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1. INTROBUCTION

1.1 Amenability for a class of ordered groups. If G is a discrete group and P is

a subsemigroup ;f G, the C*;algebra generated by the compression to 12(P) of the left
regular representation of G (or, equivalently, of ll(G)) is called the C*ialgebra of the
Wiener-Hopf operators on (G, P) and is denoted by W(G, P). In this paper we study a
class of pairs (G, P) with the property thatW(G, P) is generated by isometries. The
C*—algebras generated by one-parameter semigroups of isometries studied by R.Douglas in
(51 and the Cuntz algebras are obtained as (or at least related to) particular examples.
Moreover, the uniqueness properties which are known to hold for these Ck;algebras (see
JiLuntz [3}, R. Douglas (5]) are interpreted as being related to the amenability of
the corresponding (G, P)'s, and may in fact be deduced from amenability phenomena
combined with an analysis of the ideals of “W(G, P).

We call the (G, P)'s we consider "quasi-lattice ordered groups" (it is not a
standard notion ; the precise definition and some examples will be given in the next
section). This is the context discussed everywhere in the present section, without any
other mention.

In order to make things more explicite, let us consider the simple example of
(z,N), and make the connection with a well-known theorem of L. Coburn (see [?]), which
asserts that the C*—algebra generated by a non-unitary isometry on a Hilbert space does
not depend on the particular choice of the isometry. It is convenient to view this
theorem és being implied by the following two facts :

lo For any isometry V on a Hilbert space H there exists a unique % - representa-

s ;
tion T C (S)—2£(H) such that TM(S) = V, where S is the unilateral shift on 1ZGN)



and C*(S) is the Cx;algebra generated by S.

7 Any non-zero closed two-sided ideal of C*(S) contains the compact operators.
Indeed, assuming 1° and 2° true, consider the non-unitary isometry V on the Hilbert
space H, and the %giresponding representation T given by 17 e were not isometric,
then its kernelcggntain by 2° the compact operator I—SS*, implying I—VV*=TT(I—SS*) =0,
a contradiction.

Now the Wiener-Hopf C*—algebra of (z,N) is"'W(z, N) = 8*18), and an isometry on a
Hilbert space means a representation by isometries of W on the corresponding space.
Hence assertion 1° above means exactly that any representation by isometries of N can
be uniquely extended to'W(Z, N). This is.one of the possible definitions for the
amenability of a "quasi-lattice" ordered group, applied to (Z, O).

The use of the term "amenability" is justified by several equivalent reformula-
tions, resembling the amenability of (unordered) groups :

iz Besides W(G, P) one can construct a universal C*;algebra C*(G, P, which has.a
canonical ¥ -morphism ontoW(G, P). (G, P) is amenable if and only if this % - morphism
is one-to-one.

2o The universal C*~algebra C*(G, P) has a remarkable abelian C*;subalgebra, and
a canonical conditional expectation onto it. (G, P) is amenable if and only if this
conditional expectation is faithful.

30 Among the positive forms on C*(G, P) there are some which are, in a certain
natural sense, finitely supported. (G, P) is amenable if and only if these forms are
weak* dense in the space of all positive forms on C%(G, P).
| 40 Under a suitable natural definition for a positive definite function on PP_l,
the amenability of (G, P) is implied by the existence of a net of finitely supported
positive definite functions on PP~l which converge pointwisely to 1 (but we do not

know if the converse is true).



(G, P) is always amenable when G is amenable in the usual sense; this comes out
directly from the assertion ° above. With a simpler proof we can derive the probahly
weaker result that (G, P) is amenable if P is abelian. Quite surprisingly, (Fn, SFn)
is also amenable, where.Fn is the free group with n generators, and SFn thé semigroup
generated by a free family of generators. The amenability of'(Fn, SFn) is equivalent
to the unigqueness property of the Cuntz algebra Dn.

A non-amenable example would be given by a (G, P) such that PPt = g and P is
non-amenable (in the usual sense of invariant means o f”(P)); but we cbuld not find

such a concrete example belonging to our considered class.

1.2 The"crossed-product type" structure of W(G, P). All our results depend on

a description of W(G, P) which is very much alike the one given to the crossed.product
of a Cxlalgebra by a discrete group. More precisely, we can define for any x in PP~-l a
closed sub5p80833X of W(G, P) , called the diagonal subspace of x. The spaces

%;Dx |- € PPAI} establish, in a weakened sense, a direct sum decomposition of W(G, P)

and obey the multiplication and involution rules:

D
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{0V, if not,
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andf,DX =$X_1 T partlculari) :;be (with e the unit of G) is a C -subalgebra of
@__M%";’V‘_Bigg ol

“W(G, P), called the diagonal subalgebra;it is found to be¥abelian . For any x in PP

we have a canonical Banach space isomorphism betweerlilarmiikp given by a multiplication

operator. The form of the isomorphismsjjéf?ikisuggests a set of (not necessarily uni-

tal) % -endomorphisms Q(X ;!x € PP_l}'ofgb. In addition, there exists a canonical con-

ditional expectation E:W(G, P)—>3P which can be transported with the aid of the

; ; : : ¥ ; ; -1
canonical isomorphism to give a projection of norm one ontoﬁ%v forzany x in:RE =,



Hence, informally speaking,*W(G, P) is a kind of crossed product ofjﬁ by the action
4, | xeprlY o ppol,

Now, W(G, P) is actually the analogue of the reduced crossed product, the
analogue of the full crossed product being the universal C¥ialgebra 6¥kG, P) mentioned
above. This is Seen-by considering covariant representations. One naturally expects
such an object to consist of a « -representation g ofjb and a."representation”éJ of
PP_l on the same Hilbert space, tlght together by the covariance relation §(01 (X)) =

L) g(X) U(x) Noee pp~L N X €D, In our approach, both € and U are determined
by a representation by isometries of P enjoying a precise property, which will also

be called "covariance". éka, P) is the universal object obtained by enveloping all

the covariant representations of P, while™W(G, P) is associated to a remarkable
covariant representation W:P —¥(12(P)) which will be called the Wiener-Hopf
representation.

The remarks on covariance make clear why a necessary and sufficient criterion of
amenability is :"Every covariant representation of P can be extended to WG, P)".:In
the case of a totally ordered group, and in particular of (7, N), every represen-
tation by isometries of the semigroup is covariant. But for instance in the case of
(Fn, SFn) a representation by isémetries of the semigroup is determined by n isometries
on the same Hilbert space (the values at the generators) and it is covariant if and
only if these n isometries have mutually orthogonal ranges; this explains the relation
with Un’

We mention that in his paper (10} , G.Murphy describes the Wiener-Hopf
df—algebra of a totally ordered abelian group as a corner of a crossed product
.C*—algebra . In this case (which enters our context) his approach and ours have common

points, but do not coincide.



1.3 Induced ideals As we saw at 1.1, the theorem of L.Coburn can be derived

from the amenability of (Z, N) combined with a precisation concerning the ideal struc-
ture Qf"W(Z, N). It generalliseems useful to have some information about the ideals of
"W(G, P). In this paper we put into evidence a class of ideals which are obtained from
the invariant ideals of the diagonal subalgebra by an induction process ("invariant"
means 1nvarlant to the % -endomorphisms {}( | x PP 1}'of T 2t

There are several possible definitions of IndTI(fIczgﬁ closed invariant ideal),
which coincide under suitable hypothesis-for instamce if G is amenable :

1° We writeI as the kernel of a representation ?of P,we induce § to a repr‘e—
sentation of “W(G, P) (in the sense of {157 ) and define IndJ = |er 1T .
’ 2° 1nd %t =L TeWs, P ETFTeT} with'E:W(B, P) — the conditional expectation
(compare with  Lemma I 2.2 of U167 ). |

30 For any T in"W(G, P) we take the projections of T on the diagonal subspaces
{ﬁl | x € PP” } and tranegﬁort them 1nto§b with the canonical isomorphisms ;ﬁ ——%jj
(XEPP- ) obtaining thus a family of "coefficients" &T | x € PP l} We define T to
be in Indd if and only if all the T% s are in?J (compare with Definition 4.15 of El9}).

40 Ind?} = the closed two-sided ideal of “W(G, f) generated byl (compare with
Corollary I 2.6 of (16], Proposition 5.10 of (19]).

- The mapJ —> IndJd is one-to-one , with inverse}ﬂ}f\i), and its range

consists of the closed two-sided ideals of W(G, P) which are invariant to the

conditional expectation. Generally, these are not all the closed two-sided ideals of

WG, P).

1.4 Applications The spectrum of the diagonal subalgebra;b can be canonically

identified to an explicitely described Space.(lhaving as elements a class of subsets

: of P Taklng into aceount the 1nductlon procees £ can be used as an 1ntermedlate llnk

in finding Connectlons between'W(G P) and the order relatlon determlned by P on G.



As an application we can prove that”WfG,'P) contains the compact operators if
and only if there exists a finite subset of P\{ e% which contains a lower bound for
every element of P\iie}f(the last condition always holds when P is finitely generated).
The proof is done by passing through the equivalent statement : "For any t in P, the
interval [e, £] = {a €P lasttisan open point of ()". The implication " Ce,t]
open, ¥ t € P ="W(G, P)2 X" was proved by P.Muhly and J. Renault in a more general
case (see Corollary 3.7.2 Of[f9]), and they conjecture that its converse also holds
in general (see [9], 3.7.3). We note that W(G, P) DX is a necessary condition for
W(G, P) to be type I, because "W(G, P) is irreducible ; this condition is not
sufficient CWTFH, SF )2 X, but it is not type I because‘WZFn, SFn)/ﬁk = Un).

For an other application, let us consider the Theorem 1 of CS}, which can be
stated as follows :"If the totally ordered abelian group (G, P) is archimedean, then
any two non-unitary representations by isometries of P generate canonically isomorphic
Cﬁialgebras”. This is equivalent to the fact that, in the considered setting, any
non-unitary representation by isometries of P extends to a faithful representation of
W(G, P), and a proof may be given on this line. It is interesting that we can also
prove ”tﬁe converse"; more precisely,for a totally ordered abelian group (G, P) there
are equivalent : lo P is archimedean ; 2° any two non-unitary representations by
isometries of P generate canonically isomorphic C*—algebras s jg the commutator ideal

of W(G, P) is simple. (Remark: 2°=> 3° ig proved in (5], too.)

1.5 The Wiener-Hopf groupoid It is known that, in a more general case than the
one studied here, the C*lalgebra of the Wiener-Hopf operators can be presented as
Cfié(é), withé; a locally compact groupoid ({97,0111,112]). In the present context,
é;.can be got by transposing the action{}<x |x € PP—{} considered at 1.2 on the spectrum
DNofP ; the action of PP™L onobtained in this manner is only partially defined,

and gives exactly a groupoid structure (this isgi).



The groupoid interpretation has turmed out to be extremely useful during the
preparation of this work. Neverthefess we have decided, for lack of space, to omit in

the final drawing up, and discuss it separately in a future paper.

plo FﬂIhalﬁy let us make a brief review of the sections into which the paper is
subdivided. In Seétion 2 we present the "quasi-lattice" orderedlgroups, and show that
their Wiener-Hopf C*;algebras are generated by isometries. In Séction 5 we put into
evidence the "crossed-product type" structure of W(G, P). Amenability is discussed im‘a
Section 4. In Section 5 we consider two important particular cases:at 5.1 we shaw how
the uniqueness property of the Cuntz algebra implies the amenability of the free
ordered group ; at 5.2 we consider the totally ordered abelian case and we give a
simple proof to a generalization of the Theorem l(ﬁf[S}, due to G. Murphy (Theorem
2.9-of L10): ).  The Eish section, which is the last one, deals with the induced
ldeals ; it also contains the two applications announced at 1.4. In an appendix

we prove that the diagonal subalgebra is maximal abelian.

2. QUAST - LATTICE ORDERED GROUPS

2.1. Definitions By an ordered group we shall understand a pair (G, P), with G

. & (not necessarily abelian) discrete group and P a subsemigroup of G. We shall always
e = L2

assume that P\Q:gives the unit e of G, where Q = P 1 ; this implies that x £ yéﬁ@é

x—ly € P is a paptial order relation on G (it is called the left invariant order

relation induced by P).



B i

It is clear thatl°=:{x € Glx > é%and Q =KX € Glx < e?r. An important roie will
be played in what follows by the set PQ ={ pqlpe;P, qe:Q} which can be also described
in terms of "<" as %}:6 G| x has upper bounds in P}'.

The ordered group (G, P) is said to be quasi-lattice ordered if the following
condition is satisfied :
aL) For any n » 1, any Xps+++s X, 1n G which have common upper bounds (oaitb)

in P, also have a least c.u.b. in P.
This condition can also be expressed in a weaker fofm, i.e. (QLSALL) + (QL2), with:
(QL1) Any x in PQ has a least upper bound in P 5
(QL?2) Any s, t in P with c.u.b. have a least c.u.b. ;
(the proof of "&- " is easily done using induction).

If (G, P) is a quasi-lattice ordered group and xq, ... , Xn 1n G have c.u.b. in
P, then their least c.u.b. in P will be denoted by(Y(xl, s xn). In particular,
the least upper bound in P of an arbitrary element x of PQ will be denoted by 67(x).

We shall also use the notation B(x) = x_lGT(x),%fx<£ PQ ; &(x) is in P, because
x £0(x). It can be seen without difficulty that G’(x—l) = 6(x) andl(fl) =Tl
Fxe Pq.

The name "quasi-lattice ordered" is Justified by the fact that lattice ordered
abelian groups are quasi-lattice ordered. To be more precise, an ordered abelian group
(G, P) with the property that any two elements of P have a least c.u.b. is
quasi-lattice ordered. Indeed, this hypothesis is exactly (QL2) (we take into account
that in the abelian case, any two elements of P have c.u.b.-their product for instance).

.In what concernes (QL1), it suffices to note that for any x in PQ and for an arbitrary

' writing x = st~1 with s, t in P, G (s, t)t_1 is the least upper bound of x in P.



2.2 Elementary remarks Let (G, P) be a quasi-lattice ordered group.

1° For any x in PQ, the set :
(1) A s eimic e )

will be called the diagonal of x. Clearlyg-%[&x | x & Ffﬂgis 8 partition of Px Py it
is important that each A&X is canonically put into bijection with P by the map :
PO & —3 (G (x)p, B(x)p)€ AX (we leave the simple proof to the reader). So an

1

(s, t) € PX P is determined by x = st "€ PQ and an element p € P such that s :G“(x)p>

t =%(x)p ; x and p can be thTought as "diagonal coordinates" of (=

i s, t € P have c.u.b. in P if and only if S-lt:é PQ. If this happens, then
St = sleits, ).

" 11 —]- - - ._.
Brvef -l bl 5 g 157(5, )t 167(5, i PQ ; at the same time we get
G/(snlt) < snlév(s,t). R s(s_lt) = SG(S'—lt) and obviously s < SG‘(S_lt-),

hence s and t have c.u.b. and 6(s, t) < sG(s 1t) (& S—lEr<8, t) < G(s1)). QED
3° Let S, tl, E_be Tpe tland t2 have c.u.b. if and only if stland st2 have.

If this happens, then Gf(stl, 5t2) =g Gftlﬁz). (These assertions immediately follow

from 2° .)

2.3 Examples

io Any totally ordered group is clearly quasi-lattice ordered. In particular,

if G is a subgroup of R and P = 6n{0,20), then (G, P) is quasi-lattice ordered. By

a theorem of Holder (Seelf7] , Chapter IV, Section 1, Theorem 1) any totally ordered

archimedean group can be put into this form.
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G .
2. Dirept products. If {,(Gj’ Pj) e Js n} are quasi-lattice ordered groups,

then so is (Glz e X6, Py X ...><Pn), too, because the order on it is the "product
order'. Inpapticular, 4t {.Gjll Lo rl}are subgroups of R and if we Pt B <=
=B ...xG , P =6al0,00" ;i then (G, P) is quasi-lattice ordered .

3° Semi-direct products Let (G, P) and (H, R) be quasi-lattice ordered groups

such that G has an actior1§)by automorphisms on H, and such that R i£u§~invariant. iin
is then easy to see that Px R gives on G)<§§H the product order ; this enﬁails that
(G>455H’ Px R) is quasi-lattice ordered.

In particular, we may consider thg action of ((0,30),+ ) on (R, +) by
multiplication, which leaves fixed the semigroup [0,0°) C [R, and obtain a natural
quasi-lattice ordering on the "ax + b" group (with positive semigroup [1,90) X [020)).

40 Free groups Let Fn be the free group with n generators. We fix a free family

of generators of Fn’ S8y 81,...5 3, and denote by SFn the semigroup generated
by it. We claim that (Fn’ SFn) is quasi-lattice ordered. To prove this, we first re-

mark that for any t in SFn the set {s € SFn e t}'can also be written as

8s = Trwith £ = a. @y .00 8e the “spelling”
I } J1 7 I

of t, and is hence totally ordered. This implies that any s, t in SFn which have

8 el ey oA e e T
_{e * ajl’q& aJlaJZ 7 ¥ ‘Jl 32

C.u.b. are comparable; consequently, the greater one of the two elements is also
their least c.u.b., and (QL2) is satisfied. In what concernes (QL1), it is easy to see
thet any x in (SFn)(SFn)—l has a unique reduced writing x = st~1 with s, te& SF_, and
thatSi)-= g,

Using a slight adaptation of this argument , one can prove without difficulty
the more general fact that if’%ﬂGi, Pi) | ie Id} is a family of quasi-lattice ordered

groups, then the free product ( %- Gi’ X Pi) is also quasi-lattice ordered.
; e i aed iel ek
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5% 1£ 6= ((0,%), - ) and P =U¢\{O} , then any two elements of P have a least
C.u.b., which is their least common multiple, and any element of 6.= PQ has a least
upper bound in P, which is thé numerator of its unique representation as an irreduci-

ble fraction.Hence (G , P) is a quasi-lattice ordered group .

el
6O Let us also give some counter-examples. If G is (O b , a, b, ce Zi%
D=

(the Heisenberg group), and if we define P by restricting a, b, ¢ tolN, fhen we must
regretfully say that (G, P) is not quasi-lattice ordered. Also, there exist dimension

groups which are not quasi-lattice ordered (see Section 3 of [6].

2.4 Ve now prove that the Wienmer-Hopf C*—algebra of a quasi-lattice ordered

group is generated by isometries.

For any ordered group (G, P), the Wiener-Hopf C*lalgebraﬂN(G, P) can be defined
as the C*~5ubalgebra of &£(12(P)) generated by %jﬁ\(x) e Gj&with./\:G—S’éi(lz(G))
the left regular representation and J : 1%2(P) —> 12(G) the inclusion operator. For any
t in P, the operator J*l\(t)CT, which will be from now on denoted by W(t), is an
isometry; it is determined by the fact that W(t)éﬁa = éta,\fa € P, where (é;a>a€:P is

the canonical basis of 12(P). We note that W(s)W(t)

1l

W(st),¥s, t &P, and that
W(e) = Ilz(P) , i.e. W:P—&(12(P)) is a representation by isometries. W will be
called the Wiener-Hopf representation. :
Let us remark that (in the case of any ordered group) JXZX(X):} = 0afn ¢IPQ;

indeed, it is immediate that :

. Sxa wif xa€ P,
CHBRECE

0 ., if xagtP,

L5 .
so that : J A(x)J # 0= Ja € P such that xa €EP=> x & PQ. Hence we can also write



2ol

WE, P) = ¢ ({IA03 | xe Pa}).
Assume now that (G, P)is quasi~1attice'ordered. An easy computation shows that
for any x in PQ and a-.in P :
o i) o
(3} WECMR)) S, =
0L %) %a ;

but & (x) < a@@’(xkl) saedxt £ aéopxa€ P. 50 (2) and (3) imply J?\(X)J

L WEOINGELO) W Bl i ks olat that WG, P) = C (-{w<t> e Py

Hence”W?G P) is indeed generated by isometries.

3. THE "CROSSED-PRODUCT TYPE" STRUCTURE OF W(G, P)

In this section we fix a quasi-lattice ordered group (G, P).

-
3.1 The diagonal subalgebra. We make the notation M(t) = W(t)W(t) = the

multiplication operator with the characteristic function of %a (e | Q2T },‘Vt &P
and define P = clos sp{M(t) | te€ P} . It is immediate that :

i M, o)), it o amd trhave eoub
(4) M(sIM(t) =

0 , 1T they haven't.

This implies that-{M(t) Lot P}(J {O% is a commuting and closed under multiplication
famlly of selfadjoint DrOJeCtJODS of'WTG P and makes clear thatjﬁ is an abelian
C*lsubalgebra of‘W(G P) jﬁ LS also unltal because M(e) = 1 P L w111 be called
the dilgonal subalgebra of*WﬁG, P). (~Remark,: it can.be shown that;ﬁ is maximal abellan'

- see the appendix. )
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3.2 The "picture" of W(G, P) The name ofjﬁ is Justified by the following

I
Proposition : The operators {W(S)W(t) [ s, t e P}-are linearly independent,

and their linear span is a dense unital % -subalgebra of WG, P).

Indeed, the proposition asserts that, in an informal sense, W(G, P) is "the
closed linear span of Px P" ; in the same informal sense, P is the closed linear

span of 138 s the principal diagonal of P X P (see relation (1) of 2.2).

X
Proof Let us suppose that {W(s)W(t) [s, t € P}’are linearly dependent. We can
then find {-}j e <p } ir1¢3>?0} and‘{(sj, tj) |1 i n_} with (sj, tj) #

# (5,5 b fon Jidok,suphthat S -

A W(s NCE, ™ = 0. We have of course.n 7
o R

* %
because W(s)W(t) can never be zero (W(s)W(t) é;t = 55). The finite set {tl,...,tn%

must contain an element tk which is minimal, in the sense that for any -1 & Jg.n,

tj < tk implies tj = tk‘ Bt

0= ( f/\j W(Sj)W(tj)x)gt R T T 9 polp

j=1 K Fon i
tjstk
implies that there exists at least one j # k such that tj < tk and sjtgltk g
for such a j we clearly obtain tj = tk, Sj =8 - contradiction.

For the rest of the proof it clearly suffices to show that
{~W(s)w(t)*-| s, t € P}(J'{O} is closed under multiplication and x-operation. The last
‘)fact is clear. To prove the first one,we remark that if for arbitrary t and u in P we
multiply tﬁe relation (4) of 5.1, written for t and u, with W(t)*.at the left rand with

W(u) at the right , we obtain :



Lt

2

'5 W(t)*‘WOSTt, u)) W(@(t,u))% W(u), if t and u have c.u.b.

*—.
W(t)  W(uw) =
?\ 0, if they haven't.

But:

HCE ™ UG, W) = W™ Qi) weEIseE, W) = e, w),
X v X
and similarly WG (t, u)) W(u) = W(u %Y(t, u)) . Hence for any Eoulisiine P 5

W(t_lG(t, u)) W(u-lG(t, u);$  if £ and w havess.u.b.
X
W(t) W(u) =

0, if they haven't ,
and it becomes clear that for any s, ; (S T 86 oo - o

W(st_ld(t,u))W(vuhgf(t,u)) , if t and u have c.u.b.,
(5)  (W(s) WCE) (W) (V) =
0, if they haven't.

QED

3.3 An other justification for the name of D is given by the equivalent

characterization :

;ﬁ f§~T €W, P) T has diagonal matrix relatively to the canonical j}
basis of  12(P)
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Proof.  Every M(t) (t& P) is diagonal relatively to the canonical basis,
because :
§, 5 ifazt,
(6) M(t)E, =

0, otherwise.

Since the property of being diagonal can be.passed through the closed linear span,
We get. el

In order to prove "2 ", we denote by;ﬂo the C*lsubalgebra ofPL1%(P)) consisting
of all the operators having diagonal matrix relatively to the canonical basis. It is
an easy exercise, which we leave to the readery to prove that there exists a linear
and contractive map Ej : $(1*(P)) ’“’Sbo determined by the following rule : the matrix
suot EU(T) (relatively to the canonical basis) is obtained from the one of T by
replacing with zero all the entries which are not situated on the principal diagonal.

If s £ t, then EO(W(S) W(t?&) =0, because for any a in P :
* * ;
Cuis) W) 6187 = <W\Et> IRTOF I

<6t”1a \85—18>, ifs, t<a,
0, otherwise -

: ¥ ¥ *
On the other hand EO(W(t)W(t) ) = W(EW(t) ,¥t € P, because W(EtIW(t) = M(t) is
diagonal. Hence the closed linear subspace%\TGE"W(G, P) | EO(T)Gf;ﬁ} of “W(G, P)
X .
contains W(s)W(t) for any s, t in P, and therefore must be W(G, P) itself, by
Proposition 3.2. Finally, if T in"W(G, P) has diagonal matrix relatively to the

canonical basis, then T = EO(T)egﬁ. QED
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3.4 A finst evidence thatW(G, P) has a "crossed-product type" structure is

obtained by remarking that:ﬁ is only one of the diagonal subspaces of ‘W(G, P) that
can be considered. More precisely, for any x in PQ we can define the diagonal
subspace of x,;ﬁx =:glgs 5p {W(S)W(t)* | ts, £) 2 sz} (Ax is defined at 2.2,
relation (1). Clearly :;ﬁe') The subspaces {fbx Be= PQ} obey the following rules

of multiplication and involution :

@,, » if xy is still in PQ,
(7 DD, ¢ (¥x, y e PO,

{0} , otherwise,
X
(8) ;ﬁx ::’bx'l (¥x € PQ).

The formula (8) is clear. To prove (7), let x, y be in PQ such thatjﬁéﬁy £30%;
then there exist (s, t)€ C;x and (u, v) € [ﬁy such that (W(S)W(t§%>(W(U)WGMj%) 4.0,
According to the relation (5) of 3.2)t and u must have c.u.b., and the product is
(W(st_lsft, u)) W(vu-lc(t, u)gé.But (St-lﬁ(t, u))(vu_%r(t, HheE xy, and this makes
clear. that xy € PQ and j)X;Dy g.’,f)xy.
| Moreover, Proposition 3.2 implies that the set of finite sums of elements of
theﬂb; s is a dense linear subspace of W(G, P). It can be shown that every element T

of this subspace has a unique writing T = E Tx’ with T>< GJJX,Vxe PQ(TX# 0 only
xePQ ~°

for a finite number of x's). Hence, in a weakened sense, the diagonal subspaces .
establish a direct sum decomposition of W(G, P).
Using the method of 3.3, one can describe the operators belonging to a given
1ﬁx in terms of their matrices relatively to the canonical * basis. This description
offers~a.better understanding of the picture of "W(G, P) ; but however, since we

shall not be using it annyhere in the paper, we leave its details to the reader.
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3.5 A second evidence for the "crossed-product type" structure of‘W(b B s

given by the fact tha%‘any X in PQ, the map X—>W(s(x)) X W(E(X)) is an
isometric isomorphism (of Banach spaces) between ) :gﬁe andﬁDX; its inverse is

gf)xa“( — W(G’(x))*Y W(g(x)) €PB. The only non-trivial point in the proof of this
fact is that for any (s, t)é:ﬁsx we have, putting Y= W(s) W(tjx, that

W6 Y W(©e)) € P and that W(e’(x))QJ(b’(x»* & w(e(><)>j W(a(x)f‘ =Y . In order
to show this, we take the diagonal coordinates of (s, t), i.e. we write

s =8(x)p, t =%(x)p for a uniquely determined p in P (see 2.2.1 ), and we easily
get: W(G(X>) Y W(@(x)) = M(p) e, WE(x)M(p) W(G(X)) = W(s) W(t) =

3.6 A third evidence for the "croseld-product type" structure of ‘W(G, P) is

the existence of a canonical conditional expectation of “W(G, P) OWUJIL More

precisely, we have the following

Proposition : There exists a unique bounded linear map E :W(G, P) —% such

that for any s, t in P :

L, (e e | if s =t
B T =
b afoe 20

-E is a conditional expectation.

Progf. [ sef12 (P))">QDO considered in the proof of 3.3 glves by restriction
and corestrlctlon a contractive linear map acting as in the statement of the propo-
sition. This proves the existence of E. Its unigueness is clear (from 3.2), and the
fact that it is a conditional expectation is immediately implied by the theorem

of Tomiyama. QED
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Corollary For any x in PQ there exists a canonical projection of norm one

kg of WG, P) ontoﬁix, determined by :
Ws) WCET , if (s, e A,

I

*
EX(W(S> Wit) )

0, otherwise.

1"

(0f course, Ee B

* X
Proof The map T—> W(S’(x))E(W(G(x)) T W(é(x))} W((x)) is easily seen to
have the properties requested in the statement of the corollary. On the other hand,

the uniqueness of EX (with these properties) is obvious from 3.2. QFD

Remark : E is faithful Indeed, taking into account that E is obtained from

Eq :3P(12(P)) ~$ﬁbo defined in the proof of 3.3, we easily obtain the formula:
(9) CEMS, |6,.) - 18, 18.) ,¥TeWs, P), ac P

So, if a positive T€W(G, P) has E(T) = 0, then : HﬁgaHz = <Tga"éa>
:<E(T)8a f&a>: 0, ¥aeP, hence YT =0 and T = 0.

E is always faithful because actually 'W(G, P) is the analogue of a reduced
crossed product ("of P by PQ"). An analogue of the full crossed product will be

considered in the next section, in connection with amenability phenomena.

3.7 The action:of PQ onaﬁ The last three subsections indicate that, iman

: x
informal way, W(G, P) must be the analogue of a (reduced) crossed product C -algebra
”of;ﬁ by RO IL is bellevable that there exists a natural "action" of PQ on@@

Connected to this Crossed product Structure Recalllng the way thlngs look llke in
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the theory of crossed products by discrete groups, it is also believable that the

map{,ﬁ — 0 given by an x &€ PQ must be tight to the canonical isomorphismd) —?3’))(

of 3.5 . A natural candidate is :
D) X0 = (1660 HEeoS) x (1600) W)Y, + xe Py, ¥xed,

which makes sense and is a X -endomorphism ofﬂﬁ, by the following

Proposition and Definition : For any- s, t in P, the map

X * g *
X ~—§<W(s) W(t) } X (W(s) W(t) )~is a (not necessarily unital) * —endomorphism

: . : oL
of{,f), denoted by O{s,t‘ We briefly write o(x instead of T (x) B(x) (¥xe PO

%
Proof It suffices to show that for any t in P, X—=> W(t) X W(t) and
%
X=2 W(t) X W(t) are % -endomorphisms of . Tt is obvious that these maps are
% -morphisms cﬁ?i)into“W(G, P). (Let us check for instance the multiplicativity of

the’second. Ear + e P iand Xl’ Xz'in:D we have :

M X WD) (et ) %, () =

w(t)ae Xp M(t) X, W(t) =

w(tgé M(t) X1 X, W(t) = W(t)* X1 Xy Wit),

where we used the commutativity of £ and the fact that W(t) M(t) = W(t). ) So all
we need to verify is that the two considered maps take values MWiL I¥ clearly
suffices to make the verifications on the generators {M(s) lsie ﬁ}'of'ih But simple

computations show that for any s otiam P

(11) HCE) M) W(eY = M(ts),
: M(t_ls(s? t)), if s and t have s.u.b.
(12) W(t;eM(S> W(t) =
0, if they haven't.
QED



200

3.8 Remark We can sum up the results of this section into the formula
W, P) = ﬁb>4d‘PQ" (with of defined at 3.7). Now, of course, PQ is not generally
a group (see for instance the example 4° of 230~ Exena it it is, it does not "act"
onﬂj by automorphisms, but only by a class of not necessarily unitalié—endomorphisms,
which is not closed under composition. (Indeed, the semigroup generated by
{uﬁ | xe PQ} is {94 t e b e P} when any two elements of P have c.u.b., and

{o(s 4 ls e PjU'{U} in the opposite case. The only observatlon needed to prove

. ; o ] : i
this, besides a trivial use of relation (5) of 5.2, -1s Bhak b(s,t aé’&(e,t

=°<; -1 ¥ s, t €P.) Hence even in the simplest cases, we do not have a crossed

product structure in the proper sense.

3.9 Covariant representations One naturally expects such an object (a

"covariant representation of (f), PQ,¢ )" ) to consist of a unital ¥ -representation
g of P and a "representation" ( of PQ on the same Hilbert space H, tight together

by the Cgvariance relation :

(13) Qe 00) =Ue0 80 V™ ,¥x e pa, xep.

But let us remark that if we put in (13) x = t € P and X = I, we get :
QM) =BV , viep ;

this clearly implies that @ is determined by ). So (U alone gives the covariant
representation, provided it satisfies a certain condition extracted from the

following lemma :
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Lemma Let {L(t) It € P}'be a family of selfadjoint projections of the unital
%
C -algebra QL. There exists a X -morphism g;ﬁ—?Ol. such that € (M(t)) = LCED,

¥ t € P, if and only if for any. s, t im:P s

L& (s, t), if s and t have Gl
(14) Bl ()=
' 0, if they haven't.

n " " 1"

Proof = clearly follows from (4) of 3.1. To prove '« " it suffices to

show that :

n n :
|| % Aj LD sll%%/\j Mt oSt ot e B0 L e,

Because the operator T = 5:: A M(t ) is diagonal relatively to the canonical

J=1
basis of 1*(P) (see 3.3), its norm equals sup | <1'g |5£;> | , and so we get :
aeP
n
(15) Bl A M) | = sip | R )\
gl J aeP 1gjsn
tj < a

On the other hand we have :

n
(16) HE:l./\j el =sipd | Z X [fghncdy,. ol
J:

JEA J

A ) TF"(I-L(t )) £ 0
JeA J

The proof of (16) is done by writing for every j: L(t Yol 5T—r(L(tk +(I- L(tk>)>
: K#3

and effectively computing the product, which is therej@fter substituted in
n
ZE:,XJ L(tj). We leave the details to the reader.

J=l

i
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Now, comparing (15) and (16) we see that it suffices, in order to end the proof,
to take @ # A Q-{l,...,n}' as in (16) and find an element t in P such that
A :‘{j el e tj < t} . For such an A we have in particular ‘TT—L(tj) 7.0

JeA

taking (14) into account, we deduce that itj | 5« A§ have c.u.b.. and that in fact
e L(tj) =LCE), with £ = {tj | jeA} ). We finally remark that for any k in the
€A | ,
complement of A we have L(t)(I-L(tk)) #: D=l () 7§I_(tk) tﬁ?tk-qﬁt ( the last
implication holds because, as an immediate consequence of (14), s —>L(s) is

decreasing). This makes clear that A ::{j [Ty L0, tj s't} , and the proof is
over. QED

Now, it is not very clear to us what is the correct definition for the notion
of "representation of PQ" (a hint is given by the fact that & defined at 3.7 must be
an "action" of PQ). We have made the simplifying assumption that such a representation

should be determined by its restriction to P, arriving thus to the following

Definition: Let V be a representation by isometries of P on the Hilbert space H
————-—;——— :

(Ve vee) = 1, ¥¢, V(sV(E) = V(st), ¥ s, t, V(e) = I). V is said to be
covariant if (14) holds with L(t) = V(t) V(t)*h,‘# biep,

By the previous lemma, a covariant representation V:P—L£(H) gives a unital

¥% -representation g :g§->;ﬁ(H). It ds not difficult to see that g and L)satisfy
.x—

(13), where J(x) = V(S(x)) V(®=(x))", ¥x €PQ.
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4. AMENABILITY FOR QUASI-LATTICE ORDFRED GROUPS

4 : L) - I
4.1 The universal C-algebra C (G, P) From the C ~algebraic point of view,

amenability means the canonical coincidence of two C*lalgebras, one of them being
universal, obtained by enveloping a certain class of represenfations, -and the other
one being associated to a remarkable representation of that class. Now let (G, P) be
a quasi-lattice ordered group. We have the class of covariant representations of P,
and one remarkable covariant representation, namely the Wiener-Hopf one (defined at
2.4 5 W : P —)X1%(P)) is covariant because of the formula (4.0 ), The
C*;algebra generated by W is W(G, P) (see 2.4) , so thatW(G, P) naturally plays the
role of "reduced C*lalgebra of (G, P)". Our next task is to construct the envelope
of the covariant representations of P, i.e. the “full C*;algebra nfch, Py

Let us first remark that any covariant representation V : P—EH) can be
extended to the dense *qubalgebra sp sLW(S) W(t)*l g & P}r put into evidence
at Proposition 3.2. Indeed, since by the same proposition {W(s) W(tf(( s, t& P} are
linearly independent, there exists a unigue linear map.TTV: sp&W(s) W(fﬁ’s,te ﬁ}~iﬁ(H)
such that WTQ (W(s) W(tge) = V(s)V(t? ,¥s, t €P. Some simple algebraic computations,
similar to those made in the proof of the Proposition 3.2, show that TTV is a
X -representation.

The next fact to be observed is that sp {W(s) W(t§ | s, te P} has an obvious
identification with CC(P X P), the space of finitely supported complex functions on
Py P, sueh that, for-any.s, tin P, W(s) W(tj* becomes };s,t = the characteristic
function of{‘(s, t)} . Carrying multiplication and involution through this identifi-

cation, we get a ¥ -algebraic structure on CC(F’X P), determined by the relations:

Kogi-1 5 (t,u), wle(t,y) » if tand uhave c.u.b.

Ko Xy F

Syt U,V
0, if they haven't,
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%
e
s,t ;tt,s'

Ty;e o 1s the unit of CC(P X P). The preceding remark and the clear Tact that for
)

any-s, £t amP

e 4

Sge e T e

}Cﬁ(s,t),c<s,t> , if s and t have c.u.b. ,

0, if they haven't,

show tagether that there exists a Canonical_bijection between the unital
% -representations of CC(P X P) on a given Hilbert space and the covariant represen-
tations of P on the same space.

The ohly thing left to be done is the enveloping of CC(P X P). We define for

any f in CC(P X B
Ll | = sup*{llTr(f) [ ITT unital ¥ -representation of C (P P;} :

|1£]] is finite and actually not greater than i s, 23]
s, téP

because f = :E::. Bl b e and each X is ‘a partial isometry. On the other
S, teP S5k , S,t

X
hand, the canonical identification of CC(P X P) with Sp‘{W(S) Wt) | s, te F’}

gives an injective unital % -representation, hence ||f|| > 0 for f# 0. Tt follows

then immediately that i8 a € -narm on CAEnR

o

Definition The completion of CC(PX P) with respect to | will be denoted

Gy ¥
by C (G, P) and will be called the universal C ~algebra - of €6, P)
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Bgmggg_ln his paper (iﬂl » G.Murphy constructs, for an ordered abelian group,
a C*:algebra which envelops all fhe representations by isometries of the positive
semigroup. This C*;algebra is not fit for studying amenability, because it is too
large (they generally exist non-covariant representations of the positive semigroup,
and the relation Gl mipes 1 clearly shows that these representations can not be

factored through the Wiener-Hopf operators).

4.2 The definition of amenability It is clear that covariant representations

-
of P extend to unital ¥ -representations of C (G, P). In particular, the Wiener-Hopf

%
representation W : P—>$(12(P)) extends to TFW s C G, Pr—2F@20p)).

Definition The quasi-lattice ordered group (G, P) is said to be amenable if

(and only if) Trw is one-to-one.

It is obvious that the range of'TTh is'W(G, P). So, if (G, P)is amenable,“rrw
#
establishes a canonical isomorphism between C (G, P) and"W(G, P). It is also obvious

Lo D)
that we haveYfollowing equivalent reformulation :

Eropositien. (6:2P) ds amenéble if and only if every covariant representation
Vo P—~>32(Hj can be factored through the Wiener-Hopf representation W, in the
sense that there exists a % -representation TC: Wi, P) —>¥(H) such that

T (L)) = v(t), Y te p.

Other less trivial reformulations of the amenability concept will be disscused

in the next two subsections.
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.x..
4.3 Amenability in terms of the conditional expectation C (E)

In the same notations as above, let us define
¥ X
C(Q)Z(ﬂossp{xf_tItéPgéC(G,PL
) H

* * »*
Exactly as at 3.1 we see that C(J) is a unital abelian C -Subalgetra of € (G, P).

Moreover, since Trw<7ct t) = M(t), ¥ t € P, it is clear thatVW(C*(i))) =

k . . . .
Lemma 1. TTW | C(P) is isometric (hence it is an isomorphism between

CUD e 1577

X
Proof. By the Lemma 3.9, there exists a unital ¥ -morphism €: Hd>c (33) such

*
that €(M(t)) :Xt s ¥t € P, which is clearly an inverse for Ty, - C (D). Qe

Lemma 2 and Definition There exists a unique linear bounded map

C*(E) : C*(G, P) = c*(;m such that :

?Cst,ifs:t,

%
C (E)Xs,t =

0,-ifssd &

*
C (E) 1is a conditional expectation.
- %
Proof The uniqueness of C (E) is clear, and its existence follows from the

fact that in the diagram :

C (E); i E
v (D)
) wl > 9

we can reverse the horizontal arrow of the bottom, due to the previous lemma. From

x»
this diagram it also results that C (E) is a conditional expectation. QED
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Pr09051t10n (6, P) is amenable if and only if the conditional expectation
G (E) is.faithful:

Proof In the commutative diagram of Lemma 2, all the arrows are positive maps

% <
between C -algebras , and E and"ﬂw | C(P) are faithful. It is then easy to see that

)(_
T['w is faithful if and only if C (E) is. QED

Remark. No matter if (G, P) is amenable or not , the last argument shows that
X % X X
(KérTﬂw)/\ C(G; P)+ = (ker C (E)) N c(G, P)+, where C (G, P), is the set of positive
*
elements of C (G, P).

As an application , One can develope the ideas of R.Douglas (:5] to obtain the
following

Corollary: If P is abelian, then (G, P) is amenable.

A
Proof It can be seen without difficulty that the compact group P of the

%
characters of P has a continuous action by automorphisms ponC (G, P) determined by :
—s A A
B C()Ls,t) ) c(t),xé,t e P ek eP
Moreover, we have :
“®x_ . - ¥s
@8 G (E) - y(ﬂ t)dc s, t €P
P

(if s = t, this equality is clear ;.1f not, it amoumts to jgc(s> o(t) de = e

N

2 A
.and it holds because ¢ —3 c(s) and ¢ —» c(t) are two characters of P, which are

different by a theorem of Hewitt and Zuckermann—sée Chapter V of 1] ).
A
Gols e e e e

b

Using relatlon (17) and the fact that clos Jp{>i
we 88511y 1nfer that s o  . - ' _'
i W
i ;(E) 5 5(5C<f> dc ,»'er-c_ SEAR e
/‘3 5
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- :
Finally, for a positive f ¢ C (G, P) every géc(f) is also positive, hence

*
C () = 0= S R D= E _(£) = 0,%ceP =1 - o) = 0, with @ the
P
as
unit of P. QED

]

4.4 Amenability in terms of positive forms Let us consider a quasi-lattice _

ordered group (G, P) and make the following

*
Definition : A positive form® on C (G, P) is said to be finitely d-supported

if the set d-supp? = {xe RO Z(s, t)CA such that‘?(% ) £ O} is finite
(l& = the diagonal of x, defined at 2.2.1°. )

The significance of this definitiony is clear if we recall Ehat C (PX P)ids =
dense *ﬂfﬂmmlgebra A (G P) , hence that, exactly as in the case of 'W(G, P),
can imagine C (Gy P) as "the closed linear span of P x P". The positive form @ on

& (G, P) is determined by the map (s, t)—> ?7(?<S t)’ and it is finitely d-supported
)

Af and only if this map vanishes outside a finite set of diagonals.

Proposition (G, P) is amenable if and only if the set of finitely d-supported

X
positive forms on C (G, P) is weak™ dense in the space of all positive forms.

Proof "=i? " Since TTW is isometric, the sums of positive forms of the type
—— : - X -
<\\W GCYEIZS with§¥ in 12(P) are weak” dense in the space of all positive forms

on C*(C, ROIERS simple approximation argument shows that this is still true if we

assume only % E.CC(P). But for iany g in CC(P), (YTW(°)§:I§;) is finitely d-supported.

n
Indeed, if §= S /\j 58 (/\l,...ADGCE, d1,...,8 € P) , a simple computation shows
J=1 J |

that for any s, t in P:
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GG oy 5 o
1<3,ksn J

<1 -1
tSaj,ssak,t aj—s 8

e g . : e -1 : :
and this immediately implies that d-supp <7TW( )“‘?["i?g{ajak e e n} .
Finally, it is clear that a finite sum of finitely d-supported positive forms is

still finitely d-supported.

&= We need a

3
Lemma : Let @ be a finitely d-supported positive form on GLB,-P) . [etine

CP C£) —<P(C (Bt b (G P), obtaining an other positive form CP on

(G P) , and consider the GNS representation ofCPl,7T i (G, P)=> £(H), with
canonical cyclic vector‘ifez H. Then there exists a vector M € H such that
Py (T@g g, Yeeo G, P,

Proof of the Lemma Let d-supp® = {Xl""’xnll' We shall prove that :

o 212 < ni g, (£*D), 1 e ¢, P,

This inequality entails the statement of the Lemma. Indeed, it can be also written
[P < @ Tl Mee 6P (since-} is cyclic forW ) it implies

the existence of a linear bounded functional on H such that’W(f)i —-?CP(f),fofﬁ*(G,P).
By the theorem of Riesz, this functionmal must be the inner product with a certain

“165 H.

It clearly suffices to prove (18) for f in C (Px P). We fix such an f and write

itasasum f=2__¢ oo = 5 £(s,t)Xg ¢, ¥x €PQ (this holds
x€PQ (St)e D ;

because{\&k e PQ}'iS a partition of P X P). Only a finite number of the f;s are in
fact non-zero, hence we can find a finite subset F of PQ, on which we may assume that

it contains d-supp ¥, such that f = EE::f . Since for any x, fX belongs to
xeF
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sp {Xs’t, | (s,t)€ AX} , it is clear that ‘?(fx) =0 for x in F\ (d-supp® ), hence

X€EF

n
Sl = ) = §Z%$fo.). We majorize :
J= J

n CBS n
ipealt - S ge )12« nxlee ) 5
J=1 J izl

J
CBS for@ n n
~x~ A
& N e RG T =n (@9 mE e 5
g e BE
We are only left to prove that :
n ¥ X %
(19) = £ i B ) (£,
J=k Sy

because, assuming this true, we can continue our majorization with

nl €11 CTE) (') = nfieie, o),

obtaining thus (18).
Finally, in order to get (19) we write :

,x,
e e e

x€F x€eF

ST (f:f b
X,yeF y

An argument similar to the one which proved the relation (7) of 3.4 shows that :

sp{?ﬁs ¢ I(s,t)GAX_ly} , it x_ly € PQ,
I f &
10} if x7ty ¢ Pq,

and this yields :
* .
fxfy R e R
* *
G

Uit s &y .
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* * n
Hence C (E) (£ f) = > £ L 2 EZ:Lf « Ly » and the proof of the Lemma is over.

xeF 3=l %3 %y
Now let us fix a positive f in C*(G, P) such that'ﬁ?h(f) = 0. We shall prove
that £ = 0 (obtaining thus the faithfulness ofTTW). Taking into account the hypothesis
it suffices to prove that P(f) = 0 for every finitely d-supported positive form ® on
C (G, P). We also fix such a Q’, and define q) and T as in the statement of the Lemma.
We have .TTW(Q fg) = 0,%ge C (G, PY=C" (E) (g fg) = 0,%g < C (G, P) (by the remark
following the Proposition 4.3):m$‘?1 (Q*fg) =0, %g G—C*(G, P) (by the definition of
CPl)cr? T(£) = 0 (by the definition of the GNS representation)=y P (f) = 0 (by the

Lemma). QED

4.5 Strong amenability Recalling the development of the theory for unordered

groups, it is nmatural to try to find, at this moment, a fourth description of the
amenability concept, made in terms of positive definite functions. The notion of a
positive definite function on a group (see for instance [13], 7.1.9) can be adapted

to work in our situation , with the following remark : it is not gemerally true that

| X, y € PQ = x—ly € PQ , but this is the case if x and y have c.u.b in P, because for
1 >—1

any common upper bound t we can write x_ly = (x_lt)(y— t) 7. We can thus make the

following definition:

Definition 1 Let (G, P) be a quasi-lattice ordered group. A function

©: PQ —C is said to be positive definite if for any xl,...,xaﬂin PQ there exists

a positive definite matrix <€}j,k>1sj,ksn such that GHK :€§(Xj X, ) whenever x; and

Xk have c.u.b in P.

Now,'studylng the relatlons between amenablllty and positive deflnlte fUnLLlOﬂS‘

on PQ, we could prove only one 1npllcat10n and that is why we make the
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~ Definition 2 : The quasi-lattice ordered group (G, P) is said to be strongly

amenable if there exists a net Gﬁ'i)i of positive definite functions with

finite support on PQ such that @i(x) 21, M¥Mx& PQ.
i

It is known that a necessary condition for the amenability of G(discrete group)
is the existence of a net of positive definite functions on G, with finite support,
which converge to 1 pointwisely (see 7.3.8 of [131 ). On the other hand, it is clear
that if (G, P) is a quasi-lattice ordered group, then the restriction to El-af-a
positive definite function on G is positive definite in the sense of Definition il

Hence we obviously have : : .

Proposition'l If B s amenable, then (G, P) is strongly amenable.

As the terminology indicates, we have :

Proposition 2 A strongly amenable quasi-lattice ordered group is amenable.

The proof of this result leans upon the fact that positive definite functions

K
on PQ naturally "perturbate" the positive forms on C (B, B):

Proposition 3 Let (G, P) be a Quasi-lattice ordered group, € : PQ—>C 3

.;(.
positive definite function and @ a positive form on C (G, P). There exists a
s 2
unigue positive form“Y on C (65 P) such that 4’()% t> =@k l)‘P(X_S t) tar

any' s, “toinePs

Proof of Proposition 2 (using the Proposition 3) By Proposition 4.4 it suffices

%
to show that an arbitrary positive form < on C (B; P isthe weagelimit of a net of
finitely d-supported positive forms. In order to do this, we just have to consider a
.nef-(€3') as in the Deflnltlon Z, and take for any i the p051t1ve form‘P on G 5, P)

determlned by CP (7i t) '@’(St )‘P(X ) V s, t € P, (Then d-supp @ ig Suppe
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%
i, and C?im%-%@ , since clearlyq)i(xs t> "‘1‘7’9”(765 t),’v‘s, t € P, and since
; b 5

\l?ill :(Pi(xé,e) = @(?%,e) =l®u , so thatU® Ut is uniformly boundeq for

sufficiently laree i.) QED

Proof of Proposition 3 We break the argument in two steps.

Step 1 It Clearly exists a unique linear map #‘ C%(P X P)— @ such that
“VO(RZ )i Bt )q’Cx ),ﬁfs, t € P. We shall prove that\kb is positive on the
X —algebra CC(PX‘ R

Inerder to do this letus fix an £ in CC(P X P). We can write f = zgrzﬂjkl

Sj’tj
for some AX])..., An inC, 815+++>Sys t5.ee; £ in P, and we clearly have :
% n
ot :;%1. Ay >‘k%tj oo i
hence
* n -_—
\bef in 5%%;%? ‘Xj Ay \fb (7(tj,sj‘7i k’tk)

Now let us put x. = s.tfl s¥1 € j ¢ n, and let us consider a positive definite
J o Jed ) e d X
matrix (fgjk>l<j e such that éaik =€3(xj xk) whenever ijhave G.lb. in P, We
claim that for any j and k we have ¥ (% s PR X )
0 tj,sj Sk’tk JK tj,sj Sk’tk
Indeed, if Sj and Sic have no c.u.b., then both sides of thisequality are zero, because

At

is : : : LsHo AR
4485 )Csk’tk 1850 1F S5 and S, have c.u.b, then X3 and x,have c.u.b. in

because X5 < S and X € 8§ 3 1n this case the multiplication rule of C (Px P ).and
the definition of \PO immediately yield \Fb(7b 5 S 'X;S t ) f}<XJ k)q%7;t )5 715k,tk)

Hence we can write:

\wff)-‘z: /\A% T LX W
J,k=1 =gy bet Sl
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53 is positive definite, because

But the matrix (9 k‘(’('X = e

il k’ K

it is the pointwise product of the positive definite matrices 683 k>lSJ, Ll and

(et o )
Sy

-
this makes clear that ‘%"O(f £

T " (see for instance 1131, the proof of 7.1.10), and

otep 2 The positive form %’O on the* -algebra CC(P X P) can be uniquely
extended to a positive form“” on C*(G, Rl

Taking into account the definition of C*kG, P) it suffices to show that there
exist a unital % -representation TT:C%KP X P)~> £(H) and a vector% in H such that
\{/O(ﬂ T (DL |{), ¥ te C (P x P) (then we can extend T to C*(G, P), and define
%’(f) =CW(£) % 'i;>,**f € C*(G, P) ; the uniqueness ofY is clear,since any positive
form on a C*—algebra is bounded).

Thus we only need to prove that the GNS construction can be performed on
CC(P %P Ik is known that a sufficient condition for this to happen is the
fulfilment of the Combes' axiom : for any f in € (P X P) there exists a constant
k(f) > 0 such that f f s k(f)?ﬁe,e .But, as one can immediately check, the set of
those f enjoying the last property is a linear subspace of CC(P>< P) : this set

. 3¢ 1 .
contains every %S,t, because xs,txs,t “Xt,t *<Xe,e (xe,e - X £t being a

selfadjoint projection), and the proof is over. QED

5. TWO PARTICULAR CASES

5.1 The case of the free group With the exception of the ordered free group,

all the examples of quasi-lattice ordered groups given at 2.3 are amenable (and even

strongly amenable), by the Proposition 1 of 4.5. Quite surprinsingly, (Fn, SFn) is

amenable too, and this fact is equivalent to the uniqueness property of the Cuntz
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algebra O . Lacking a direct proof for the amenability of (F 3 SFn), which would
provide a new proof of the uniqueness property of O n® “We contend ourselves to prove

the converse implication . The links between Dn and (Fn, SFn) can be very well observed
in the statements of the first two lemmas to the next proposition. We mention that
Lemma 1 can also be derived by using considerations on free products of C -algebras

in the sense of D.Voiculescu (see 2.5 of (18]).

Proposition (Fn, SFn) is amenable.

Proof We denote by al,...,an the free generators of Fn and SFn'

Lemma 1 “W(Fn, SF_)2 K(1*(sF o7 and their quotient is 0.

Proof of Lemma 1  One can immediately see that I - Z M(a )=(\§ ><§

(because any t # e in SF is greater then exactly one of the aés), and hence that

¢ [§78, = W) (I - Z MCa ;) u(s) e W SF),¥s, t € P. Consequently,
: ps

K(12(SF )) = clos sp{<-15575t s, te SFn}g‘w@F ;B 5

Since ~{a. ]lsjsn} generates SF_ , the isometries %_W(a b | l<J<ﬂ}‘ generate

the same C -algebra as {W(t) | te sF G , which 1S“WZF s BF ) (by 2.4). It follows
thdt”WKF , SF )/:]< is generated by the isometries {_W(a ) + K| 1<quj

(I +XK) - E:f(W(a ) +j<)(W(a ) +J<) =¢| $ o8 X =X, and it is clear that
WeE 5}-'n>/:K =0

Lemma 2 A representation by isometries V - SF;—>Jf(H) 1s covariant if and only

if the subspace&{haﬂ V(aj) x5 n;} of H are mutually orthogonal.

& : :
Proof of Lemma 2 We put L(t) = V(%) V(t) , ¥ te SFn. If V is covariant, then

L(aj) L<8k> = 0,% Jo# k, by the relation (14) of 3.9 and the fact that aj and a

have no. c.u.b.? hence Ran V(aj)_,J~ Ran V(ak) for g k.
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Conversely, let us assume thaf%ko1V(a.) | las T n}'are mutually orthogonal,
and take two arbitrary elements s and t of SF . As we saw at 2.3, Example 4% only
three possibilities can occur : () e & a ) 57 e 8 ana t have no c.u.b. If
it is (a), then Ran V(t) = Ram V(s) V(s~ t) € RanV(s), and we obviously have
L)kl = bt = L6 8) ) Bitiatinn (b) is treated in the same manner. Finally,
if (c) takes place, we easily infer that there exuel B, 8%, Tiin SF and j # k

such that s = p ajs', t =pat' . We have Ran V(s) € Ran V(p a ) = V(p)(Ran V(a b

Kk
and similarly Ran V(t) € V(p)(Ran V(a )). Since Ran V(a )_l_Ran V(a ) and V(p) is
an isometry, it follows that Ran V(s)_L Ran ViEL), dae L(s) L(t) = 0. In conclusion

(14) of 3.9 takes place, and V is goyvariant.

' \\b['g
Lemma 3 Any covariant representation V-SF-*;E(H) can¥written as a direct sum

such that one of the summands, say Vg» has §:: Vv (a )V (a 7€ I,and any other
Jl_

one is unitarily equivalent to the Wiener-Hopf representation W.(Remark : VU

can be missing , or it can be the only term of the direct sum.)

Proof of Lemma 3 The proof is carried over in the spirit of the Wold decomposi-

tion for semlgroups of isometries (see Chapter IX of [l7} ). We only indicate the main

idea. If :E:T V(a ) V(a ) =1, then we take Vg =V, the only term of the direct sum.
J 1

If not, we consider an orthonormal basis C? ) of the space H EB(f@B Ran V(a. )), and
J=1

define Hi = clos sp &V(t)‘gi Ik G-SFn }, ¥ i. Then (Hi)i are mutually orthogonal
reducing spaces for V, and for each i the restrietion @of V to Hi is unitarily equivalent
to W. V0 is taken to be the restriction of V to H EB(Zé? Hi), if this last space isn't
ZETD. :

Let us finally prove the statement of the proposition. We use the Proposition,
4.2, i.e. we consider a covariant representation V : SFn——%iﬁ(H) and show that it can

be extended to a representation of”W(Fn, SFn). Using Lemma 3 and a direct sum decompo-
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sition argument, we reduce ourselves to the situation when either V is unitarily

equivalent to W, or E V(a ) V(a ) = I. The first altermative is trivial. For
J=1

the second, we use the unigueness of On : there exists a % -representation
T “W“(Fn, SFn)/%—-?;ﬁ(H) such thatTT(W(aj) + XK ) = \/(aj), 1< J<n, and we only

have to compose™ with the canonical surjection'W(Fn, SFn)-—afWZFn, SFnZ%K . QED

Remark 1 We do not know whether (Fn, SFn) is strongly amenable or not.

Remark 2 At this moment one can naturally ask if there db indeed exist any
non-amenable quasi-lattice ordered groups. We can not answer this question s
however, let us make the following remark, which might possibly furnish a non-amenable

example :
Let (G, P) be a guasi-lattice ordered group such that any two elements of P
have c.u.b. If (G, P) is amenable, then P is amenable (in the sense of inva-
riant means -see Chapter I of (8]).
Proof The identically one representation of P on( Fsclearly invariant, hence

it can be extended toW(G, P). We obtain the inequality 1\§:f A W(s ) W(t 5 =
J=1

- _
> 2= A;j |, ﬁfAl,...,Arlﬁ.Qg S1>+++38ys ty5...,t € P. In particular, for any

n
1o--toinPand A ool A in D) we get [ 3= A we)l 2 E::,X , and we
n 1 n J:l J J

J=1
obviously must have equality .By a criterion of M. Day ( 47 , the semigroup P must

be amenable . QED

Hence a quasi-lattice ordered group (G, P) is non-amenable if P is non-amenable

~and any two elements of P have c.u.b. ; but we don!t know any such example.
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5.2 lIheicase of totally ordered abelian groups In this case, every represen-

tation by isometries of the semigroup is covariant (trivial verification). Since
amenability is ensured by the Propositions 1 and 2 of 4.5 (or by the Corollary 4.3),
we have that any such representation can be uniquely extended to the C*ialgebra of
Wiener-Hopf operators.

Let us make at this point the comnection with a theorem of R.Douglas ( [ 5] ;
Theorem 1) ; using the characterization of totally ordered archimedean groups cited
at 2.3, Example 10, we can state it as follows :

o It (G, P) is abelian, totally ordered and archimedean, then any two non-unitary
representations by isometries of P generate canonically isomorphic C ~algebras.

It is clear that (D) can be restated by saying that for any non-unitary repre-
sentation by isometries of P, the corresponding representation of‘WfG, P) is isometric.

Now, it is an easy exercise to see that if the abelian totally ordered group
(G, P archimedean, then for any representation by isometries V :P—>(H) either
V(t) is unitary for every t in P, or V(t) is non-unitary for every t in P. Hence the
following result of G. Murphy (Theorem 2.9 of (101 ) is a generalization of (D) :

Let (G, P) be an abelian totally ordered group and let V P—L(H) be a
M) representation by isometries, such that every V(t) (t € P) is non-unitary. Then

| the corresponding representation TVV : Wie, P)—~%;£(H> is isometric.

We give heré a new proof of (M), which is sensibly simpler than the original
one. The proof is obtained by adapting the techniques of R.Douglas (5] to this
situation, when a universal object attached to (G, P) has been put into evidence .

Froof .o (W)~ The leitof 6 will be woitter additively .

We first remark that'?rv is isometric ongﬁ For any .X ...,% ind and
tl"" t, in P we have TT'(§:f A M(t Lk EZ: A L(t Js whexe we use the notation
: n
o J. J=1

L(t) V(t) V(t) ¥.t €P. The hypotheals 1mplles that L(s) f L(t) for 5. # t Gif

for 1n5tance L(s) L(t) for s < t then multiplying this equallty with V( ) at
#
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the left and with V(s) at the right, we obtain L(t-s) = I,contradiction). But then the

formula@‘(15) and (16) deduced in the proof of Lemma 3.9 imply that (for gny,&l,...,knb

n n
tl,...,tn) baoth Hig% Aj M(tj)ll and “?g{,kj L(tj)ﬂ equal max (|,Xll, I’Al 3

+ A 2I,,‘., ]A]‘+fk2 +...+,&nl). Hence TTvkﬁ is isometric.
The faithfulness of TTV | D will be lifted to the whole of"WfG, P) with the aid
of the following

‘ *
Lemma : There exists a linear bounded map-E': clas Sp{y(s)v(t) ‘8, te P} e

clos sp {V(éi‘V(Sf&ISG?P} such that for any s, t in P -

WD are -,
S )
0, if s # t.

Indeed, assuming this lemma true, we have the commutative diagram :

e o e e,

% Savaan

s e LT > Tyt D)

L * *
and the implications :TTV (T) = O=91VV(T = “?E'(TVV(T 1))is D

* *
(TTV|65)(E(T e iy E(f*T) = 0 (by the Lemma ) = TT = 0 (because E is also
fapthful - 3.6 Y= T = 0.

Proof of the Lemma It suffices to prove that for any t

l< tz S tﬂ in P
a ‘ $2s
and %kj I e RSIW}:U1¢L the inequality
. : * : :
' : sl A e s
iy 1O e = VDG |

holds. As remarked earlier, the left side of this inequality is
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max (I)\ll, ]A]'+-A2|,..., l/\l + A 5 * ""F’Xn')’ hence we only have to prove that

in the same notations and for an arbitrary 1 X MW < m »

'm %
(20) L e ;12:/\ Ve e 9
=159 3 k=1 :

This is done as follows : let t be the least of the elements tz—tl,..., o tp

V(t) is non-unitary because t # e and by the hypothesis ; hence we can consider a
%
vector of norm one % in He&Ran V(t) = Ker V(&) . Tt is immedlate that . for any s > &

in P we have V(Sjez = 0 and ‘<V<5)§>IZ } = 0. Using these facts, a simple computation
shows that :

= ; 5 Asi:
(¢ j%:‘l S e ) M S =i

where ¥ = V(En)g . Since U*(mq = 1, we obtain (20) and the proof is over. QED

6. INDUCED IDEALS AND APPLICATIONS

In this section (G, P) is a fixed quasi-lattice ordered group . "Ideal" means

everywhere "two-sided closed ideal".

6.1 Equivalent definitions for IndJ  The process of induction is nmaturally

defined as follows : let?J be an ideal of B ; we take a unital x representatlonf? of
;D such that ker € =TI, we induce § to a representation T of W(G, P) (in the sense of
M.Rieffel (15]), and detinecInd 3 = ker ¥ . Tng sl depends only ond, and not on the
particular choice of_f because the process of induction respeéts weak containment.
C0n51der1ng the details of . the constructlon of M. Rieffel [153 the reader may easily

Cheok that we have };

(21) Indd = {T (s, P) | o ECTTHED, ¥ 5,1 e i
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with £ : WG, P) —»D the conditional expectation of 3.6 and {O(S,t ls. st e P} the
set of endomorphisms ofiJ defined at 3.7.

Let us call the ideal?d of & "invariant" Tt 0<X(X)E 3, e PA, ¥ Xe X, with
{D(X | x e PQ} the "action" of PQ ond) (see again 3.7). Since, as shown at o8
the semigroup generated by {ﬂ(x I XaE PQ}contains {Ns,t [s,te P} , we have in fact
for the invariant ideal?J - s,t€P, Xe J= o(S’t(X)E J. It is clear that for such.
an ideal (21) becomes :
(22) IndJ ={T €6, P) | ETDeT) .

In what follows we shall consider invariant ideals only ; the reason is that for

an arbitrary ideal’t of &), the set 30 =0 N e ;lt({fﬁ) is an invariant ideal with
5,1€eP 2

Ind':fo = Ind'd (immediate verification) ; hence any induced ideal of W(G, P) can be
obtained from an invariant ideal of JD Moreover, for any invariant ideal € gﬁ we
have (Indfj)ﬂ;ﬁ =1, because X € (Ind7I)0) gﬁ@:} Xe P and X*XG_ A& xeF ; this
implies that the mapyJ — Ind7J is one-to-one on the set of invariant ideals of Zﬁ
The range of Y —> Ind I (i.e. the set of induced ideals) can be Characterizedl
as {’}Q'W(G, BJ; ddeal s | Teaﬂ,:—’; E(T)€ 3} (see the Corollary below). Generally,
this is not the set of all the ideals ofé'W'(G, P). For instance in the case of (Z, N)
there exists exactly one non-trivial invariant ideal of g,f), which induces the compact
operators ; in spite of that, W(Z, IN) (= the C%—algebra of the shift) has a rich
family of ideals, indexed by the closed subsets of the unit circle (see {2]). A
sufficient condition ensuring that any ideal of 'W(G, P) is induced fromJ can be
given by using the groupoid interpretation of ‘W(G, P) and a result of J.Renault
( {141 , Chapter III, Proposition 4.6) ; this condition holds for instance for the |
ordered free group with aIt least two generators (2.3, Example £

The main result of this subsection is the following :
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Proposition Assume (G, P) strongly amenable (4. 5, Definition 2). Then for any

1nvarlant ideal’J of§3 Indff can also be described as -
£ oTelae | we oyt B, (D WEGN e, vxe Pl .
2° The ideal of W(G, P) generated by k.

Before passing to the proof, let us make some explanatory remarks. In 1° above,

EX : W(G, P)"ﬁ’;ﬁx is the canonical projection onto the diagonal subspace of x& PQ

(see 3.6) ; so 1° says that T is in Ind¥ if and only if all its projections on the
diagonals, when canonically transported on the principal diagonal (see also 3.5) lie
Tt This is exactly the analofgue of the definition used by G.Zeller-Meier for
induced ideals in the theory of crossed:products by discrete groups (see 4.15 of [19])
The analogy with the theory of crossed-products is not a surprise, if we take into
account the results of Section 3. It is more surprising the pregnant resemblance with
the theory of induced ideals developed in [lé} by 5.5tr&tila and D.Voiculescu , who

use exactly the formula (22) to induce an invariant ideal of a maximal abelian
subalgebra of an AF-algebra (see Lemma I 2.2 of {16)). Both 9.5trétils and D. Voicu- -

lescu [161 and G.Zeller-Meier [19] prove the analogue of the characterization 2°

- Proof of the Proposition We denote by Eh and ¢, the sets appearing at 1= et

respectively. We shall prove that IndT ¢ :} C.z} < IndJ. The last inclusion is clear
because Ind7I is an ideal of "W(G, P) and contalnsti
: b ’
Ind:ISQEh Let us fix a T in IndT and make the notation WO(x)) E (T) W (x)) =

‘= TX,‘V x€ PQ. 3.5 implies that every T is 1n:ﬁ and that we have E (T)
W) T Welso)® . I tolti bt <T> E(T) = w<z><x>><T Ty) W@(x)) and hence

1

that T T W(E(x)) (E (T) E (T)) W(E(x)) O (E (T) £ (T)) ¥ x& PQ. Now,

our goal is. to prove that T éi?j V*x<5 PQ which is clearly equivalent to :
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Tije’j, ¥ x& PQ. Due to the last equality and the fact that<l is invariant |, it
suffices to show that E (T)*E (T)G; Jd, ¥ x& PQ (Remark : E (T) E (T) belongs in any
case tof}, because of (7) and (8) of 3.4.) An argument similar to the one which
proved relation (19) (in the proof of Proposition 4.4) shows that E (T) £ (T)< T%T),
¥ x€ PQ ; but E(T T) is inJ (because T e Indd), andJ is hereditary, hence all the
E (T) E (T) s are indeed in7J.
2!—,@2; Definﬂ {1&“& |3 F < PQ finite such that T e clos SD(U j.)}}
R e x&F
It is clear that for T in EL: and F taken as in the above definition we have
ZF: E.(T) 5 then using the same notations and invoking the same arguments as in
X€

’X
the proof of ”Inde} "we get T = > WG (x)) T Weto) e g» . Hence it suffices
x€F z

to show that c]_os'a, :'5, . The point is in proving the following
4 4

Lemma : For any positive definite function © : PQ— € (Definition 1 of 4.5)
there exists a bounded linear operator Mg onW(G, P) such that M (W(%) (L))

—6<st ) W(s) w<t> , ¥ 5,tE P ; we have H < 26 (e).

Assuming this lemma true, we consider a net (e’i)i of finitely supported positive

definite functions on PQ having the property that ei (x) 1, ¥ xe PQ,and we see

. - & .
that for any T in 2,4 we have Mei_ (T > T and M@‘i (T)ég:‘ , ¥ i. (Indeed, <Mevi>i
ey
converges strongly to the identity because (i Me~”>i 1s bounded and Mo, (S):ﬁ S for
i i
. S5€ gp {W(S) Wit) | s,te€ P} which is dense . On the other hand it is immediate that

(Me (S)) =0, (x) E (S) Vxe€ PQ, ¥ S&€ WG, P), ¥ i, and this shows thata is

invariant to every M. . It is also immediate that Ran M, - & clos SD( & Zﬂx) 5
g : i ) L, ‘ ~ i | Xesupper,

By, 5
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In the statement of the lemma it implicitely appears that &-(e) 2 0 for any
positive deflnlte function &: PQ—>C. In fact, exactly as in the case of positive
definite functions on groups, it can be checked that & (e) =0y, . The same holds for

the assertion :”é}(xﬁl) =0(% ) Vove Pyt .

Proof of the Lemma Since (B, P) is amenable, we may very well construct M

e 0l
C (G, P) instead ol WEE 2 P) . T Obviously exists a linear map L e (R %Py =20 (Rx

such that ggcm ) =S(st )7& o V' s,t € P. We will show that |\ L ()l <&Mty

for any selfadjoint f in C (P X P this will 1mme&;ately imply that
el 2<3(e)llfﬂ Fhe C. (P X P), and hence the fact that L o can be extended
to M_e £(CTB, P)) with \m s 264,

So let us consider the selfadjoint element f € C (P £ P L (f) 1s:gelfafiggint.
too {ﬁt is easy to see that L (Xf* e AR CX- )) ¥'s, t€ P, and this implies
L (g Jomal (g)) “ge C (P x P}) shence we can write |\L (f)H =t=up I?’(L el
with the supremum taken after all the states of C (G P). Now for aéj)suchCP there
exists a positive formY on C (G P) such that *’(7< ) = o(st™hHy P (?C ¥ s te
(Proposition 3 of 4.5) ; this relation can also be wrlttenﬁ)(x— LI =80 (7L £,
¥s, t€ P, and 1t obviously entails ¥(f) —(f(L (£)). Hence F?(L (f))l u%ﬂ( s
but (4 —‘ﬁ/(x ) ‘9(8>(10<7C ) =06 (e), so what we have is | (L (f))l <o(e) il £
(for any state Q’of C%(G, R)). Thls clearly ends the proof. QED.

Coirollarx In the same conditions as in the last proposition, an ideal E} of

. W(G, P) is induced frmni)lf and only 1%Vdg closed under the conditional expec-
tation.
Proof " o " If 4= indXf, then TCZE}f? E(T)e ¢} due to the characterization

1° of the last proposition (E(T) = (0(6)) Ee(T) WE(e))).



"& " Let us denoteg,ﬂj) by 3. clearly is an ideal of D, and it is invariant

because the « -endomorphisms {o(s - | s,t¢€ P} are defined by multiplication operators.

* *
Por ey T daltwe haye « 110 SIECT e S0 fi=g=Te Indd, so that 7y < Ind71.
On the other hand Z-1is an ideal of W(G, P) which contains d, so it also contains

IndX by assertion 2° of the last proposition. QED

6.2 The spectrum ofﬁ Since the ideals ofgﬁ are given by.the closed subsets of

the spectrum of §, it is useful (if we want to know : what are we inducing ?) to have

an explicite description of the spectrum.. This is the goal of the present subsection.

Definitions A subset A of P will be called hereditary if "s,t € P, s & t el
= s € A" | and will be called directed if any two elements of A have c.u;b. in A. We
shall denote by{L the set of all non-void hereditary and directed ‘subsets of P (remark
that for A€} we have A ® e and "s,t € A = G'(s, t) exists and is in A").
Identifying every subset of P with its characteristic function and considering the
product topology on {O, l}P we get a canonical compact Haqsdorff topology on the
space of subsets of P. It is easy to show that{l is closed into this topology (we
leave it to the reader) ; hence (1 is a compact Hausdorff space.

For any t in P the "interval " {a eP |l az t}'will be denoted by (e, t].
Clearly %[é, &l It € P}G;(l,; this is a dense subset, because for any A in 0 _the net
(fe, t})teA directed by (A, g) converges to A (immediate verification). Moreover,

fieiesl - o tlDs 1 And b s = t, so thatflis a compactification of P,

Proposition 1° Let ¥ be a character of . Then¥M(t)) e {0, 1} , ¥ te P, and
Ap =t €P|BM() = 1} belongs to (L.
2° For any t in P, the vector state < 6t { ‘St> on{ﬁ is a character and

A<'Stlg’t> = (e, t] .
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3°'K-a/k6j5 a homeomorphism of the spectrum ofjﬁ onto [l

Proot Ty (M(t)) € {0, 1} because M(t)? = M(t). T (M(e)) =¥ (1) = 1, hence ee A
(and hence Ag#®). Using (4) of 3.1 and the positivity of ¥ we immediately infer that
s <t =DHTM(s)) > TM(L)), and this implies that A~ 1s hereditary. Let us also prove
that Ajg is directed . If s, t are any two elements of Ag » from 1 =F(M(s)) T (M(t)) =
=¥ (M(s) M(t)) we see that s and t have c.u.b. (otherwise we would obtain

write

BM(s) M(L)) =) = 0) ; we can furtﬁgzyj“gi (T T R :?(GWGS(S,t))))SO that
Dk, t) € fa s

22 The fact that < 8t1 6{) is a character ofjﬁ follows from 3.3 ; the equality

A = (e, tI is a consequence of the relation (6) of the same subsection.
<6yl 8£>

*
320 'Kijgf?'( in the spectrum of §, then %}(M(t))jz%Wf(M(t)), ¥ ¢ €P, which

means exactly that the characteristic functions of (AX 7 converge pointwisely to the
i e

one of AX" This makes clear that the map ¥ — A7§ is continuous. It is also clear
from 1° that this map is one-to-one, and from 2° that it has dense range ; but its
range is clearly compact, hence closed in{Y, and so we obtain surjectivity. Since we
are dealing with compact Hawusdorff spaces, the continuous bijection U~%/\Kis a

homeomorphism . QED

Remark on invariance Due to the last proposition,:ﬁ can be canonically

identified with C{]) and consequently the ideals of § can be canonically identified
with the closed subsets of.f). There exists an appropriate notion of invariance for
closed subsets of L), such that the invariant ideals ofJﬁ correspond to closed inva-
riant subsets. Its preéise definition is given as follows : 1° it can be shown that
for any A in_fl, there. are still in [l the sets : At :{a € P | ahas upper bounds in
tA }, for every t in P, and At‘l = t71p N P, for every t in A ; 2°/the closed subset
Ilo of (1 is invariant if for any A injlo we -have AtG:JQU, Y t€ P, and

At~1€i£10, ¥ t € A, (These facts will not be used in the sequel, and that is why we

do not enter into details.)
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6.5 First application: when does ‘W(G, P) contain the compact operators?

Proposition The following are equivalent :

L WG, P)>KA2(P)).

2° For any t in P, {e, t] is an open point of LL.

5’{8, e] is an open point of [} .

4° There exists a finite subset F of P \e} such that every t in Pvied has

lower bounds in F.

Remarks 1° The condition 2° can be rephrased :"(] is a regular compactification
efsP (e SRy L sle b lel) has open dense range and is a homemorphism onto the
range). The implication 20;:§ 1 was proved by P. Muhly and J. Renault in a more
general context ( (9], Corollary 3.7.2) ; they conjecture that 1°=p 2°also holds in
general (see Gl gigt

2° Condition & depends only on the order relation on P . We note that
it is always fulfifed when P is finitely generated, because in this case any finite
set of generators of P\{e} can be taken as F.

3° It can be shown that W(G, P) is irreducible (this is done in
Proposition 10.4 of the first version of this paper). Consequently, the eguivalent
conditions which appear in the proposition are necessary for W(G, P) to be type I.
These conditions are not generally sufficient ; for instance we saw at 5.1 that
"WTFn, SFH)Q ZK(lZ(SFn)), but it has On as a quotient (hence it cannot be type I ).

A simple argument based on the minimality of:k(QL(P)) can be
invoked to prove that if ‘W(G, P)D K(12(P)), then this ideal is induced from .

(However, the proof given here does not explicitely use this fact.)

Peost 1f = 2° We consider the space C (P) = {Cf~ Pes @ |Spe0, T Fe P
finite such that |Q(t)| < ¢ for te P\F} We fix for the moment a <@ in C o(P) and
deflne X € P£(1*(P)) to be the diagonal operator (relatively to the canonical basis)

which has the (t, t)-entry of its matrix equal taP (), forany £t in P, Cleanly X?
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'is compact, hence it is in W(G, P) (by the hypothesis) ; but then, being diagonal,
X‘P must belong to f) by 3.3. We can therefore define a continuous map E?ﬂﬂ € by
@A) :“‘o’(Xq), ¥ Ae ()., with™ the character of H corresponding to A through the

canonical homeomorphism of 6.2. We have, in particular Ale, 1) :Q’&C[ét> <ch> =

=R, ¥ EE P Taking into account that SLfe, £ | te P} is.dense in () , and that
% € CylP), we immediately obtain(A) = 0, A€M Ce, t] |te P}.

The conclusion of the last paragraph is that for any P in CO(P) the function
@ : N € defined by :

P(t), if A =Te, t] with t € P,

P h) = ;
0, it A¢{le, O] te P},

is continuous. Particularizing @ to be the characteristic function of {t} we obtain
that fe. t1iiean open point of.(). .

2 =33 is clear.

3= 4° Let us suppose that for any finite subset F of P {e} there exists
tF in P {e’y which does not have lower bounds in F. We claim that the net ((e, tFDF
converges to (e, el in_(1(the net is indexed by the family of finite subsets of
P\{e} , directed with inclusion). Since.f). isl compact, it suffices to prove that any
A #[e, e} ind). is not a clusfer point of the considered net. And indeed, for any
such A, we take a t # e belonging to A and we see that %B&QIB 2 t} is an open
neighbourhood of A inJ{) which doesn't contain (e, t-3 if F2 {t}.

But (e, tF}-;; {e, €] altough t- # e, ¥F, contradicts the hypothesis that
e, e} is an open point of (). .

40@ ° LetE .:{al""’ans be as in the hypothesis . We shall say about the
non-void subset J of {l,..., n}that it is = "marked" if {aj Ijé.j'} have c.u.b, ;

for such a J we make the notation AS‘ = G’({aj lje:f}).
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We claim that the operator :

Mo <-1>Cal‘d‘rm<aj_>

J marked
5é}5e . It is clear firstly, from the formula G of 3.3, that)(ge =&

is ¢

Let us further fix a t # e in P and denote the set %j | 1<35n, a, < t:}, which is

er

non-void by the hypothesis, by :TO. For any:Yg-{l,...,n} we.obviously have :"J marked
and ar < t& ¢#T ¢ SO”' But: thiem,: again by (6) of'3:3 &

Xg = 0 > (__l)Card\T g =
t ( J” marked, CREN it } g
g sty - g,

T

Hence ¢ | 587886 WG, P). But then for amy s, £odn P g 8S>St=

= W) (& 16,068, ) WSS €W, P), and finallyK(12(P)) -
= clos sp{< | § 8, | s, t€ Pf< WG, P). GED

6.4 Second application : a converse to a_theofrem of R.Douglas 1In this subsec-

tion we particularize and assume that (G B)is's totally ordered abelian group,

written additively .

Proposition The following are equivalent :

1° p is archimedean.

oF Every non-unitary representation by isometries of P extends to an isometric
representation of ‘W(G, P).

3° The commutator ideal € of “W(G, P) is simple.

Remarks 1° The implication 1°=% 2° is a reformulation of the result of
R.Douglas discussed at 5.2. 2°=Y 3"was also proved by R.Douglas in the paper (57 (see
the Corollary to the Theorem 1 of [5]). We shall prove here only 3°=$ 1
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* The proposition shows that the generalization (M) discussed at 5.2 imposes an
effective restriction on the representation, since in  general for a given represen-
tation by isometries of the semigroup, V, some of the V(t)'s are unitary and some are
not. A typical example is furnished by 7% with lexicographic order (i.e. G = 22 and
P=({0}xm {3((N\{Q})X 7)), which clearly is totally ordered but not archimedean.
W(z?%,&x. ) contains X, the ideal of compact operators, by 6.3 and the simple remark
that (0, 1) is the smallest element of P\ (0, 0)}. We have T - M(t)e XTI - M(t)
has finite ranké&> t € {O}KEN ; hence considering an isometric representationl of
WM(ZZ,Q¢&2/EK and defining V(t) =TMW(t) +X), ¥+ te P, we obtain a representation
by isometries V of P such that V(t) is unitary if and only if te Lokxwm.

We mention that using the groupoid interpretation, it can be shown that
Ke@ ¢ "W(Z?, lex) is a decomposition series of W(2*, lex), which is hence type I.

3% 1t can be shown that the ideal @ is induced from the diagonal subalgebra .

the (invariant) inducing ideal of § can be precisely described as clos sp{?—M(t)!té-E}

Proof of 3= 1" ertie o arbitrary u # 0 in P ; our task is to prove that

A2 €PR | d<nu fovasene inﬂv} = P. For any v in P we define
AV = {a é P|lasnu+v for some n irlmi}, which clearly belongs toJf), and we
~ denote by 2rv the character of canonically corresponding to Av (see Proposition 6.2).

Let us prove that for amy- Ly v inP s

0, if te£ A,

(23) IYVO dt =
a with ke such that tsku+v , if teA |
ku+v-t Y

~ where d‘:%%x |x € PQ} is the action of PQ on §) defined at 3.7. (Note ‘that on the right
side of this equality, K’ku+v~t does not depend on k, since it is gemerally true that
Av-: Av+lu , Y velP, 1<EGV).'Indeed, fixing for the moment t and v we see that for any

s in P -:



< 5] =

: 1, if t+s € A,

(14) of 3.7 U
((fvo olt) (M(5)) ————— "K‘V(M(t+8)) =

0, if t+5$A ;

If téA , then t + S$A , "se P, hence 7 °O<t vanishes on{M(s) | s GP} and is

therefore identically zero. If t € A g let us consider a k in N such that t € ku + v.

We have t + 5 € A vE&2> dn 2 k such that t + s & nu + W3 n > k such that
s<n-ku+r(ku+v-t)eseA

ku+vy -t » Which impliesthat ZVOC(t and

ﬁKl< U+ v - ¢ coincide on {M(S) | s G-R} and are hence equal.

In a similar manner it can be shown that

(24) Kvoo(t"l = , ¥ v, teP.

v+t

The relations (23), (24) and the fact that X gt =% °%t-1 5, Vs, t€ P

(see 3.8) immediately imply that the idealT = "\ ker ?( of P is invariant. Observe
veP

that for any t in P:I - M(t) € IndI&> T - M(t) € 7T (because (Ind’.I)ﬂi) =1, by 6.1)

ST, M) =1, ¥ve Pey t € M A, = Ag (with 0 the unit of G).
veP

Now (Indi})fice is an ideal of & , which is non-zero (1t contains for instance
I - M) = W(u) WCu) - wW(u) W(u) ), hence it must be €, because € is simple. It
results that Indd 29€  ; but T - M(t) € Inddé& t ¢ Ags while I - M(t) =

W(t) W(t) - W(t) W(T) c@ , V't € P, and it is thus clear that A P. QED

O:
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APPENDIX Let (G, P) be a quasi-lattice ordered group,‘and let:ﬁ be the
diagonal subalgebra of W(G, P). Then?) is maximal abelian. ‘

In order to prove this fact, we consider T in"W(G, P) such that TX = &l
¥ Xe P ; we will show that T is ind). It suffices to show that <T58 |5b> =

for any a # b in P (this means that T is diagonal relatively to the canonical basis

of lz(P), and we can apply 3.3).
So let us fix a # b in P. We take a selfadjoint X ind such that (XS |& z;#

(:X¢5b l&t;> (Such an X always exists. Indeed, the inequalities a > b and b > a

cannot hold simultaneously ; if a %.b we may take X = M(b), and if b %-a we may
take X = M(a) - see also relation (6) of 3.3.) Because X is diagonal relatively

to the canonical basis, we clearly have : a — <xga [£a> 5. ng -
= <ng |$b>5b. But then :
(KIS 18)=<T8, | X8> =(Tg, |<x5, 18057+
=8, ey is e, .,
and similarly <T><§a |& b> :(Xéa |88>< T8 ]§b> . From TX = XT and the

assumption made on X we clearly obtain (‘Téza |& 6) =0.



