MINIMAL PAIRS OF A RESIDUAL TRANSCENDENTAL

EXTENSION OF A VALUATION

by

V. ALEXANDRU^{*}), N. POPESCU^{**}) and Al. ZAHARESCU^{**})

October 1989

*) Faculty of Mathematics, University of Bucharest, Str. Academiei 14, 70109 Bucharest, Romania.

× 4

**) Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bucharest, Romania.

MINIMAL PAIRS OF DEFINITION OF A RESIDUAL TRANSCENDENTAL EXTENSION OF A VALUATION

by

V. Alexandru, N. Popescu and Al. Zaharescu

In a previous paper (see [2]) we have given a characterization of so-called residual transcendental (r.t.) extensions of a valuation v on K to K(X). In that characterization the notion of "minimal pair of definition of r.t. extension" (see [2] or definition in § 1) was essential. In fact, describing all r.t. extension of v to K(X) is equivalent to describing all pairs (a. §) $\in K \times G_{\overline{V}}$ which are minimal pairs with respect to K.

The aim of this work is to give an answer to the following problem: Let K be a field. v a valuation on K. \overline{K} an algebraic closure of K. $\overline{\nabla}$ an extension of v to \overline{K} and $G_{\overline{V}}$ the value group of \overline{v} . Describe all pairs (a. $\delta \in \overline{K} \times G_{\overline{V}}$ which are minimal with respect to K. This general problem seems to be very dificult, but in the present work we give some seemingly important results and applications (Sections 3 and 4). The results given in this work, are essential in the study of <u>all</u> extensions of v to K(X). This study will be given in a forthcoming paper.

The present work has four sections. The first section is concerned to notations and definitions.

Theorem 2.2 proved in Section 2 permit us to describe all common extensions to $\overline{K}(X)$ of \overline{v} and w, where w is an r.t. extension of v to K(X). Also, in this section there are given considerations of some numbers (like as index of ramification and inertial degree) associated with an r.t. extension w of v to K(X). Since these numbers are defined using \overline{v} and a minimal pair of definition of w, we shoe that in fact they are dependent only to w and v (Remark 2.4).

In Section 3 it is considered the question of constructing minimal pairs. It is shown that for every r.t. extension of v to K(X) there exists a minimal pair (a, δ) where

a is separable over K (Theorem 3.1). Also, it is shown that the notion of minimal pair is closely related to completion in the sense of [5, Ch. VI] of K relative to v (Theorems 3.8 and 3.9).

In the last section some applications are given. Namely. Theorem 4.4 proves the existence of some r.t. extensions of v to K(X) with prescribed residue field and value group. Also, Theorem 4.5 gives a general frame_work under which the "fundamental inequality" of [7] becomes an equality. By this theorem easily result all conjectures states in [7].

1. NOTATION AND DEFINITIONS

£

Let K be a field and let v be a valuation on K. We emphasize this situation by calling (K.v) a valuation pair. If (K.v) is a valuation pair. denote by O_v the valuation ring of v; by G_v the value group of v. and by k_v the residue field of v. If $x \in O_v$, then x^* will denote the image of x into k_v . We refer the reader to [5, Ch. VI]. [6] and [8] for general notation and definitions.

We say that a valuation pair (K',v') is an <u>extension</u> of the valuation pair (K,v)(or simply v'*is an extension of v) if $K \subseteq K'$ and v' is an extension of v to K', i.e. v'(x) = v(x) for all $x \in K$. If (K',v') is an extension of (K,v) we shall canonically identify k_v with a subfield of $k_{v'}$, and G_v with a subgroup of $G_{v'}$.

For the rest of this paper we consider a fixed valuation pair (K.v). Take \overline{K} a fixed algebraic closure of K and \overline{v} a fixed extension of v to \overline{K} . If G_v is the value group of v then the value group of \overline{v} , is in fact $G_{\overline{v}} = Q \bigotimes_Z G_{\overline{v}}^{\overline{c}}$. The smallest divisible group which contains G_v .

Let K(X) be the field of rational functions of an indeterminate X. An extension w of v to K(X) will be called an r.t. (<u>residual transcendental</u>) extension if k_w/k_v is a transcendental extension.

Let w be an extension of v to K(X). By a <u>common extension</u> of w and \overline{v} to $\overline{K}(X)$ we shall mean a valuation \overline{w} on $\overline{K}(X)$ which induces w on K(X) and \overline{v} on \overline{K} . We shall

- 2 -

prove later (Proposition 2.1) that such a common extension always exists.

If $(a, \delta) \in \overline{K} \times G_{\overline{v}}$, denote by $w_{(a, \delta)}$ the valuation on $\overline{K}(X)$ defined as follows. For a polynomial $f(X) \in \overline{K}[X]$ with the Taylor expansion:

$$f(x) = a_{\rho} + a_{1}(X - a) + \dots + a_{n}(X - a)^{n}$$

we put

(1) $w_{(a, \delta)}(f(X)) = \inf_{i} (v(a_i) + i \delta).$

Now $w_{(a, \delta)}$ can be extended in a canonical way to $\overline{K}(X)$ (see [5. Ch. VI. § 10]). It is easy to see that $w_{(a, \delta)}$ is in fact an r.t. extension of \overline{v} . Sometimes we shall say that $w_{(a, \delta)}$ is the valuation defined by inf. \overline{v} . $a \in K$ and $\delta \in G_{\overline{v}}$.

In [1] it is shown that if w is an r.t. extension of \overline{v} to $\overline{K}(X)$. then there exists a pair (a. \mathfrak{z}) $\in \overline{K} \times G_{\overline{v}}$ such that $w = w_{(a, \mathfrak{z})}$. Such a pair is called in [2] a pair of definition of w. Moreover, in \mathfrak{k} , Proposition 3] it is proved that two pairs (a, \mathfrak{z}), (a', \mathfrak{z}') of $\overline{K} \times G_{\overline{v}}$ define the same valuation w if and only if

(2)

$$\int = \int and \overline{v}(a - a') > \int da da$$

By a minimal pair with respect to K we mean a pair $(a, \mathcal{S}) \in \overline{K} \times G_{\overline{v}}$ such that for every $b \in K$ such that $\overline{v}(b - a) \ge \mathcal{S}$, one has $[K(a) : K] \le [K(b) : K]$.

Let \overline{w} be a r.t. extension of \overline{v} to $\overline{K}(X)$. By a <u>minimal pair of definition</u> of \overline{w} <u>with respect to K we mean a pair of definition (a, δ) of \overline{w} , which is a minimal pair with</u> respect to K. If (a, δ) and (a', δ) are two minimal pairs of definition of \overline{w} , then [K(a): K]=[K(a'): K], and so this number denoted by

 $[K:\overline{W}]$

depends only on \overline{w} and K.

Since the field K is fixed, we shall usually write "a minimal pair of definition" instead of "a minimal pair of definition with respect to K".

Now let w be an r.t. extension of v to K(X), and \overline{w} a common extension of \overline{v} and w to $\overline{K}(X)$. A pair of definition (respectively a minimal pair of definition) of \overline{w} will be usually called a pair of definition (respectively a minimal pair of definition with

- 3 -

respect to K) of w. We define the number [K : w] by the equality

$(3) \qquad [K:w] = [K:\overline{w}]$

We shall see later [Theorem 2.2 and Remark 2.4] that the number [K:w] depends only on w and K, and not on \overline{w} . Also, in Theorem 2.2 we shall prove that if w_1 . w_2 are two common extensions of \overline{v} and w to $\overline{K}(X)$, then w_1 is closely_related to w_2 . Moreover, there exists only a finite number of common extensions of \overline{v} and w to $\overline{K}(X)$ (Corollary 2.3).

- 4

The following result will be useful later:

PROPOSITION 1.1. Let w be an r.t. extension of \overline{v} to $\overline{K}(X)$ and let (a, δ) be a pair of definition of w. Let r = (f(X))/(g(X)) be an element of $\overline{K}(X)$ such that w(r) = 0 and such that r^* is transcendental over $k_{\overline{v}}$. Then there exists a root b of f(X)g(X) = 0 such that (b, δ) is a pair of definition of w.

Proof. Let $f(X) = c \prod_{i=1}^{n} (X - a_i)$, $g(X) = d \prod_{i=1}^{n} (X - b_i)$. Assume that $\overline{v}(a - a_i) < \delta$ for all i = 1,...,n

 $\overline{v}(a - b_j) < \delta$ for all j = 1,...,m.

i.e., according to (2). for every $b \in \{a_1, \dots, a_n, b_1, \dots, b_m\}$, (b, δ) is not a pair of definition of w. Now, if $a'_i \in \overline{K}$ is such that $w(X - a_i) = \overline{v}(a'_i)$. then $((X - a_i)/a_i)^*$ is algebraic over $k_{\overline{v}}$. Also, if $b'_j \in \overline{K}$ is such that $w(X - b_j) = \overline{v}(b'_j)$, then $((X - b_j)/b'_j)^*$ is algebraic over $k_{\overline{v}}$. But then it follows that

$$\mathbf{r}^{*} = \left(\frac{ca_{i} \dots a_{n}}{db_{i}' \dots b_{m}'} \dots \frac{\operatorname{Tr}\left((X - a_{i})/a_{i}' \right)}{\operatorname{Tr}\left((X - b_{j})/b_{j}' \right)}^{*} = \left(\frac{ca_{i} \dots a_{n}}{db_{i}' \dots b_{m}'} \right)^{*} \frac{1}{\operatorname{Tr}\left((X - a_{i})/a_{i}' \right)} \xrightarrow{\mathsf{Tr}\left((X - a_{i})/a_{i}' \right)}{\operatorname{Tr}\left((X - b_{j})/b_{j}' \right)^{*}}$$

is also algebraic over $k_{\overline{v}}$, and this contradicts our hypothesis.

According to [5] (see also [6]) a valuation v on K is said to be <u>Henselian</u>. if for every algebraic extension L/K. v has a unique extension to L.

•2. COMMON EXTENSIONS OF \overline{v} AND w TO $\overline{K}(X)$

In this section we show that the set of all common extensions of \overline{v} and w to

K(X) is non-empty. and this set is finite. We show that the number [K : w] defined in (3) is dependent only to v and w, and this number is closely related to the "fundamental inequality" defined in [7].

Let (K.v) be a valuation pair. Let us remind that by \overline{K} we denote a fixed algebraic closure of K and by \overline{v} a fixed extension of v to \overline{K} .

PROPOSITION 2.1. If w is an extension of v to K(X) there always exists a common extension \overline{w} of w and \overline{v} to $\overline{K}(X)$. Moreover, w is an r.t. extension of v if and only if \overline{w} is an r.t. extension of \overline{v} .

Proof. First we notice that \overline{K}/K and $\overline{K}(X)/K(X)$ are normal extensions. If $\overline{\sigma}$ is an automorphism of \overline{K}/K , denote by $\overline{\sigma}$ the automorphism of $\overline{K}(X)/K(X)$ defined in the following canonical way: if $f(X) = a_0 + a_1X + ... + a_nX^n$ is an element of $\overline{K}[X]$. then set $\overline{\sigma}(f(X)) = \overline{\sigma}(a_0) + \overline{\sigma}(a_1)X + ... + \overline{\sigma}(a_n)X^n$. and extend it canonically to $\overline{K}(X)$. The assignment

is an isomorphism of Aut (\overline{K}/K) onto $Aut(\overline{K}(X)/K(X))$.

Now let w' be an extension of w to the algebraic extension $\overline{K}(X)$ of K(X), and let v' be the restriction of w' to \overline{K} . It is clear that v' is an extension of v to \overline{K} . Since \overline{K}/K is a normal extension, there exists (see [5, Ch. VI, §8]) an element $\overline{b} \in \operatorname{Aut}(\overline{K}/K)$ such that $v' = \overline{b} \overline{v}$, i.e. $v'(a) = \overline{v}(\overline{c}^{-1}(a))$, for all $a \in \overline{K}$. Let us define \overline{w} by $\overline{w} = \overline{c}^{-1}w'$. Then the restriction of \overline{w} to \overline{K} is exactly \overline{v} , as claimed.

The last part of the proposition is obvious.

THEOREM 2.2. Let w_1 , w_2 be two r.t. extensions of \overline{v} to $\overline{K}(X)$. The following statements are equivalent:

1) w_1 and w_2 coincide on K(X).

2) There exists a minimal pair of definition (a_i, δ_i) of w_i , i = 1, 2 (with respect to K) such that the following conditions are fulfilled:

a) $\delta_1 = \delta_2$, and a_1 , a_2 are conjugate over K.

b) If $g(X) \in K[X]$ is such that deg $g(x) < [K(a_1) : K]$, then $\overline{v}(g(a_1)) = \overline{v}(g(a_2))$.

Proof. The proof uses [2, Theorem 2.1]. We shall use notation, definitions and considerations related to [2, Theorem 2.1], which are briefly recalled in the following:

1)=>2). Let w be the common restriction of w_1 and w_2 to K(X). Let (a_i, S_i) be a minimal pair of definition of w_i . $n_i = [K(Q_i): K]$. i = 1, 2. Also, denote by $f_i(X)$ the (monic) minimal polynomial of a_i with respect to K. and let $\widetilde{b_i} = w_i(f_i(X))$, i = 1, 2. Denote by e_i the smallest non-zero positive integer e_i such that $e_i \widetilde{b_i} \in G_{v_i}$ (here v_i is the restriction of \overline{v} to $K(Q_i)$, i = 1, 2). According to [2, Theorem 2.1], there exists a polynomial $h_i(X) \in K[X]$, such that

(4)

 $\deg h_i(X) < n_i$

i = 1, 2. Then, according to [2, Theorem 2.1],

 $w_i(h_i(X)) = \overline{v}(h_i(a_i)) = e_i \mathcal{T}_i$

$$\mathbf{r}_{i}(\mathbf{X}) = (\mathbf{f}_{i}^{\mathbf{e}_{i}}(\mathbf{X}))/\mathbf{h}_{i}(\mathbf{X})$$

i = 1, 2, is the rational fraction in K(X) of smallest degree such that $w_i(r_i) = 0$, and r_i^* is transcendental over k_v . As w_1 and w_2 coincide on K(X), we have:

 $e_1 n_1 = \deg r_1 = \deg r_2 = e_2 n_2$.

First we shall prove that $n_1 = n_2$. Indeed, let us assume that $n_1 < n_2$. Thus since $w_1(r_1) = w_2(r_1) = 0$ and since r_1^* is transcendental over k_v by Proposition 1.1. it follows that there exists a root a of $f_1(X)$ or of $h_1(X)$ such that (a, δ_2) is a pair of definition of w_2 . But this is false since deg $h_1(X) < n_1 < n_2$. Therefore one necessarily has $n_1 \ge n_2$ and by symmetry $n_1 = n_2$, as claimed. We have implicitly proved that we may assume that w_2 has a minimal pair of definition (a, δ_2) such that a and a_1 are conjugate, i.e. we may assume that a_2 and a_1 are conjugate, and so $f_1 = f_2 = f$.

Furthermore, condition b) of 2) follows by [2, Theorem 2.1], since for every polynomial $g(X) \in K(X)$ such that deg $g(X) < n_1 = \deg f_1$ one has

(5)
$$w(g(X)) = v(g(a_1)) = v(g(a_2))$$
.

Finally, we shall prove that $S_1 = S_2$. If a_1 is purely inseparable over K. let e be the

smalest positive integer such that $a_1^{p^e} = b$, belongs to K. Then the minimal polynomial of a is

$$f(x) = X^{p^e} - b,$$

Therefore one has $a_1 = a_2$, and so

$$w_1(f(X)) = w_1(X^{p^e} - a_1^{p^e}) = p^e w_1(X - a_1) = w_2(f(X)) = p^e w_2(X - a_1)$$

i.e.

$$w_1(X - a_1) = \delta_1 = w_2(X - a_1) = \delta_2$$
.

Let us assume that a, is not purely inseparable over K. Then, we may write

$$f(X) = \sum_{i=1}^{n} g_i(a_1)(X - a_1)^i = \sum_{i=1}^{n} g_i(a_2)(X - a_2)^i$$

where $g_i(X)$ (i = 1,...,n) are polynomials, with coefficients in \overline{K} , of degree at most deg f - 1. Then, according to [2, Theorem 2.1] one has:

(6)

$$w_{1}(f(X)) = \inf_{i} (\overline{v}(g_{i}(a_{1})) + i \delta_{1}) = \delta_{1}$$

$$w_{2}(f(X)) = \inf_{i} (v(g_{i}(a_{2}) + i \delta_{2}) = \delta_{2}$$

But since w_1 and w_2 coincide on K(X). then one has $\mathcal{V}_1 = \mathcal{V}_2$. Finally, the equality $\delta_1 = \delta_2$ follows by (5) and (6). Indeed, assume that $\delta_1 = \overline{v}(g_i(a_1)) + i_1\delta_1$ and $\mathcal{V}_2 = \overline{v}(g_i(a_2)) + i_2\delta_2 = \mathcal{V}_1$. Hence $\overline{v}(g_i(a_1)) + i_1\delta_1 = \overline{v}(g_i(a_2)) + i_2\delta_2$. If $i_1 \neq i_2$, then by (5) one sees that $\overline{v}(g_i(a_1)) + i_2\delta_1 \ge \overline{v}(g_i(a_1)) + i_1\delta_1 = \overline{v}(g_i(a_2)) + i_2\delta_2$. Now since $\overline{v}(g_i(a_1)) = \overline{v}(g_i(a_2))$, (see [2. Theorem 2.1]), it follows that $\delta_1 \ge \delta_2$. By symmetry, we have $\delta_1 \le \delta_2$.

The implication 2) \Rightarrow 1) follows immediately by [2, Theorem 2.1].

COROLLARY 2.3. Let w be an r.t. extension of v to K(X). Then there exists only a finite number of common extensions of \overline{v} and w to $\overline{K(X)}$.

Proof. Indeed, let \overline{w} be a common extension of w and \overline{v} to $\overline{K}(X)$, and let (a, δ) be a minimal pair of definition of \overline{w} . According to Theorem 2.2, there exist at most

[K(a): K] common extensions of \overline{v} and w to $\overline{K}(X)$.

REMARK 2.4. At this point we show that the number [K:w] defined in (3) depends only to v and w.

For that we prove:

A) The number [K: w] does not depend of a common extension of \overline{v} and w to $\overline{K}(X)$. Indeed, let w be an r.t. extension of v to K(X) and let \overline{w} be a common extension of \overline{v} and w to $\overline{K}(X)$. Let also (a_1, δ) , (a_2, δ) be two minimal pairs of definition of \overline{w} . According to (3) and to the definition of [K: w] one has:

(7)
$$[K:w] = [K:\overline{w}] = [K(a_1):K] = [K(a_2):K].$$

It is clear that the number [K:w] depends only on \overline{w} and not on the choice of a minimal pair of \overline{w} . Now, according to Theorem 2.2, it follows that if w_1 , w_2 are common extensions of \overline{v} and w to $\overline{K}(X)$, so $[K:w_1] = [K:w_2]$. Hence the number [K:w] in (7) does not depend on the choice of a common extension of \overline{v} and w to $\overline{K}(X)$.

B) The number [K:w] in (7) does not depends on the extension of v to \overline{K} . Indeed, let v' be another extension of v to \overline{K} . Then, since \overline{K}/K is a normal extension, by [5, Ch. VI, §8] there exists $\overline{G} \in \operatorname{Aut}(\overline{K}/K)$ such that $v' = \overline{G} \overline{v}$. Let w' be a common extension of v' and w to $\overline{K}(X)$. Then $\overline{w} = \overline{G}^{-1}w'$ is a common extension of \overline{v} and w to $\overline{K}(X)$. Let (a', ζ ') be a minimal pair of definition of w', and similarly let (a, ζ) be a minimal pair of definition of \overline{w} . Consider also (see [2]):

$$M_{\overline{w}} = \left\{ \overline{w}(X - b) \middle| b \in \overline{K} \right\} \subseteq G_{\overline{v}} = G_{\overline{w}}$$
$$M_{w'} = \left\{ w'(X - b) \middle| b \in \overline{K} \right\} \subseteq G_{v'} = G_{w'}$$

- A. A.

*

.4

Now, since $v' = \overline{b} \overline{v'}$, we may assume that $G_{\overline{v}} = G_{v'}$. Furthermore, one has that $w'(X - a') = \delta' = (\sigma^{-1}\overline{w})(X - a') = \overline{w}(X - \delta^{-1}(a')) \leq \delta$ (because, according to [2]. δ is an upper bound of $M_{\overline{w}}$). Similarly one sees that $\delta \leq \delta'$. and so $\delta = \delta'$. Hence the equality $\overline{w}(X - \overline{b}(a')) = \delta$ shows that $(\overline{b}(a'), \delta)$ is a pair of definition of \overline{w} . Therefore, $[K(\overline{b}(a'):K] = [K(a'):K] \geq [K(a):K]$ because (a, δ) is a minimal pair of definition of \overline{w} . By symmetry, it follows that $[K(a'):K] \leq [K(a):K]$, and hence

[K(a): K] = [K(a'): K],

By this equality it follows that the number [K:w] defined in (3) depends only on v and w, and not on \overline{v} .

REMARK 2.5. At this point we consider the relation between the number [K:w] defined in (3) and the numbers deg (w/v), f(w/v) and e(w/v) defined in [7]. This relation will be used in the proof of Theorem 4.5.

3 If $r \in K(X)$, $r \notin K$. set deg r = [K(X) : K(r)]. As usual, if w is an r.t. extension of v to K(X), then by deg (w/v) we denote the least integer n such that there exists $r \in O_w$ of degree n such that r^* is transcendental over k_v .

Let \overline{W} be a common extension of \overline{V} and W to $\overline{K}(X)$ and let (a, β) be a minimal pair of definition of \overline{W} . In [2. Theorem 2.1] it is proved that

(8)
$$\deg(w/v) = [K : w]e$$
,

where e is the smallest positive integer such that $ew(f) \in G_{v_1}$ (here f is the monic with respect minimal polynomial of a relative to K and v_1 is the restriction of \overline{v} to K(a)). Since the numbers deg(w/v) and [K: w] (see Remark 2,4), depend only on v and w, by (8) it follows that e depends also only on v and w. Moreover, it is easy to show that $\mathcal{J} = w(f(X))$ also depends only on w and v.

Furthermore, it is clear that $G_v \subseteq G_w$ and $[G_w : G_v] < \infty$. Set:

$$e(w/v) = [G_w : G_v].$$

In [2. Theorem 2.1] it is proved that:

(9)
$$e(w/v) = e \cdot e(v_1/v)$$

where e is defined as above, and $e(v_1/v) = [G_{v_1} : G_v]$. By (8) and (9) it follows that $e(v_1/v)$ depends only on w and v and not on \overline{v} .

Finally, in [2, Theorem 2.1] it is shown that k (the algebraic closure of k_v in k_w) can be canonically identified with k_v . Hence, if we denote $f(w/v) = [k:k_v]$, then one has:

- 9 -

(10)
$$f(w/v) = [k_{v_1} : k_v] = f(v_1/v)$$

and obviously, this number also depends only to w and v, and not on \overline{v} . By [2, Theorem 2.1] and by the above considerations it follows that w is determined by v, \overline{v} and a minimal pair of definition (a, β) of \overline{w} . (We remind that such a pair (a, β) has been also called a minimal pair of definition of w.) The set of minimal pairs of definition of w with respect to K is dependent only on w and v, and not on \overline{v} .

In [7] it is proved (see also [2]) that

(11)
$$\deg(w/v) > e(w/v)f(w/v)$$

holds and the question of finding conditions under which (11) becomes an equality is raised. Since, by (8), (9), (10) and (11) we have

(12)
$$[K(a): K] = [K: w] \ge e(v_1/v)f(v_1/v),$$

the equality in (11) is equivalent to the equality in (12).

In Theorem 4.5 we give a general condition under which the inequality in (12) becomes an equality.

3. MINIMAL PAIRS OF DEFINITION OF AN r.t. EXTENSION

Let v be a valuation on a field K. let \overline{K} be a fixed algebraic closure of K and let \overline{v} be a fixed extension of v to \overline{K} .

In this section we are concerned with the following questions:

I) Which pairs $(a, \delta) \in \overline{K} \times G_{\overline{v}}$ are minimal pairs for some r.t.-extensions of v to K(X)?

II) Let $(a, \delta) \in \overline{K} \times G_{\overline{V}}$ and let $w_{(a, \delta)}$ be the valuation on $\overline{K}(X)$ defined by inf: \overline{V} , a and δ . Find a minimal pair of $w_{(a, \delta)}$ with respect to K.

Since both questions I) and II) seem to be difficult in the general setting, we give a bunch of results in some particular but important cases.

Denote by $(\widetilde{K},\widetilde{v})$ the <u>completion</u> of (K,v) in the sense of [5, Ch. VI, § 5]. By [5, Ch. VI, § 5], it follows that $(\widetilde{K},\widetilde{v})$ is an immediate extension of (K,v) (see [8, Ch. II]), i.e.

 $k_v = k_{\widetilde{v}}, \quad G_v = G_{\widetilde{v}}.$

1 2 - 2 - 1 (N)

As usual, we shall say that (K,v) is complete if $(K,v) = (\widetilde{K}, \widetilde{v})$.

By a (generalized) Cauchy sequence in (K.v) we mean a pair (I. $\{a_{\mathcal{J}}\}\)$, where I is a cofinal subset of G_v , and $\{a_{\mathcal{J}}\}\)$ is a subset of K indexed by I, such that the following condition is fulfilled: for all $\delta \in G_v$, there exists $\mathcal{P}(\delta) \in I$ so that $v(a_{\mathcal{P}_1} - a_{\mathcal{P}_2}) > \delta$ for any $\mathcal{P}_1 \geq \mathcal{P}(\delta)$. $\mathcal{P}_2 \geq \mathcal{P}(\delta)$. An element $a \in K$ is said to be a limit of the Cauchy sequence $(I, \{a_{\mathcal{P}}\}\)$ (in writing $a = \lim a_{\mathcal{P}}$) if for every $\delta \in G_v$, there exists $\mathcal{P}(\delta) \in I$ such that $v(a_{\mathcal{P}_1} - a) > \delta$, for any $\mathcal{P} \geq \mathcal{P}(\delta)$. According to the construction of (\tilde{K}, \tilde{v}) given in [5, Ch. VI, ξ 5], it follows that every element of \tilde{K} is the limit of a Cauchy sequence in (K, v). Moreover (K.v) is complete if and only if every Cauchy sequence in (\tilde{K}, v) has a limit in K. In particular, every Cauchy sequence in (\tilde{K}, v) has a limit in \tilde{K} .

1. THEOREM 3.1. Every r.t. extension w of v to K(X) has a minimal pair of definition (b, $\delta \in \overline{K} \times G_{\overline{v}}$ such that b is separable over K.

Proof. Let, as usual, \overline{w} be a common extension of \overline{v} and w to $\overline{K}(X)$, and let (a, δ) be a minimal pair of definition of \overline{w} with respect to K. Obviously we assume that char K = p > 0 and that a is not separable. Let e be the smallest positive integer such that a^{p^e} is separable over K, and let $K' = K(a^{p^e})$. It is clear that a is purely inseparable over K' and its minimal polynomial over K' is just $X^{p^e} - a^{p^e}$. Let $c \in K$ be a suitable non-zero element. Then the polynomial

$$f(x) = X^{p^{e}} - cX - a^{p^{e}}$$

is separable (i.e., its formal derivative is non-zero), and so it has at least a separable irreducible factor, or equivalently, there exists at least an element $b \in \overline{K}$ such that b is separable over K' and

(13)
$$f(b) = b^{p^{e}} - cb - a^{p^{e}} = 0.$$

Then one has:

N. 4. W.

 $b^{p^{e}} - a^{p^{e}} = (b - a)^{p^{e}} = cb$

and hence

(14)
$$p^{e} \overline{v}(b-a) = \overline{v}(c) + \overline{v}(b).$$

Let us assume that

(15)
$$v(c) > \sup(p^e \overline{v}(a), p^e \delta - \overline{v}(a)).$$

By (13) it results that $\overline{v}(a) = \overline{v}(b)$. Indeed, let us assume that $\overline{v}(a) > \overline{v}(b)$. Then by (13) we infer that $p^e \overline{v}(b) = \overline{v}(b) + v(c)$, or equivalently $\overline{v}(b) = (p^e - 1)^{-1}v(c)$. But then one has: $v(c) < (p^e - 1)\overline{v}(a)$ which contradicts (15). Hence $\overline{v}(a) < \overline{v}(b)$. If $\overline{v}(a) < \overline{v}(b)$, then also by (13) it results that $p^e \overline{v}(a) = \overline{v}(b) + v(c)$, i.e. $\overline{v}(b) = p^e \overline{v}(a) - v(c)$. But then $\overline{v}(a) < p^e \overline{v}(a) - v(c)$, and so $v(c) < (p^e - 1)\overline{v}(a)$, which contradicts (15). Therefore $\overline{v}(a) = \overline{v}(b)$, and by (14) and (15) one has:

 $p^{e}\overline{v}(b-a) = v(e) + \overline{v}(a) > p^{e} \delta$,

i.e., $\overline{v}(b - a) \ge S$, and so (b, S) is also a pair of definition of \overline{w} and of w. It is clear that b is also separable over K and one has:

[K(b) : K] = [K' : K][K'(b) : K'] < [K' : K][K'(a);K'] = [K(a) : K],

Finally, since (a, δ) is a minimal pair of definition of \overline{w} , it follows that (b, δ) is also a minimal pair of definition of \overline{w} (and w).

2. Now let us consider the question II). Let \overline{w} be a common extension of w and \overline{v} to $\overline{K}(X)$ and let $(a, \beta) \in \overline{K} \times G_{\overline{v}}$ be a pair of definition of \overline{w} (and w). How can we find a minimal pair of definition of \overline{w} (and w) with respect to K?

We shall consider this question in the special case when v is a Henselian valuation. Hence, for the rest of this subsection we assume that v is Henselian. Consider an element a $\in \overline{K}$, separable over K. Let us denote

 $\omega(a) = \sup \overline{v}(a - a')$

where the supremum is taken over all $a' \in K$ conjugate to a over K and $a' \neq a$. Now since v is Henselian, we have that $\overline{v}(a) = \overline{v}(a')$ if a' and a are conjugate over K, and so one has:

 $\omega(a) > \overline{\nu}(a)$.

PROPOSITION 3.2. Let δ be an element of $G_{\overline{V}}$ and let $a \in \overline{K}$ be an element which is separable over K. Denote by \overline{W} the valuation on $\overline{K}(X)$ defined by inf, \overline{V} , a and δ . Then:

a) If $S \leq \overline{v}(a)$, (0, δ) is a minimal pair of definition of \overline{w} with respect to K.

b) If $\delta > \omega(a)$, (a, δ) is a minimal pair of definition of \overline{w} with respect to K.

Proof. The assertion a) is obvious, and the assertion b) follows by Krasner's lemma (see [6, pag. 122]).

What happens when $\omega(a) \ge \delta > \overline{\nu}(a)$?

Let $a \in \overline{K}$ be separable over K and let $C = \{a = a_1, a_2, \dots, a_n\}$ be the set of all elements of \overline{K} conjugated to a over K. If $I = \{a.a_i, \dots, a_i\}$ is a subset of C, denote by $\{s_j(I)\}_{1 \leq j \leq r}$ the symmetric fundamental polynomials defined by the elements of I. Denote also $K_I := K(s_1(I), \dots, s_r(I))$.

PROPOSITION 3.3. Let $a \in \overline{K}$ be separable over K and let $\int \in G_{\overline{v}}$ be such that $\omega(a) \ge \int \overline{\sqrt{a}}$. Denote by \overline{w} the valuation on $\overline{K}(X)$ defined by inf, \overline{v} , a and \int . Assume that one of the following conditions is fulfilled:

a) char $k_{y} = 0$.

b) K is perfect and v is of rank one.

Then there exists a subset $I = \{a.a_{i_2}, \dots, a_{i_r}\}$ of C and an element $b \in K_I$ such that $K(b) = K_I$ and that (b, δ) is a minimal pair of definition of \overline{w} with respect to K.

Proof. Let (b, δ) be a minimal pair of definition of \overline{w} . Denote by $I = \left\{a.a_{i_2}...,a_{i_r}\right\}$ the subset of C consisting of all conjugates of a over K(b). With the above notation one has $K_I \subseteq K(b)$. Also if $a' \in I$, then, since v is Henselian, one has $\overline{v}(a' - b) = \overline{v}(a - b) \ge \delta$. Therefore if $a \neq a'$ it follows that:

 $\overline{\mathbf{v}}(\mathbf{a} - \mathbf{a}') = \overline{\mathbf{v}}(\mathbf{a} - \mathbf{b} + \mathbf{b} - \mathbf{a}') \geq \mathbf{\delta}$.

According to [3, Proposition 2, pag. 425], there exists b' $\in {\rm K}_{\rm I}$ such that

 $v(a - b') > \delta$.

4.3

• * *

Therefore (b'. β) is also a pair of definition of \overline{w} . But (b, β) is a minimal pair of

- 13 -

definition of \overline{w} and since $K \subseteq K_I \subseteq K(b)$, it follows that $K(b) = K_I = K(b')$. The proof is complete.

REMARK 3.4. If char $k_v = 0$, we may determine the element b as follows:

Since

$$\tilde{v}(a - a') \geq \delta$$
 $a' \in \{a, a_1, \dots, a_{i_r}\}$

then one has that: $v(a + a_{i_1} + ... + a_{i_r} - ra) \ge \delta$ and so

$$\overline{v}\left(\frac{a+a_{i}+\ldots+a_{i}}{r}-a\right) \geq \int$$

since $\overline{v}(r) = 0$. Hence, we can take

$$b = \frac{a + a_{i_2} + \dots + a_{i_r}}{r} \in K_I.$$

3. Now we consider the question I). We reformulate I) with respect to an element $a \in K$ in the following somewhat equivalent form:

CONDITION 3.5. There exists an element $\int \in QG_v = G_{\overline{v}}$ such that (a, β) is a minimal pair of definition of $w_{(a, \beta)}$ with respect to K.

As usual $w_{(a, \delta)}$ is the valuation of $\overline{K}(X)$ defined by inf. \overline{v} , a and δ . One has the following obvious result:

REMARK 3.6. Let $(a, \mathcal{J}) \in \overline{K} \times G_{\overline{v}}$.

1) The following statements are equivalent:

a) (a. δ) is a minimal pair of definition of $w_{(a, \delta)}$ with respect to K.

b) If $b \in \overline{K}$ is such that [K(b) : K] < [K(a) : K] then $\overline{v}(a - b) < \delta$.

2) If (a, b) is a minimal pair of definition of $w_{(a, b)}$, then for every $b' \in G_{\bar{v}}$, $b' \geq b'$, (a, b') is a minimal pair of definition of $w_{(a, b')}$.

PROPOSITION 3.7. Let a ϵK . Consider the following statements:

a) The condition (3.5) is satisfied for a.

b) The set

$$M(a,K) = \left\{ \overline{v}(a - b) \middle| b \in \overline{K}, \text{ such that } [K(a):K] > [K(b):K] \right\}$$

is upper bounded in $G_{\overline{v}}$.

c) The set

 $P(a.K) = \left\{ \overline{v}(g(a)) \middle| g \in K[X], g \text{ monic and deg } g < [K(a) : K] \right\} \text{ is upper bounded in}$ $G_{\overline{v}}.$

d) Let n = [K(a): K]. There exists $\mathcal{V} \in G_{\overline{v}}$, $\mathcal{V} \leq \inf_{1 \leq j \leq n-1} (j\overline{v}(a))$ such that the set: $P(a, K, \mathcal{V}) = \left\{ \overline{v}(g(a)) \middle| g(X) = X^m + a_1 X^{m-1} + \dots + a_m \in K[X], m < n \text{ and } v(a_i) \geq \mathcal{V}, 1 \leq i \leq m \right\}$ is upper bounded in $G_{\overline{v}}$.

Then the implications: $a(\Rightarrow b)(\Rightarrow c) \Rightarrow d)$ are always valid. Moreover, if v is Henselian then also d) $\Rightarrow b$.

Proof. The equivalence a) (\Rightarrow) follows by Remark 3.6. 1).

b)=>c) Let δ be a positive upper bound of M(a,K) in $G_{\overline{v}}$ and let $g(X) \in K[X]$ be a monic polynomial of degree smaller than n = [K(a): K]. Let $g(X) = \prod(X - b_i)$ be the decomposition of g(X) in $\overline{K}(X)$. For each i. one has $[K(b_i): K] < n$ and so $\overline{v}(a - b_i) < \delta$. Hence $\overline{v}(g(a)) = \sum_i \overline{v}(a - b_i) < n \delta$. and so P(a.K) is upper bounded by $n \delta$.

The implication c) = (d) is obvious.

Now let us assume v to be Henselian. If b and b' are conjugate over K (i.e., they have the same minimal polynomial over K). then $\overline{v}(a) = \overline{v}(a')$. We shall show that the implication d) \Rightarrow b) is also valid. Let us assume that d) is valid and b) is false, i.e. the set M(a.K) is not upper bounded in $G_{\overline{v}}$. Let λ be a positive upper bound of $P(a,K,\gamma)$ such that $\lambda > \overline{v}(a)$. Let $b \in \overline{K}$ be such that [K(b) : K] < [K(a) : K] = n, and that

(16) $\overline{v}(a-b) > n \lambda - (n-1)\overline{v}(a).$

Then $\overline{v}(a - b) > \overline{v}(a)$ and so $\overline{v}(a) = \overline{v}(b)$. If b' and b are conjugate over K, and since v is Henselian, one has $\overline{v}(b) = \overline{v}(b')$ and hence $\overline{v}(a - b') > \overline{v}(a)$. Let g be the monic minimal

polynomial of b over K. Then $g(X) = \frac{m}{\prod_{i=1}^{m} (X - b_i)}, m < n, b = b_1$. If $g(X) = X^m + i = 1$

+ $a_1 X^{m-1} + ... + a_m$, then according to well known relations between roots and coefficients of a polynomial. one gets: $v(a_i) \ge \inf_{i \le j \le m} (j\overline{v}(b)) \ge \inf_{i \le j \le m} (j\overline{v}(a)) \ge \mathcal{V}$. Therefore $\overline{v}(g(a)) \in P(a.K.\mathcal{V})$. Moreover one has: $\overline{v}(g(a)) = \overline{v}(\overline{\pi}(a - b_i)) = \overline{v}(a - b) + \sum_{i=2}^{m} \overline{v}(a - b_i) \ge i$ $\ge \overline{v}(a - b) + (m - 1)\overline{v}(a)$. By (16) it follows that $\overline{v}(g(a)) > \lambda$, which is a contradiction. Therefore $d) \Longrightarrow b$ as claimed.

THEOREM 3.8. Let $(\widetilde{K},\widetilde{v})$ be the completion of (K,v). Denote by \widehat{K} an algebraic closure of \widetilde{K} which contains \widetilde{K} and by \widehat{v} a common extension of \overline{v} and \widetilde{v} to \widehat{K} . For an element a $\in \widetilde{K}$ the following statements are equivalent:

a) The set P(a,K) is upper bounded in $G_{\overline{v}}$.

b) The set $P(a, \widetilde{K})$ is upper bounded in $G_{\widetilde{V}} = G_{\widetilde{V}}$, and $[K(a): K] = [\widetilde{K}(a): \widetilde{K}]$.

Proof. Since the implication $b \Rightarrow a$ is obvious, we have only to show that a) $\Rightarrow b$). First, we shall show that [K(a) : K] = [K(a) : K] = n. Let

(17)
$$g(X) = X^{m} + a_{m-1}X^{m-1} + \dots + a_{1}X + a_{0}$$

be the minimal polynomial of a over K. Assume that m < n. Denote by I a well ordered cofinal subset of G_v (see [4, § 2, Exercise 4]). Since $a_i \in K$, i = 0, ..., m - 1, for each $\rho \in I$ and each i, $0 \le i \le m - 1$, there exists an element $a_i^{(\beta)} \in K$ such that

(18) $\widetilde{v}(a_i - a_i^{(f)}) \geq f$.

5

Set $g_{\beta}(X) = a_{0}^{\binom{\beta}{2}} + a_{1}^{\binom{\beta}{2}}X + ... + a_{m-1}^{\binom{\beta}{2}}X^{m-1} + X^{m} \in K[X]$. By hypothesis one has: $\overline{v}(g_{\beta}(a)) \leq \lambda$, where λ is the upper bound of P(a,K). But according to (18) the set

$$\overline{\mathbf{v}}(g_{p}(\mathbf{a})) = \widehat{\mathbf{v}}(g_{p}(\mathbf{a}) - g(\mathbf{a}))$$
, $\mathcal{G} \in \mathbf{I}$

is unbounded, and this contradicts a). Hence [K(a) : K] = n.

Now, let $g(X) \in \widetilde{K}[X]$ be a monic polynomial whose degree is smaller than n (see also (17)). As above, we define the polynomials $g_{\rho}(X) \in K[X]$, such that the conditions (18) are fulfilled. If λ is an upper bound of P(a,K), then $\overline{v}(g_{\rho}(a)) \leq \lambda$ for all ρ . But, according to (18) the set $\{ \widehat{v}(g_{\rho}(a) - g(a)) \}_{\rho}$ is unbounded and so $\widetilde{v}(g_{\rho}(a)) = \overline{v}(g_{\rho}(a)) = \langle \varphi \rangle$ $= \hat{v}(g(a)) \leq \lambda$ for sufficiently large β . Therefore the set P(a.K) has also an upper bound, as claimed.

THEOREM 3.9. Let v be Henselian. Then:

a) Condition (3.5) is verified for every element $a \in \overline{K}$, separable over K.

b) If K is complete with respect to v (i.e. $(K.v) = (\widetilde{K}, \widetilde{v})$) then condition 3.5 is valid for all elements of \overline{K} .

Proof. a) follows by Proposition 3.2, b).

b) Let $a \in \overline{K}$; it is clear that we may assume that $a \notin K$. Let [K(a) : K] = n. According to Proposition 3.7, it will be enough to show that the set P(a, K, V) is upper bounded for some $V \leq \inf_{\substack{i \leq i \leq n-1}} (j\overline{v}(a))$.

Let us assume that for every $\mathcal{V} \cdot \mathcal{V} \leq \inf(j\overline{v}(a))$, the set $P(a, K, \mathcal{V})$ is not upper j bounded. This means that for every $\mathcal{V} \cdot \mathcal{V} \leq \inf(j\overline{v}(a))$, there exists a triplet

(19)
$$T_{\mathcal{V}} = (I, \{g_{\mathcal{S}}(X)\}, m)$$

where I is a well ordered and cofinal subset of G_v (see [4, §2, Ex. 4] and $\{g_{g}(X)\}\$ is the set of polynomials over K, monic. and of the same degree m < n.

(20) $g_{\beta}(X) = X^{m} + a_{1\beta} X^{m-1} + \dots + a_{m\beta} \qquad \tilde{\beta} \in I$

such that

(21)

$$v(a_{i \rho}) \geq \gamma, \quad i \leq i \leq m, \quad \rho \in \mathbb{N}$$

 $\overline{v}(g_{\rho}(a)) \longrightarrow \infty$

(The notation $\overline{v}(g_{\rho}(a)) \rightarrow \infty$ means that for every $\mathcal{F} \in G_{\overline{v}}$ there exists $\mathcal{P}(\mathcal{F}) \in I$ such that $\overline{v}(g_{\rho}(a)) > \mathcal{F}$, for all ρ such that $\rho \geq \rho(\mathcal{F})$.)

In the set of all triples (19) we choose a triplet $T_{\mathcal{V}_o}$, corresponding to a suitable $v_o \leq \inf(j\overline{v}(a))$, such that m is as small as possible. For this triplet we shall use also the notation of (19) and (20).

Since K is assumed to be complete, we note that m > 1. We claim that we can assume that not all sequences:

(22)
$$\left\{a_{i}\right\}$$
 $0 \le i \le m$, $a_{o} = 1$, $p \in I$

contain a (generalized) Cauchy subsequence.

Indeed, if this were not the case let $\{a_1, \rho_1\}$ be a Cauchy subsequence of $\{a_1, \rho_1\}$, where ρ_1 belongs to a cofinal subset I_1 of I. Replacing I by I_1 we may assume that the sequence $\{a_1, \rho_1\}$ is Cauchy. Furthermore, we pass to the sequence $\{a_2, \rho_1\}$ and so on. Finally, we may assume that all the sequences (22) are Cauchy and since K is complete let $a_i = \lim_{i \neq 0} a_{i \neq 0}$. Set $g(X) = X^m + a_1 X^{m-1} + \dots + a_m$. Then one has:

- 18 -

$$\overline{v}(g(a) - g_{\beta}(a)) = \overline{v}(\sum_{i=1}^{m} (a_i - a_{i\beta})a^{m-i})$$

and since $v(g_p(a)) \rightarrow \infty$, then g(a) = 0. This is a contradiction since m < n = [K(a): K].

Let i_o be the first index such that all the sequences $\{a_{i\beta}\}$, $0 \le i < i_o$ are Cauchy but $\{a_{i_o\beta}\}$ does not contain any Cauchy subsequence. This means that there exists an element $\forall \in G_{\overline{v}}, \forall > 0$, such that for all $\rho \in I$ there exists an element $\rho' \ge \rho''$ such that

(23)

$$v(a_{i_0}^{(i_1)}, i_{j_1}^{(i_1)}, j_{j_1}^{(i_2)}) \leq \gamma$$

Denote by I' the set of all elements ρ' constructed as above; it is easy to see that I' is well ordered, and a cofinal subset of I, hence of $G_{\overline{v}}$. Consider the set of all polynomials:

$$h_{\zeta}(X) = g_{\zeta+1}(X) - g_{\zeta}(X) = b_{1\zeta} X^{m-1} + \dots + b_{i_{0}\zeta} X^{m-i_{0}} + \dots + b_{m}$$

We write I instead of I' and ρ instead of ρ' . Since $\overline{v(g_{\rho}(a))} \rightarrow \infty$, then also $\overline{v(h_{\rho}(a))} \rightarrow \infty$. By hypothesis one has

(24)
$$v(b_{1p}) \rightarrow \infty, \dots, v(b_{(i_0-1)p}) \rightarrow \infty$$

According to (23) we have:

(25) $v(b_{i_0} f) \leq f$ for all f. Denote

$$x_{j}^{*}(X) = h_{j}^{*}(X) - \frac{1}{j=1} b_{j}^{*} \sum_{j=1}^{m-1} b_{j}^{*} \sum_{j=1}^{m-1} x_{j}^{m-j} = b_{j}^{*} \sum_{j=1}^{m-1} x_{j}^{m-j} + \dots + b_{m}^{*}$$

Since $\overline{v}(h_{\rho}(a)) \rightarrow \infty$, then by (24) one checks that $\overline{v}(k'_{\rho}(a)) \rightarrow \infty$ and by (25) one sees that $b_{i,\rho} \neq 0$ for all ρ ; also by (25) it follows that $v(b_{i,\rho}^{-1}) \geq -\gamma$. Therefore one has

$$\overline{v(k_{p}(a))} \rightarrow \infty$$

where $k_{\mathcal{P}}(X) = (b_{i_{\mathcal{O}}})^{-1} k'_{\mathcal{P}}(X)$. It is clear that the polynomials $k_{\mathcal{P}}(X)$ are monic of the same degree, and conditions (21) are fulfilled for the triplet $T_{\mathcal{V}_{\mathcal{O}}} = \frac{1}{\mathcal{V}_{\mathcal{O}}} = (I, \{k_{\mathcal{C}}(X)\}, m - i_{\mathcal{O}})$. Since $\mathcal{V}_{\mathcal{O}} - \mathcal{V} < \mathcal{V}_{\mathcal{O}} \leq \inf(j\bar{v}(a))$ we obtain a contradiction with the definition of the triplet (19) because the common degree $m - i_{\mathcal{O}}$ of $k_{\mathcal{C}}(X)$ is smaller than m. Hence the set $P(a, K, \mathcal{V})$ is upper bounded for some $\mathcal{V} \leq \inf(j\bar{v}(a)), \frac{1 \leq j \leq n-1}{1 \leq j \leq n-1}$

COROLLARY 3.10. Let $(\widetilde{K}, \widetilde{v})$ be the completion of (K, v). Assume that \widetilde{v} is Henselian. Let $a \in \widetilde{K}$. Then with the notation from Proposition 3.7, one has that M(a, K)is upper bounded in $G_{\overline{v}}$ if and only if $[K(a): K] = [\widetilde{K}(a): \widetilde{K}]$.

Proof. If M(a.K) is upper bounded in $G_{\overline{v}}$ then by Theorem 3.8 it results that $[K(a):K] = \widetilde{[K(a):K]}$. The other implication results by Theorems 3.8, 3.9 and Proposition 3.7.

In particular. one has:

A BOS CA

COROLLARY 3.11. Let v be of rank one and let $a \in \widetilde{K}$. There exists an element $\delta \in G_{\overline{v}}$ such that (a, δ) is a minimal pair for $w_{(a, \delta)}$ if and only if $[K(a) : K] = [\widetilde{K}(a) : \widetilde{K}]$.

The proof follows from Corollary 3.10, since \tilde{v} is in this case Henselian (see [8, Ch. II]).

COROLLARY 3.12. Let v be Henselian and let the valuation pair (K.v) be complete, i.e. $(K,v) = (\widetilde{K},\widetilde{v})$. If $a_1 \in \overline{K}$, then there exists $a_2 \in \overline{K}$, separable over K, such $k_{v_1} = k_{v_2}$ where v_i is the unique extension of v to $K(a_i)$, i = 1, 2.

Proof. According to Theorem 3.9 there exists $\int \in G_{\overline{v}}$ such that (a_1, β) is a minimal pair of definition of $\overline{w} = w_{(a_1, \beta)}$. According to Theorem 3.1 there exists $a_2 \in \overline{K}$

such that (a_2, β) is also a minimal pair of definition of \overline{w} with respect to K, and a_2 is separable over K. If w is the restriction of \overline{w} to K(X), then according to [2, Corollary 2.3], $k_{v_1} = k_{v_2}$, and this is the algebraic closure of k_v in k_w .

Moreover, we can give a somewhat independent proof. Let $b \in K(a_1)$ be such that $v_1(b) = 0$. Then one has $b = g(a_1)$, where $g(X) \in K[X]$ and $r = \deg g(X) < [K(a_1) : K] = [K(a_2) : K] = n$. Let

$$g(X) = c \frac{1}{11}(X - d_i)$$

i=1

be the splitting of g(X) over \overline{K} as a product of linear factors. Now, since (a_1, δ) and (a_2, δ) are both minimal pairs of definition of \overline{w} , it results that for suitable elements $h_i \in \overline{K}$ one has

$$\overline{v}(a_1 - d_i) = \overline{v}(a_2 - d_i) = \overline{v}(h_i) < S$$
, $1 \le i \le r$,

and so

Ť

$$w(g(X)) = v(c + \sum_{i=1}^{r} \overline{w}(X - d_i) = v(c) + \sum_{i=1}^{r} \overline{v}(a_1 - d_i) =$$

$$= \mathbf{v}(\mathbf{c}) + \sum_{i=1}^{1} \overline{\mathbf{v}}(\mathbf{a}_2 - \mathbf{d}_i) = \overline{\mathbf{v}}(\mathbf{g}(\mathbf{a}_1)) = \overline{\mathbf{v}}(\mathbf{g}(\mathbf{a}_2) = \overline{\mathbf{v}}(\mathbf{b}) .$$

Finally. since $v(a_1 - a_2) \ge \delta$, then $(\frac{a_1 - d_i}{h_i})^* = (\frac{a_1 - d_i}{h_i})^*$, $1 \le i \le r$, and so $g(a_1)^* = b^* = (g(a_2))^*$. Therefore $k_{v_1} \le k_{v_2}$, and by symmetry it follows that $k_{v_1} = k_{v_2}$, as claimed.

REMARK 3.13. By Theorem 3.8 it follows that, in general, not for all $a \in \overline{K}$ there exists $\delta \in G_{\overline{v}}$ such that (a, δ) is a minimal pair of definition of $w_{(a, \delta)}$. This is the case, for example, if $a \notin \overline{K}$ but $a \in \widetilde{K}$.

4. SOME APPLICATIONS

In this section we give some applications of the results proved in previous sections. Theorem 4.4 gives the existence of some r.t. extensions of v to K(X) with prescribed residue field and valued group. Also in Theorem 4.5 we give a general frame-

work in which the fundamental inequality of [7] becomes on equality.

1. In what follows we shall denote by (K_1, v_1) the Hensealization of (K, v) included in $(\overline{K}, \overline{v})$ (see [6, §7]). It is known that (K_1, v_1) is an immediate extension of (K, v), i.e. $k_v = k_{v_1}$ and $G_v = G_{v_1}$. One has the following result which will be useful later (compare with Theorem 3.8):

PROPOSITION 4.1. Let $a \in \overline{K}$ be separable over K and suppose that $[K(a) : K] = [K_1(a) : K_1]$. Then there exists $\int \epsilon G_{\overline{v}}$ such that (a, δ) is a minimal pair of definition of with respect of K (i.e. Conditions 3.5 is fulfilled for a).

Proof. Since a is also separable over K_1 . Theorem 3.9 a) implies that there exists $\int \in G_{\overline{V}}$ such that (a, δ) is a minimal pair of definition of $w_{(a, \delta)}$ with respect to K_1 . Now we assert that (a, δ) is also a minimal pair of definition of $w_{(a, \delta)}$ with respect to K. Indeed, if $b \in \overline{K}$ is such that [K(b) : K] < [K(a) : K], then by hypothesis one has:

 $[K_1(b): K_1] \leq [K(b): K] < [K(a): K] = [K_1(a): K_1].$

Now since (a, δ) is a minimal pair of definition of $w_{(a, \delta)}$ with respect to K_1 it follows that $\overline{v}(a - b) < \delta$. But this means that (a, δ) is also a minimal pair of definition of $w_{(a, \delta)}$ with respect to K.

LEMMA 4.2. (see also [7, Theorem 4.6]). Let k/k_v be a finite extension. There exist (infinitely many) r.t. extensions w of v to K(X) such that k_w is isomorphic to k(t), with t transcendental over k. Moreover we can find w such that:

deg $[w/v] = f(w/v) = [k:k_v]$.

T

X

e 3: 18 4

Proof. Let $k = k_v(x_1, ..., x_n)$. We shall prove that there exists an element $a \in \overline{K}$. separable over K such that $[K(a): K] = [k: k_v]$ and that $k_{v_2} = k$, where v_2 is the restriction of v to K(a). For that we shall proceed by induction over n. Now since $k_{\overline{v}}$ is an algebraic closure of k_v , we can assume that $k_v \subseteq k \subseteq k_{\overline{v}}$. Let us assume that $n \ge 1$, $[k_v(x_1): k_v] = s > 1$ and let $\varphi_1(Y) = c_0 + c_1Y + ... + c_sY^s$ be the minimal polynomial of x_1 over k_v . Let $A_i \in O_v$ be such that $A_i^* = c_i$, $0 \le i \le s$, and such that $A_1 \ne 0$. Then the polynomial:

$$\Psi(\mathbf{Y}) = \mathbf{A}_{0} + \mathbf{A}_{1}\mathbf{Y} + \dots + \mathbf{A}_{s}\mathbf{Y}^{s}$$

is irreducible and separable over K. Let $b_1, ..., b_s$ be all roots of $\varphi(Y)$ in K. It is easy to see that $\overline{v}(b_i) \ge 0$, $1 \le i \le s$, and that there exists an i such that $b_i^* = x_1$. Denote $b_i = a_1$. Now, by induction hypothesis, there exists $a_2 \in \overline{K}$, separable over $K(a_1)$, such $[K(a_1)(a_2): K(a_1)] = [k: k(x_1)]$. Let $a \in \overline{K}$ be such that $K(a) = K(a_1, a_2)$. This a is the desired element.

Let v_2 be restriction of v to K(a) and let v'_2 be the restriction of v to K₁(a). It is clear that $k = k_{v_2}$ and $[K(a): K] = [k: k_v]$. Now since (K_1, v_1) is an immediate extension of (K, v), then one has: $[K_1(a): K_1] \ge [k_{v_2}: k_v] = [k_{v_2}: k_v] = [K(a): K] \ge$ $\ge [K_1(a): K_1]$. Therefore $[K(a): K] = [K_1(a): K]$, and since a is separable over K. according to Proposition 4.1 there exists an element $\int \epsilon G_{\overline{v}}$ such that (a, δ) is a minimal pair of definition of $w_{(a, \delta)}$ relative to K. Now since G_v is cofinal in $G_{\overline{v}}$, we can choose $\int \epsilon G_v$ (see Remark 3.6. 2)). Finally, let w be the restriction of $w_{(a, \delta)}$ to K(X). By [2, Theorem 2.1] it follows that $k_w = k(t)$, where t is transcendental over k_v . Moreover, one has (see (8), (9), (10)):

(26)
$$\deg[w/v] = [K : w]e = [K(a) : K]e = f(v_{0}/v)e(v_{0}/v)e = f(w/v)e(w/v).$$

Furthermore. since $[K(a): K] = [k_{v_2}: k_v]$ it follows that $e(v_2/v) = 1$, or equivalently $G_v = G_{v_2}$. Let f be the monic minimal polynomial of a over K. Then one has:

$$f(x) = \sum_{i=1}^{n} f_i(X)(X - a)^i$$

where $f_i(X) \in K(a)[X]$. Thus:

$$\mathcal{J} = w(f) = \inf_{i} (v_2(f_i(a)) + i \mathcal{J}).$$

By this equality and the condition $\oint \in G_v$, it follows that $\bigvee = w(f) \in G_{v_2} = G_v$ and so in the equalities (26) one has e = 1. Therefore by (26) it follows that $\deg(w/v) = f(w/v) = [k:k_v]$, as claimed.

LEMMA 4.3. Let G be a subgroup of $G_{\overline{v}}$ such that $G_{\overline{v}} \subseteq G$ and $G/G_{\overline{v}}$ is finite.

Then there exists an r.t. extension w of v to K(X) such that $G_w = G$. Moreover, we can choose w such that $\deg(w/v) = e(w/v) = [G : G_v]$. (As usual $[G : G_v]$ denotes the cardinal of the finite group G/G_v).

Proof. Let $n = [G : G_v]$. By induction over n we shall prove that there exists an element $a \in \overline{K}$, separable over K, such that $[K(a) : K] = [G : G_v] = e(v_2/v)$, and $G_{v_2} = G$ where v_2 is the restriction of \overline{v} to K(a).

Let us assume the assertion valid for all n' < n. In fact, we assume that for every field K' such that $K \subseteq K' \subseteq \overline{K}$ and for every $G' \subseteq G_{\overline{V}}$ such that $G_{V'} \subseteq G'$, with $[G': G_{V'}] < n$, there exists $a'' \in \overline{K}$, a'' separable over K', such that [K'(a''): K'] = $= [G': G_{V'}] = e(v''/v')$ and $G_{V''} = G''$. (Here v' is the restriction of \overline{V} to K' and v'' the restriction of \overline{V} to K'(a'').)

Let G_1 be a subgroup of G such that G_1/G_v is cyclic and $[G_1: G_v] = p$ is prime. Let λ be a positive element of G such that $\overline{\lambda}$. the coset of λ relative to G_v , generates G/G_v . It is clear that p is the smallest non-zero positive integer e such that $e \lambda \in G_v$.

Let b be an element of K such that $v(b) = p_{\lambda}^{X}$. Let $c \in K$ be such that $v(c) > (p-1)\lambda$. Consider the polynomial $h(X) = X^{p} + cX + b$ of K[X]. Let a' be a root of h in \overline{K} . Then one has:

(27)
$$a'^{P} + ca' + b = 0$$

According to general properties of a valuation it results that in (27) two terms has the same valuation and this valuation is smaller than the third. Since $v(c) > (p - 1) \lambda$, the only possibility is $\overline{v}(a'^p) = v(b) = p \lambda$. Hence $\overline{v}(a') = \lambda$. This show that h is irreducible. Since h is a separable polynomial then a' is separable over K.

Let K' = K(a') and let v' the restriction of \overline{v} to K'. It is easy to see that $G_{v'} = G_1$ and $[K':K] = [G_{v'}:G_v] = p$. If $p \neq n$ then we apply the induction hypothesis relative to K' and G, since $[G:G_{v'}] = n/p < n$. Hence there exists $a'' \in \overline{K}$, a'' separable over K', and such that $[K'(a''):K'] = [G:G_{v'}] = e(v''/v')$; here v'' is restriction of \overline{v} to K'(a''). Also, one has $G_{v''} = G$.

Let $a \in \overline{K}$ be such that K(a) = K(a',a''). Then a is separable over K and by the

work in which above assumptions one has: $[K(a): K] = n = [G: G_v]$ and also $G_{v_2} = G$, where $v_2 = v''$ is the restriction of \overline{v} to K(a).

Furthermore, as above, let v_2 be the restriction of \overline{v} to $K_1(a)$. Since (K_1, v_1) is an immediate extension of (K.v), then one has: $[G_{v_2}: G_{v_1}] = [G_{v_2}: G_{v_1}] = [K(a): K] = [K_1(a): K_1]$. Hence $G_{v_2} = G$, and

(28)
$$e(v_2/v_1) = e(v_2/v) = n = [G:G_v] = [K(a):K].$$

Now, according to Proposition 4.1, there exists $\delta \in G_{\overline{v}}$ such that (a, δ) is a minimal pair of definition of $w_{(a, \delta)}$ with respect to K. As usual, since G_v is cofinal in $G_{\overline{v}}$ we may choose $\delta \in G_v$ (see Remark 3.6, 2)). As in the proof of the previous lemma we may check that if f is the minimal (monic) polynomial of a, with respect to K, then $w(f) \in G$, where w is the restriction of $w_{(a, \delta)}$ to K(X). Finally by (28) it follows that f(w/v) = 1; from (26) and since $W(f) \in G$ we have $deg(w/v) = e(w/v) = n = [G : G_v]$. Hence $G_w = G$, as claimed.

THEOREM 4.4. Let (K,v) be a valued field and let $k_v \subseteq k \subseteq k_v$ and $G_v \subseteq G \subseteq G_v$ be such that $[k:k_v] \iff$ and $[G:G_v] \iff$. Then there exists an r.t. extension w of v to $K(\chi)$ such that k_w is isomorphic to k(t), with t transcendental over k and $G_w = G$. Moreover we can choose w such that

$$f(w/v) = [k:k_{y}], e(w/v) = [G:G_{y}]$$

and that

 $\deg(w/v) = [k:k_v][G:G_v].$

Proof. The proof is based mainly on the previous lemmas. According to Lemma 4.2 we can find a separable element $a' \in \overline{K}$ such that $[K(a') : K] = [k : k_v]$ and that, if v' is the restriction of \overline{v} to K(a'), then $k_{v'} = k$. By Lemma 4.3 we can find a separable element $a'' \in \overline{K}$ such that $[K(a'') : K] = [G : G_v]$ and that if v'' is the restriction of \overline{v} to K(a'') then $G_{v''} = G$. Let $a \in \overline{K}$ be such that K(a) = K(a',a'') and let v_2 be the restriction of \overline{v} to K(a). Then, since $k_{v'} \subseteq k_{v_2}$, one sees that $[k_{v_2} : k_v] \ge [K(a') : K]$. Also, since $G_{v''} \subseteq G_{v_2}$ one has that $[G_{v_2} : G_v] \ge [G_{v''} : G_v] = [K(a'') : K]$. Finally, one gets that

[K(a): K] = [K(a'): K][K(a''): K] and

(29)
$$k_{v_2} = k_{v'} = k$$
, $G_{v_2} = G_{v''} = G$.

Furthermore, since (K_1,v_1) is an immediate extension of (K,v), one easily sees that $[K(a'):K] = [K_1(a'):K_1]$, $[K(a''):K] = [K_1(a''):K_1]$ and so $[K(a):K] = [K_1(a):K_1]$. Hence, by Proposition 4.1, there exists $\oint \in G_{\overline{v}}$ such that (a, \oint) is a minimal pair of definition of $w_{(a, \oint)}$ with respect to K. Since G_v is cofinal in $G_{\overline{v}}$ we can choose $\oint \in G_v$ (see Remark 3.6, 2)). Let w be the restriction of $w_{(a, \oint)}$ to K(X). Since $\int \in G_v$, then by (29) it follows that the algebraic closure of k_v in k_w is just $k_{v_2} = k$ and so $k_w = k(t)$, with t transcendental over k. Moreover, $G_w = G$ and $e(w/v) = [G:G_v]$. Finally, one has (see (8), (9), (10)):

$$leg(w/v) = f(w/v)e(w/v) = [k:k_{..}][G:G_{..}],$$

as claimed.

2. At this point we shall give a somewhat general framework in which the fundamental inequality

deg(w/v) > e(w/v)f(w/v)

becomes an equality. The notation are as usual. Remind that $(\widetilde{K}, \widetilde{v})$ is the completion of (K,v) (see [5, Ch. VI. \S 5]) and that $(\widetilde{K}, \widetilde{v})$ is an immediate extension of (K,v).

THEOREM 4.5. Let (K,v) be a valuation pair. The following statements are equivalent:

1) For every r.t. extension w of v to K(X) one has:

deg(w/v) = e(w/v)f(w/v)

2) The valuation \widetilde{v} is Henselian and for every finite simple extension L/K, $L = \widetilde{K}(a)$, one has:

$$[L:\widetilde{K}] = e(v_1/v)f(v_1/\widetilde{v})$$

where v_1 is the only extension of \tilde{v} to L.

Proof. 1) \Longrightarrow 2) Let w be such that e(w/v) = f(w/v) = 1. Then by 1) it follows that w has a minimal pair of definition $(a, \delta) \in K \ge G_v$, i.e. w is defined by inf, v, $a \in K$ and $\delta \in G_v$. But then, according to [2, Theorem 3.3] it follows that \widetilde{K} is algebraically closed in a maximally complete extension (K',v') of $(\widetilde{K},\widetilde{v})$. First, we have that $(\widetilde{K},\widetilde{v})$ is Henselian. Indeed, let K_1/\widetilde{K} be an algebraic extension. Then $K'K_1/K'$ is also an algebraic extension. Now, since (K',v') is Henselian (see [8, Ch. II. Theorems 6 and 7]), it follows that v' has a unique extension to $K'K_1$. But then it follows that necessarily \widetilde{v} has a unique extension to K_1 , i.e. $(\widetilde{K},\widetilde{v})$ is Henselian.

Furthermore, let \widehat{K} be an algebraic closure of \widetilde{K} which contains also \overline{K} . To complete the proof of the implication $1) \Longrightarrow 2$ it will be enough to show that for every $a \in \widehat{K}$ one has: $[\widetilde{K}(a) : \widetilde{K}] = e(\widehat{v}/\widetilde{v})f(\widehat{v}/\widetilde{v})$. where \widehat{v} is the unique extension of \widetilde{v} to \widehat{K} . For that, let X be an indeterminate over \widehat{K} and $a \in \widehat{K}$. According to Theorem 3.9 a), there exists $\delta \in G_{\widehat{V}}$ such that (a, δ) is the minimal pair of $w_{(a, \delta)}$ with respect to \widetilde{K} (here $w_{(a, \delta)}$ is the valuation on $\widehat{K}(X)$ defined by inf, \widehat{v} , a and δ). Let w' be the restriction of $w_{(a, \delta)}$ to $\widetilde{K}(X)$ and w restriction of w' to K(X). Since w' is an r.t. extension of \widetilde{v} , and $(\widetilde{K}, \widetilde{v})$ is an immediate extension of (K, v), it follows that w is also an r.t. extension of v, and one has:

(30)
$$(\deg[w'/v] = \deg[w/v], e(w'/v) = e(w/v), f(w'/v) = f(w/v).$$

Hence the equality

5. 1 × 1

$$\widetilde{[K(a):K]} = e(v_1/\widetilde{v})f(v_1/\widetilde{v})$$

follows from (8), (9), (10), (30) and assumption 1).

2)=)1) Let w be an r.t. extension of v to K(X) and $(a, \beta) \in \overline{K} \times G_{\overline{V}}$ a minimal pair of definition of w with respect to K. Since (a, β) is a minimal pair of definition for w, then a verifies the condition 3.5 and so, according to Proposition 3.7, the set P(a,K) is upper bounded in $G_{\overline{V}}$. Now, according to Theorem 3.8, one has

(31)
$$[K(a): K] = [K(a): K]$$

Furthermore, since (\widetilde{K}, v) is an immediate extension of (K, v), we have:

- 26 -

(32)
$$e(v'/v) = e(v_1/v), f(v'/v) = f(v_1/v),$$

where v' is restriction of v to K(a) and v_1 the restriction of \hat{v} to K(a). Finally, since by hypothesis one has

$$\widetilde{[\mathrm{K}(\mathrm{a}):\mathrm{K}]} = \mathrm{e}(\mathrm{v}_1/\widetilde{\mathrm{v}})\mathrm{f}(\mathrm{v}_1/\widetilde{\mathrm{v}}) \; ,$$

relations (8), (9), (10), (31) and (32) imply

$$deg[w/v] = e(w/v)f(w/v),$$

as claimed.

COROLLARY 4.6. Condition 2) of Theorem 4.5 is fulfilled if:

a) v is of rank one and discrete;

b) v is of rank one and char(k_v) = 0;

c) v is Henselian and char(k_v) = 0.

The proof is straightforward. The statements a), b), c) in Corollary 4.6 are respectively the conjectures (0.1), (0.3) and (0.4) of [7].

REFERENCES

[1]

[2]

[4]

15 × 20

, 10,

V. Alexandru et N. Popescu, Sur une classe de prolongements a K(x) d'une valuation sur une corp K, Rev. Roumaine Math. Pures Appl., 5 (1988), 393-400.
V. Alexandru; N. Popescu; A. Zaharescu, A theorem of characterization of residual transcendental extensions of a valuation (to appear in J. Math. Kyoto Univ.).

- [3] J. Ax, Zeros of polynomials over local fields. The Galois action, J. Algebra 15 (1970), 417-428.
 - N. Bourbaki, Theorie des Ensembles, Ch. III: Ensembles ordonnes-Cardinaux--Nombres Entiers, Hermann, Paris, 1956.

- N. Bourbaki, Algebre Commutative, Ch. V: Entiers, Ch. VI: Valuations, Hermann. Paris, 1964.
- O. Endler, Valuation Theory, Springer, Berlin-Heidelberg-New York, 1972.

[5]

[6]

[8]

×2.

£

1

2

- [7] J. Ohm, Simple transcendental extensions of valued fields, II: A fundamental inequality, J. Math. Kyoto Univ. 25 (1985), 583-596.
 - O.F.G. Schilling, The theory of valuations, A.M.S. Math. Surveys, no.4, Providence, Rhode Island. 1950.

Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bucharest, Romania.