^2 + 2\Delta_1 \Delta_2^2$ in the arithmetic progresion $\Delta_1 = \Delta_1 = \Delta_1$

$$X + \beta(\alpha c - b) = \Delta_1$$

$$X^{2}(2u+1) + \beta^{2}V = \Delta_2$$

$$\beta^{2} \left[(\alpha c - b)^{2}(2u+1) + V \right] - 2\beta\Delta_1 (\alpha c - b)(2u+1) + \Delta_1^{2}(2u+1) - \Delta_2 = 0$$

$$c^{2}\beta AB + \beta\Delta_1 (A - eB)(2u+1) + U\Delta_1^{2} + K = 0$$

where:

$$u = dce + dc + de$$
, $V = 2eac + (2de+1)(c^2a^2 - b^2)$
 $A = 2(de+1) + ea$, $B = 2d + a$, $K = \frac{\Delta_1^2 - \Delta_2}{2}$

It follows:

If:

then we obtain for A . the integer value:

if we put c=1 and $B=\left(e\Delta_1^2(2u+1)^2-\Delta_1(2u+1)+U\Delta_1^2+k^2\right)/B$ From (3.2) and (3.3) it follows:

$$.e\Delta_2 \equiv \Delta_1 \pmod{\beta}$$
 (3.4)

Now let $\beta = 2$ and choose e which verify (3.4)Then (3.2) and (3.3) will be valid if d satisfy the following congruence:

and this complete the proof in this case.

Observe that this proof does not work if $\Delta_1 = 0$ or $\Delta_2 = 0$ so we must treat separately these two cases. Suppose now $\Delta_4 = 0$. In this case we choose:

$$A = \begin{pmatrix} a & b & a+b \\ c & d & c+d \\ e & f & e+f \end{pmatrix}$$

Then det A = 0 and $det A_2 = 2 \cdot |ab| |ab| |ef| |ef|$ If a, b, e, d are choosen so that ad-bc=1then for $e = a + \frac{\Delta_2}{2} \cdot c$, $f = b + \frac{\Delta_2}{2} \cdot d$ we obtain $det A_2 = A_2$.

Suppose now $\Delta_2 = 0$. It is sufficient to consider the case $\Delta_A = 2$. The proof is based on the idea from section 1 (i) and we begin with a matrix A in the form :

$$A = \begin{pmatrix} x+1 & a & b \\ a & p & p-1 \\ a & p+1 & p \end{pmatrix}$$

From $\det A = 2$ we have $X - \alpha(\alpha - b) = 1$ and substituting this in $\det A_2 = 0$ we obtain:

$$x^{2}\left[a^{2}(p^{2}-p)-ab(2p^{2}-1)+b^{2}(p^{2}+p)\right]+2x(a-b)(2p^{2}-1)+2(2p^{2}-1)=0$$

Denoting A = ap - bp - b, B = ap - bp - q we obtain:

$$x^2AB + 2x(A-B)(2p^2-1) + 2(2p^2-1) = 0$$

and by puting $A=2A_1$ for K for which $2p^2-1=\alpha^2$ we have :

An integer solution for this equation is:

A1= X-1, B=2x2-2x+1 so we obtain: $a-b=-2x^2+2x-2$, $x=\alpha(-2x^2+2x-1)+1$ Observing that $a-b \approx O(\kappa^2)$ and $p \approx O(\kappa)$ results that $(a-b)p \approx O(x^3)$. But $A \approx O(x)$ and $B \approx O(\alpha^2)$ so that $\alpha \approx O(\alpha^3)$ and $b \approx O(\alpha^3)$ Noteing that the equation $2\rho^2 - 1 = \chi^2$ has infinitely many integers solutions we conclude that |a;; | 7 & for & sufficiently large .

From the reduction step it follows now that the case M odd, M7,5 is also settled.

3.3 The case M=4

We shall prove that $5(4, k, \Delta_1, \Delta_2) \neq \phi$ and we will show how to find elements of it;

For a 4x3 matrix T=(tij) 16i64, 16j63 denote by $T = (f_1)$ 16 in f_2 the 4x4 matrix given by $F_1 = f_1$ if 16 is 4 and 16 is 3 and $F_2 = f_1$ for 15 is 4. We consider now the following unimodular matrix:

$$B = \begin{pmatrix} p^2 + p - 1 & p + 1 & p \\ p^2 - p - 1 & p & p - 1 \\ 2p^2 - 1 & 2p + 1 & 2p - 1 \end{pmatrix}$$

It has the following interesting property: If we adjoint a forth row (a, b, b) to obtain a 4x3 matrix C then det c=2-3b . So if a+b\3=(2+\3) then C is unimodular. Denoting by c and c the matrices obtained from C by changing the first two columns (and respectively the first with the third) then det c and det c are non-null polinomials in a, b and p.

Fix now M and p (large enough) such that:

a>k, b>k, p>k+1, det c +0, det c +0

We adjoint now to C a fourth column (X_0 , Y_0 , Z_0 , Z_0 , Z_0) to obtain a matrix Δ such that:

This clearly may be done because B is unimodular. Adding to the fourth column of D the first three columns multiplied by A, B and A respectively we obtain a matrix A:

$$A = \begin{pmatrix} p^{2}+p-1 & p+1 & p & x \\ p^{2}-p-1 & p & p-1 & y \\ 2p^{2}-1 & 2p+1 & 2p-1 & 2 \\ a & b & b & t \end{pmatrix}$$

which verifies:

We want to choose X , B and Y such that:

$$det A_2 = \Delta_2 \tag{3.5}$$

and:

The equation (3.5) is of the form:

$$2 \times \beta q_1 + 2 \times V q_2 + 2 \beta V q_3 + 2 \times b_1 + 2 \beta b_2 + 2 V b_3 +$$

+ $det D_2 = \Delta_2$

where $q_1 = -\det^{\infty} = 0$, $q_2 = -\det^{\infty} = 0$, $q_3 = \det^{\infty} = 1$ It follows:

$$Y = \frac{-a_1 \times \beta - b_1 \times -\beta b_2 + \frac{\Delta_2 - \det \Delta_2}{2}}{\beta + \times a_2 + b_3}$$

which gives an integer 1 if we choose $3 = -\kappa q_2 - b_3 + 1$ (note that $\det Q = \det Q = \Delta_1 = \Delta_2$ (mod 2)) In this manner we obtain an element A of S (4, k, Δ_1 , Δ_2) (From $Q, \neq 0$, $Q_2 \neq 0$ it follows that X, Y, Z, E are polinomials in X of degree exact two so we can choose X large enough such that (3.6) holds).

This conclude the case M=4 and from the

reduction step the case M even, M7.6.

We can now state the following proposition:

Proposition 2: For any M7/3, $L\in \mathbb{N}$, $\Delta_1, \Delta_2 \in \mathbb{Z}$ $\Delta_1 = \Delta_2$ (mod 2) it can be find a matrix $A = (\alpha_i) \in M_M(\mathbb{Z})$

1) det A = D1

such that:

- 2) det A2 = A2
- 3) laijlank for 15ijeM