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Abstract We study the stability of the displacement of oil,through
a porous layer,by a less viscous fluid with a polymer - solute as
forerunner.We prove that the optimal viscozity prefile, in the ' case

of a thin region of polymer solute,istheconstant one.

V. kntreodnebion

It is well-known that the macroscopic boundary between the o1l

and the disvlacing fluid becomes unstable if the @iesplacing fluid

has a lower viscozity than the oil(for instance air or.water). It was
proved(see [l] ) +hat when surface tension is present,it has a po-
citive effect,limiting the range of unstable disturbaneces. - There =
fore it seemed a reasonable policy to use a polymer,with a high vis-
cosity and an important surface tension ggainet olly,as an. interme -

N

diate region between the displacing Fluid and oll.fn fael this. re-
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gion is obtained by the addition of polymers in dilute quan{itiesg
As in the intermediate region the viscosity profile'might be ob-
viously controlled,it is an important problem to find the optimum
gituation,that is to have the smallest range of unstable distur -
bances and moreover without infinite growth constant.

.'We suppose that the total amount of additive is~relative1y

ence,in non-dimensional variables,we consi -
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emall. ; ‘as a con
der 50 ,the thickness of the intermediate region,as a small pa-

rameter.Thus the growth constant 6 and the corresponding solu -




tion will bevapproximated by asymptotical expansions with respect
to £ . The first-order approximation agrees with the formulas given
in 1] and [ l which were obtained in the case without interme~
diate region. This problem was also studied in [3] ,where one can
£ind a numerical solution correspondlng to the most unfavourable
growth'constant valid%ted by an asymptotical analysis performed.in
._the cases. of small a%ﬁriarge quantity of solute.

. Here we prove that in order to av01d an: infinive value of B
the viscosity profile in the intermediate region would be constants

A posteriori,this result agrees with our assunption of small gquan-

tity of additive.

9. The non-dimensional ecuations

L@t O be the origin of the coordinate system Oxyz so that ne-
gative Oz direction is the direction in which the gravitational for-
ce acts.VWe consider a bidimensional flow in the plane Oxy, so that
positive OX direction is the direction of the velocity at infinity:
U= € B, 0) where U > 0(constant).The porous medium is enclosed in

’Lhe. layer y &€ ( 0 , L ). We study the £low of bwos finids od diffes
rent viscosities fkl and f&2 ( /Aﬁl< /AQ } separated by an in-
termediate region of interfaces X= (P(t,v) and Xx= \P(t,y)

The classical eguations governing such phenomena (see [3])are:
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(i) /* = /&1 for o =0t q>(t,y)
(2.5) /u = /42 for %= Ut > ql(t,y)

(2.6) fﬁ +u fir vt =0 forf Ot e s Tl L}’(MY)-
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where (u V). s D and q denote respectively the velocity's compo}~
nents,the pressure and the permeability. The indices x,y,and t de -
note the corresponding partial derivation.

On the material interfaces we have :

€2.1) [(u,vﬂgg i : ;
(0.8) ({t+ vay; u -0 on x - Ut =P(t,y)
(2.9) (] =5 Gy
(210) [m]2 =0 ‘)
eh X~ 1

oo et ue U b sy
(2.12) el
where [.] denotes the jump,lz is the unit normal of the corres -

ponding interface,while S and T are the corresponding surface ten-
sions.

The boundary conditions are:
: S ‘ =0k o =
(g 130 /4y v =0 ~Lom Ty and y = L

(o.1h) - Gwle= 0,000 o for X op oo

In the sequel we introduce a moving reference frame.for prac =
- tical reasons we also write the system (2.1)=(2.04) uinl dimensionless
form,defining

¢ it = . e
- ek oy, ) yy e

(@7 9"y =T e TG )

-1 * -1 ¥ SR
u*=—1+U o =l W= -JT-L.szU.p

fk fk fk ci f& f“1, (s ;? ) = qT L /L I;- (s,

where E)-O is a small parameter. Thus ,omitting the asterisks, the
system (2.1)w(2.14) takes the form
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B == ﬁ( 1 ou ) for x & R, ye (0, )
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g _fb = oL for‘ X (’?(t,y)'
(2.19) o = 1 I‘for p's >(P(t9y)
(z.20) 4

%uYLX¢ v:ﬂy; O for ?’(t,y){ x(<¥(t,y)
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2.26 L :
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(2.27) fLY: v =0 for y = 0 and y =TT
(2.28) G 50500 for x5 e bo

3, The stability analysis

hesuming that (€ 1/77 ) represents the thickness of the inter-
mediate region,we have as basic solution of the system (2.,16)-(2.28)

the following

o0 ‘F Se - xy%,y): 0
; .

.2) v

('CL for o x { ~1 : §*4$-£~(x+1)for x -1

(3.3) f& B i) cer 210 20 0 b)) =7 L Bl for SICHE

: 1, 1 fer 1.

s e O] ~En-EM(0) foxr x 20

where :
Mix) = Jff(s)ds.

1f we superpose infinitesimal disturbances on t+he baslie solu -
tion, that is if we take in (0.25)-(2.28) solutions of the form
e :
(3.4) w(x,y,t) = QB(X,Y) + sy T ezplich T)

~ where W represents u,v,p,fL,(p. andY) ,and 1f we neglect the dis-

fturbanece products, then we obtain the following stability system:




(3.5 ] %’EX-&QQ. -
(2.6) %?{X = .,/{B’ﬁ’ »F sL-for xeR , Y& (O,yr)
lad S 'BN
(307) Py = "”I,L Y
o) a0 o meiloe, 1)U (0 , 00)
(3.9) G 4 l’ECfLB =0 for x€ (1,0 )
. £ %

o [ -0 ) o
@11 GTiF = %(E'“' Con( fop X = =l
(&, 12) [p] + Sp [px] € SSO e
o 8] = 0 z
Ga o5 - %CJ : e 0

e 7 B o r
.5 ol U [22] =2 1@, J
(3:16) fzy: Y o= 0 for y = 0 and y =TT
G Lo el mrox s G
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Remark .l -4 ? ==l % @ exp(ﬁft ) and neglecting the distur-

bance products ve have

B B : ‘ it = B
P (waterﬂ = D (water)‘ 4 (pexp(ﬂ-t)-pi(waterﬂ
x= Xx=-1 : X=~1
s N :
P (waterﬂ = P (waterﬂ
X=0 K= )
from which we obtain
B ~
p(water)\ = P (waterﬂ” +exp(6’t)p(waterﬂ 4
. X=-1 j x=-1 .

X:?
, -5 i
+:60 expl Ot Y. p2(water)
(f X I X:_l
and consequently

[p]xz? lﬂr]x%l exp(07t) + Y)[p‘]xz_.l exp(§ t)

where [:1X:q9 denotes the Jjump across the inberface X :gpnThus
(3.12) is obtained from (a3 ). O

Since ‘the systen (3.5)-(3.27) is linear,aiy real solution can



-
be decompoch into 1ts Pourier components ahd analyzed separately.
Taking in account (3.16),(3. 53,(3.13) and(3.17) we ape lead to the
following form of the disturbance velocity:

(3618) u = £ kgg(x)-cos ky N k-g;(x)_sin ky

where g is continous and satisfies aiso'

(3.19) elx)—=>0, gilz)—>0 agd X-—+ =4 o0,

_ From now on, as in (3.18)-(3.19) we omit the éotation e . 7

. Using (3.6)=(3.7) we obtain in a straightforwérd manner
(3.20) P :

It

CiA kE exp( € k(x+1)) + C3 s
for xoa =ik

(B3.21) g = C exp(€ k(x+1))
.22) Do == Czii'k-exp(-g k-x) 4+ ¢y

for . ot > 0
(5.23) s 02 expl-ek.x )

For the intermediate region,with (3.3)and (3.18% from (3.9)
(3,11) and (3.14) we obtaln:
st o ¢ ~Lier (x)- () cos Ky
(525 = ~G"1V2 Cy-cos ky for we i, O
(3.06) ‘y = -5 -1k ¢ ‘2-003 ky

Using again (3.6)-1(3.7) we ééf
(o) p = ffx) gile) cos ky + G for— x & -1;.0)
where g satisfies
(3.28) Cooae )i gl e = (3“ 12,00 g for xe(-1,0).
The jump conditions (302 ond (3.05) wield:
(3:.29) Cyon 8 56

it

(3.30) f(-1)g;(~1) C (0 “Lile (olaf( 1))+ AE G =hte o

gl i el o)) - e gioT ke D)

]

(3.3} £0) g3(0)
where the subscripts T and P indicate the right anad left derives
tives.

Tt is obvious that we get the solution of (3.5)=(3.17),corres-
ponding to the wave number k,as soon as we solve the eigenvalue pro-

blem consisting.of the differential equation (3,28) subjected to the




myﬁ .
continuity of g and the boundary conditions (3.30)-(3 0 1).For this
we use an asymptotic expansion with respect to the small parameter
&0

(3"32) : {); :Z/ ygmo g s G-o.-]': Z 6 rn"
m 0 M e moe

Fntrodneing (500 s a(3428),(3.30]) gud (3.31), and equating
the coefficients of the same powers of & we get a sequence of pro-
blems from which g and f?n] are succesively obtained,The first
problem( € © - order) yields .

(3.33) §§X) =l mexe (=15 0 )

Taking in account that g is continous on R, then (300, (0.2 and

(3.33) Imply

(3.34) 6, =67 =6

The second problem( g 1 order) is the following:
(3.35) f(x)gx)+£ (x)g! (x) +’? K20 wnlx) =0 ‘for xel(=10)
1 : i o) o}

(.36) gl(—l) =g 0) =0

i

(5.37) f(—l)gi(—l) OO(‘QOkZ (of « £(=1)) + 0k +7zok4s)

(3.38) £(0) g:’L(O) cO(QOk?— Ca- gt i YZO}:AT) e

Now., let ws motice thate( .05 ) s e Mavalent o
9 Q

29 e gi(x) = ~T2Ok260-f(x) + Cﬁ ok Co constant ) .
Next, the relation (3.39) ,together with (3037)m(3.38),yield
(5.40) YZO = k"l(O(+ i )-E;{l

where He- = ( G ngh) o (1 S ) k2 ,Finally we obtain:

(3.42) {1(x) = Yzokzco (N (oiln(x) %= 1

where Hloe) = jﬂ =1(s)as
-1
We have to remark here that (3740) aprees with the eigenvalue
obtained in [1] and-[Q] ywhich corresponds té the case without in-
" termediate region.

L S e e e e e L ) vefore,the following



Chir
result: |

(3.42) Yzl - ((ﬁ?-fs)21c4'u2(1~o<)(tn+s)1c2u4o<)131;31‘4(0) +

oo '
At the gecond ~order ap@roximation<?is given by
2

C ) : - tonse v £ o+ 0E)

( ) v Y20 Yzo YZlg
and using (3.40) and (342 b follows

: S e i .
(3.48) O = (o) Rhm, #0610 22 (3 (1) (H(0)(0) )Py (0D V€ +

& 0(E %)

1f M(0)N(0) > 1 it is sbvlous that for X elose toN(1-ehy/ (18]
we have high positive values for O . In order to avoid this situation
and because M(O)-N(O)Q} 1,it seems reasonable to impose the condi -

tion 1(0) - N(0) = 1.This is equivalent to

il

(5.15) £2lx) = conste o el 0.

The above relation can be obtained in the following way

0 e 0 '
/(@ - w0/ Ve(x))%ax = /(f(x)nzz.t(o).;-mi(-o)z/f(x))dx =
= ] .

= m(o)-(r\:(o)-n(o) S e
that isy £{x) = M(0).

Hence,the final expression of 6 is

O ol ) im el )% %5, (0)-E + ole’)

and the limiting effect of the intermediate region upon the range of

unstable disturbances is clear.
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