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MINIMAL PAIRS OF DEFINITICN OF A RI&:SIDUA'L TRA NSC'ENDENTAL
EXTENSION OF A'VALUATION
, 2
\_/. Alexandru, N. Popescu and Al. Zaharescu

In a previous pape-r (see [2]) we have given a characterization of so-.called
residual transcendental (r.t.) extensions of a valuation v on K to K(X)._ In' that
characterization the ﬁot1011 of "minimal pair of definition of r.t.,extension”‘ (see [2]‘or
definition in §1) was essential. In fact. describing all r.t. extension of v to K(X) is
qulivalent to describing all pairs (a.(g) €K x GV which are miniﬁal pairs with respect
to K. -

The airﬁ of this work is to give an answer to the following problem; Let Kbea
field. v a valuation on K. K an qlgebraic clgﬁur‘e of K. ¥ an extension of v to K and GV
~the vaiue group of V. Describe all pairs (a. 5)€K iG\-,- which are minimal with réspect
to K. Tl]ié general problem seems to be very dificult. but in the present work we give
some seexfningly important results and applications (Sections.B and 4). The results given
in this work. are essential in the stﬁdy of all extensions of v to K(X). ’lihis stﬁdy will be
givé;1 in a forthcoming paper. R .=

The present work has four sectioﬁs. The first section is concerned t‘o notations
- and definitions.

Theorem 2.2 proved in Section 2 permit us to‘describe.‘all common extensions
to K(X) of Tand w. where w is an r.t. extension of v to K(X). Also. in this secﬁon there
“are given considerat'ions of some numbers (like as index of ramification and inertial
degree) associated with én r.t. extension w of v to K(X). Since these nuhbez*s are defined
using V and a minimal pair of definition of w;/, we shoe that in fact they are dependent
only to w and v (Remark 2.4).

| I~n Section 3 it is considered the question of constructing minimal pairs. It is

Shown that for every r.t. extension of v to K(X) there exists a minimal pair (a, d) where



a is separable over K (Theorem 3.1). Also, it is shown that the notion of minimal pair is
closely related to completion in the sense of [5, Ch. VI] of K relative to v (Theorems 3.8 '
and 3.9).7 .

| In the last sectipn some appl"ications; are given. Namely. Theorem 4.4 proves
the existence of so-z:nﬂe it extensionsiv‘of v to K(X) with prescribed residue field and
‘ value group. Also, Theorem 4.5 gives a general frame_work under which the
"fundamental inequality" of [7] becomes an equality. By this theorem easily result all

conjectures states in [7].

© 1. NOTATION AND DEFINITIONS

B Let K be a field and let v be a valuation on K. We emphasize this situation by

calling (K.v) a valuation pair. If (K.v) is a. valuation pair. denote by O, the valuation

ring of v; by GV the valué group of v. and by kv the residue field of v. If x€0, . then x*
will denote the image of x into k . We refer the reader to [5, Ch. VI]. [6] and [8] for
general notatioﬁ and definitions. E

We vsayv that a valuation pair (K'.v') is an extension of the valuation pair (K.v)
(or simply v'«is an extension of v) if KCK and v' is an extension of v to K', i.e.
vi(x) = v(x) for all xeK. If (K'.v') is an extension of’(K.v) we shall canohically identify k_
with a subfield of kv" and GV with a subgroup of Gv"

For the rest of this paper we consider é fixed valuation pair (K.v). Take K a
} fixed algebraic‘closure of K and Vv a fixed extension of v to -I-{7 If Gv is the value group
of v then the value group of v, is‘in fact G\», =Q @ZGE(QT%.)/the smallest divisible group

which contains Gv'

. Let K(X) be the field of ratiox{al functions of an indetex’mi‘nate X. An extension

w of v to K(X) will be called an r.t. (residual transcendental) extension if kW/kv is a
' transc_endehtal extension.

Let w be an extension of v to K(X). By a common extension of w and V to K(X)

we shall mean a valuation W on ’I;(X) whieh induces w on K(X) and V on K. We shall



'l
prove later (Proposition 2.1) that such a common extension always exists.

If (a.9)€K x G, denote by w the valuation on K(X) defined as follows.

(a,$)
For a polynomial f(X)€ K[X] with the Taylor expansion:

(oea) e vn (Xea)

.f(x) = ae : al n

we put ‘ (

(1) M s )(f(X)) = i?f(v(ai) +id).

Now Wia. 3) can be extended in a canonical way to K(X) (see [5. Ch. VL. $10]). It is easy

to see that W(a sy is in fact an r.t. extension of v. Sometimes we shall say that Wig )

is the valuation defined by inf. V. a¢K and S € Ge.
In [1] it is shown that if w is an r.t. extension of Vv to E(X). then there exists a

~ pair (a. §)EK x G- such that w = Wia 5) Such a pair is called in [2] a pair of definition

of w. Moreover. in $1. Proposition 3] it is proved that two pairs (a,d). (a', d"') of K x G\-/—
define the same valuation w if -and only if
2) J=8randva-ar>§.

By a minimal pair with respeet to K we mean a pair (a.5)€K x GV such that

for every b €K such that v(b - a) > $ , one has [K(a) : K] < [K(b) : K].

Let W be a r.t. extension of v to K(X). By a minimal pair of definition of W

with respect to K we mean a pair of definition (a.d) of w, which is a minimal pair with

respect to K. If (a,§) and (a'.§) are two minimal pairs of definition 'of w, then

[K(a) : K]=[K(a") : K], and so this number denoted by

[K : Wl

depends only on W and K.

Since the field K is fixed, we shall usually write "a minimal pair of definition"
instead of "a minimal pair of definition with respect to K". v
Now let w be an r.t. extension of v to K(X), and W a common extension of V'

and w to k(X). A pair of definition (respectively a minimal pair of definition) of w will

be usually called a pair of definition (respectively a minimal pair of definition with




respect to K) of w. We define the number [K : w] by the equality
(3) [K:wl=[K: W]

We shall see later [Theorem 2.2 and Remark 2.4] that the number [K : w] depends only
on w and K. and not on w. Also. in Theorem 2.2 we shall prove that if Wy w, are two
-— -common extensions of V and w- to I€<><), then Wy is closely related to Wo- Moreover,
there exists only a finite number of common extensions of v and w to K(X) (Corollary

2.3).

The following result will be useful later:

PROPOSITION 1.1. Let w be an r.t. extension of v to K(X) and let (a,5) be a
pair of definition of w. Let r = (£(X))/(g(X)) be an element of K(X) such that w(r) =0 and
such that r* is transcendental over kq. Then there exists a root b of f(X)g(X) = 0 such

that (b). d) is a pair of definition of w.

n n
Proof. Let f(X) =TT (X - ai). g(X)=dTT (X - b, ). Assume that
i=1 =1
V(a-ai)<5 foralli=l..un
a-b)<d foran]"l ..... m
i.e.. according to (2). for every be {al,...,an. bl,.,..bm}, (b))ﬂ) is not a pair of definition

v

of w. Now, if a'ie K is such that w(X - ai) :V(a'i). then ((X - ai)/ai)* is algebraic over k;. '

Also, if b}éfi is sueh that w(X - bj) = V(b}). then (X - bj)/bi]')* is algebraic over kV' But

‘then it follows that
/CCLL a,% : lul({/ QL//C(_ ) f—vi/;@./ ZT//X QCZ/ C(f j
\eLb, - b - TTUK-b5)65) \L 5 [/XWJ )Y )

is also algebraic over k-— and this contradiects our hypothesxs

According to [5] (see also [6]) a valuation v on K is said to be Henselian. if for

every-algebraic extension L/K. v has a unique extension to L.

9. COMMON EXTENSIONS OF ¥V AND w TO K(X)

In this section we show that the set of all common extensions of v and w to



K(X) is non-empty. and this set is finite. We show that the number [K : w] defined in (3)
is dependent only to v and w, and th.is “num,ber 13 closely related to the "fundamental
inequality" defined in [7].

Let (K.v) be a valuation pair. Let us remind that by K we denote a fixed

algebraic closure of K and by‘Va fixed extension of v to K.

PROPOCSITION 2.1. If w is an extension of v to K(X) there always exists a
common extension w of w and V to 'IE(X). Moreover, w is an r.t. extension of v if and
only if W is an r.t. extension of V.

Proof. First we notice that K/K and K(X)/K(X) are normal-extensions. If G is

- an automorphism of K/K, denote by 0 the automorphism of K(X)/K(X) defined in the

following canonical way:. if {(X) = a ta,X+..¢+ aan is an element of K[X]. then set

1
E(f(x)) = (T(ao) w‘-O(al)X bt +U(an)Xn. and extend it canonically to K(X). The
assignment b

Tar—>0"
is an isomorphism of Aut (K/K) onto Aut(l?(x)/l{(x)).

Now let w' be an extension of w to the alget;x:aic extension K(X) of K(X), and
let v' be‘the restriction of w' to K. It is clear that v' is an extension of v to K. Since
K/K is a norimal extension. there exists {see.[5, Ch. VI, §8]) an element CfG Aut(K/K)
such that v' =GV, i.e. vi(a) = ¥( C“':l(a)), for all acK. Let us define W by w= &=l
Then .the restriction of W to K is exactly v, as claimed.

The last part of the proposition is obvious. |

 THEOREM 2.2. Let w,. w, be two r.t. extensions of V to K(X). The following

statements are equivalent:
1 and Wy coincide on K(X).

2) There exists a minimal pair of definition (ai_. 5i> of Wi i=1,2 (with respect

1w

to K) such that the following conditions are fulfilled:

" a) 51 = 52. and a,, a, are conjugate over K.



b) If g(X) €KIX] is such that deg glx) < [K(a,) : K]. then '\T(g(al)) = V(g(az)).

Proof. The proof uses [2, Theorem 2.1]. We shall use notation, definitions and
.considerations related to [2, Theorem 2.1], which are briefly recalled in the following:

1)=2). Lét w be the common restriction of Wy and wo to K(X). Let (ai 5 i) be
) )}

a min'imal‘_ pair of definition of Wi n, = [K(Czi) : KI. i=1,2. Also, denote by fi(X) the
~ (monic) minimal polynomial of 8 with respect to K. and let ZS;z Wi(fi(X))’ i=1,2.

Denote: by e the smallest non-zero positive integer e such that € Ti eG (here v; is
, i
the restriction of v to K(ai), i=1,2). According to [2, Theorem 2.1], there exists a
polynomial hi(X)G K[X]. such that
W) =Vya)) = T .
(4) . 7 :
deg hi(X) < n, .

i = 1,2. Then, according to [2. Theorem 2.1],
=
£ (X) = (£, )/, (X)

. 1=1,2, is the rational fraction in K(X) of smallest degree such that wi(ri) = (. and ri* is

1 and W, coincide on K(X). we have:

en; = deg S deg Ly =eoly .

transcendental over kv' As w

9" Indeed, let us assume that n1<n2. Thus since

is transcendental over kv by Proposition 1.1, it follows

First we shall prove that n,=n

_ e e
w,(r;) = wo(r;) = 0 and since £
‘that there exists a root a of {,(X) or of h;(X) such that (3,52) is a pair of definition of

W,. But this is false since deg h.(X)<n, <n,. Therefore one necessarily has n >n, and

2 1 ) 1= "2

by symmetry ny =n,, as claimed. We have implicitly proved that we may assume that

W, has a minimal pair of definition (a. (fz) such that a and a, ‘are conjugate, i.e. we may

1

assume that &g and a are conjugate, and so fl = f2 = f.

Fl;l_rtfﬂlermore. condition b) of 2) follows by [2, Theorem 2.1], since for every

polynemial g(X) € K(X) such that deg g(X) < n, = deg f, one has
(5) wig(X)) = 'v.(g(a'l)) = V(g(az)) ;

Finally, we shall prove _thét CSI = 52. i a; is purely inseparable over K, let e be the



o ‘
smalest positive integer such that aEl) = b, belongs to K. Then the minimal polynomial
of ais
e
k)= xP- - b,
Therefore one has avl- = 8, and so
e B e '
wl(f(X)) = wl(}x - ay I=p Wl(X - al) = wz(f(X)) =D w2(X - al),

i.e.
WX -a)=d; =wyK-a)=4,.

Let us assume that ay is not purely inseparable over K. Then, we may write

jus

G . n .
£(X) =) _g(a; )X - a,)" = 2 g.(a,)X - a,)'
e =i i=1

where,gi(X) (i =1,...n) are polynomials. with coefficients in K, of degree at most
deg - 1. Then, according to [2, Theorem 2.1] one has:
- Wy (00 = inf Ggay) + 1 -7,

b G ot (vig;la) +id ) =Y, .

But since Wy and Wy coincide on K(X). then one has )rl =T2. Finally, the equality

51 = 52 follows by (5) and (6). Indeed, assume that é& = v(gi§al)) + ilf§ , and

\(fz =V(g; (a)) +1i, 52 ='6;. Hence V(gi (@) + il5 = V(g (@) + i2§2 LIf iy # i, then

e - 5 iy ;

by (5) one sees-that v(giz(al)) iy 51 > V<gi1(al)) * iy 51 & V(giz(az)) *+ i, (S o+ Now since

V(gi (al)) = V(gi (az)), (see [2. Theorem 2.1]), it follows that (5 12 52. By symmetry, we
) 2 5

have él 552 hence 51 = 82-

The implication 2) =>1) follows immediately by [2, Theorem 2.1].

_ CQROLLARY 2.3. Let w be an r.t. extension of v to K(X). Then there exists

only a finite number of common extensions of ¥V and w to E(X).

Proof. Indeed, let W be a common extension of w and V to K(X), and let (a, §)

be a minimal pair of definition of W. According to Theorem 2.2, there exist at most



- 8 -

[K{a): K] common extensions of v and w to E(X).

‘ 'REMARK 2.4. At this point we show that the number [K : w] defined in (3)
depends only to v and w.
For that we px‘ové:
Aj The number [K: w] does.not depend of a common extension of v and w to
K(X). Indeed, let w be an r.t. extension of v to K(X) and let W be a common extension of
¥ and w to K(X). Let also (al, 8), (az,é) be two minimal pairs of definition of W.

According to (3) and to the definition of [K : w] one has:

(7) K :ewl=[K:wl=[K(,): K]l =[K(a

1 2):1{].

Y

It is'clear that the number [K : w] depends only énW and not oﬁ the choice of a minimal
. pair of w. Now, according to Theorem 2.2, it follows that if Wi W are common
extensions of v and w to T\T(X), so K Wl] =K 3 WZ]' Hence the number [K: w] in (7)
does ﬁot depend on the choice of a common extension of Vand w to K(X).

B) The number [K :'w] in (7) does not depends on the extension of v to L
Indeed. let v' be another extension of v to K. Then, since K/K is a nm‘mal extension, by
[5, Ch. VI, § 8] there exists 0 € Aut(k/K) such that v' =v6‘ v. Let w' be a common
extension of v' and w to K(X). Then W = G_:lw' iS a common extension of v and W to
—IZ(X). Let (a' é') be a minimal pair of defini.tion -of w'. and similarly let (a, §) be a
minimal pair of definition of w. Consider also (see [2]): :

M = {W(x - b)/b éE}gcv =

MW, = {w'(X - b)jbé—f{} gcv, = G -
Now. .since V'= OV, we may assume. that G.V-= Gv,.' Furthermore, one has that
wi(X - a) =c§ ';(D—DIW)(X ~ ) = WX - 67 e < § (because, according to [2]. § is an
' upper;boun’d of MW)' Similarly one sees that () 4 3'._ and so 5: é'. Hence the equality
wx -6 (@)= 5 shows “that (0(a), §) is a pair of definition of W. Tixerefore,
[K(0™(a") : K] = [Ka) : K:] 3_u<(a> : I’\’_j because (a. §) is a minimal pair of definition of W.

By:symmetry. it follows that [K(a') : K] < [K(a) : K], and hence



where e is defined as above, and e(vl/v) =[G

[K(a) : K] = [K(aY): K1,

By this equality it follows that the number [K : w] defined in (3) depends only on v and

" w, and not on V.

it REMARK 2.5. At this point we consider the relation between the number

[K : w] defined in (3) and the numbers deg (w/v), f(w/v) and e(w/v) defined in [7]. This

relation will be used in the proof of Theorem 4.5.

a1l r"EK(X){r(#K. set deg r = [K(X) : K(r)]. As usual. if w is anr.t." extension
of v to K(X). then by deg (w/v) we denote the least integer n such that there exists
L GOW of degree n such that r* is transcendental over kv'

Let W be a common extension of V and w to K(X) and let (a, §) be a minimal

-

paif of definition of W. In [2. Theorem 2.1] it is proved that
(8) degl(w/v) = [K : wle,

where e is the smallest positive integer such that ew(f)€ G (here f is the monic
e : v
\W’L(ﬂu reyneck . 1

minimal polynomial of & eeleti¥e’to K and v, Is the restriction of v to K(a)). Since the

numbers deg{w/v) and [K : v;'] (see Remark £;4), depend only on v and w, by (8) it follows

v

that e depends also only on v and w. Moreover, it is easy to show that ) = w(f(X)) also
depends only on w and v.

Furthermore. it is clear that Gvg G, and [GW 0 ] Ao Bets

v]
elw/v) = [GW : Gv]'

In [2. Theorem 2.1] it is proved that:

(9) e(w/v) = e - 'e(vl/v)

v

:Gv]._ By (8) and (9) it follows that
] i

; e(vl/v) depends only on w and v and no:c onv.

Finally, in [2, Theorem 2.1] it is shown that k (the algebraic closure of k, in

kw) can be canonically identified with k, - Hence. if we denote f(w/v) =[k: kv]. then
1 ' ' 3
one has:
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(10): - flwiv) : [kvl : kv] = f(vllv)

and obviously. this number also depends only to w and v, and not on V. By [2, Theorem
2.1] and by the above considerations it follows that w is determined by v, Vv and a
'minimal pair of definition (a, J) of W. (We remind that such a pair (a. ) has been also

= -— called a minimal pair of definition of w:) The set of minimal pairs of definition of w
with respect to K is dependent only on w and v, and not on V.

In [7] it is proved (see also [2]) that
(11) deg(w/v) > e(w/v)f(w/v)

holds and the question of finding conditions under which (11) becomes an equality is

raised. Since. by (8). (9), (10) and (11) we have
o 1.2) [K(a): K] =[K: w]> e(vl/V)f(vllv),
the equality in (11) is equivalent to the equality in (12).
In Theorem 4.5 we give a general condition under which the inequality in (12)

becomes an equality. -

3. MINIMAL PAIRS OF DEFINITION OF AN r.t. EXTENSION

Let v be a valuation on a field K. let K be a fixed élgebraic closure of K and
let V be a fixed extension of v to K.

In this section we ére concerned with the following questions:
S I) Which pairs (a, §) €K x G\., are minimal pairs for some.'r.t.—extensions of v to
K(X)? |

(@,8) be the valuation on K(X) defined by inf: v,
b4

a and . Find a minimal pair of Wess ) with respect to K.
5 9 5

IN) Let (a, 5)€E x Gy, and let w

Since both questions I) and II) seem to be difficult in the general setting, we

-

‘give a bunch of results in some particular but important cases.

Denote by (K.v) the cOmplet‘ion of (K.v) in the sense of [5, Ch. VI. § 5]. By [5,

o~ 3

ChoNI, §5], it follows that (K.v) is an immediate extension of (K,v) (see [8, Ch. 1I]), i.e.

K = Kes, G =G~ .
A \' A Vi
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(\'
As usual, we shall say that (K,v) is complete if (K,v) = (K,\T.

. By a (generalized) Cauchy sequence in (K.v) we mean a pair (I, Zyag*z' ), whére I

is a cofinal subset of G . and {af}_ is a subset of K indexed by I, such that the
following condition is fulfilled: for ~all ééGv, there exists Sﬁ(é)él so that
)> § for any g g?(é'). §32_>:§3(§). An element acK is said to be a

(a?l~a?2

limit of the Cauchy sequence (I, gafg ) (in writing a = lim ajo) if for every d € Gv’

there exists gJ(J)C—I such that v(af -a)>§ , for any ¢ _>_§J(or). According to the
O iy ¢ : et

construction of (K.v) given in [5, Ch. VI,SS 5], it follows that every element of K is the

limit of a Cauchy sequence in (K,v). Moreover (K.v) is complete if and only if every

‘Caucny sequence in (K.v) has a limit in K. In particular, every Cauchy sequence in (K V)

has a limit in K.

1. THEOREM 3.1. Every r.t. extension w of v to K(X) has a minimal pair of de-

finition (b, §) €K x G such that b is separable over K.

Proof. Let, as usual, W be a common extension of v and w to K(X), and let
(a, §) be a minimal pair of definition of W with resbect to K. Obviously we assume that

char K = p>0 and that a is not separable. Let e be the smallest posxtlve integer-such
e
that aP is separable over K, and let K'= K(ap ). It is clear that a is purely mseparablc
Bl e

over K' and its minimal polynomial over K' is just X2 =aP . Let c¢cK be, a suitable
non-zero element. Then the polynomial

e e

fx)=XP - ex-aP

is separable (i.e.. its formal derivative is non-zero), and so it has at least a separable
irreducible faetor. or equivalently. there exists at least an element bé"l-{- such that b is

separable over K' and

e e 2 . 7
(13) fb) =bP - cb-aP =o0. ' . 2

Then one has:
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and hence
(19)  p%ilb - &) = ¥le) + o).
Let us assume that
(15) - ()>suppv e5—v

‘By (13) it results that v(a) = ¥{b). Indeed, let us. assume that v(a) > vib). Then
by (13) it et p&V(b) = T(b) + v(e), or equivalently V(b) = (p© - 1)"Ly(e). But then
one has: v(e) <(p® - 1)¥(a) which contradicts (15). Hence v(a) <V(b). If V(a)<¥(b), then
also by (13) it results that pe\7(a) =v(b) + v(c), i.e. V(b) = pe\T(a)— v(c). But then
V(a)(peV(a);v(c). and so v(c)<(pe - 1)v(a), which contradicts' (18). = Therefore

<

v(a) = v(b), and by (14) and (15) one has:
p°V(b - a) = v(e) + V(a) > p%S§ .
i.e., ¥b-a)>§, and so (b, d) is also a pair of definition of”iv"gnd of w. It is clear that b
is also separable over K and one has: 2
[Kb): K] = [K's KI[K(b): K’]S_[K’ : KI[R'(a);K'] = [h(a) K]
Finally. since (a, §) is a minimal pair of defini{ion of W, it f’ollows that [5=H (b, $) is

also a minimal pair of definition of w (and w).

[}

2. Now let us consider the question II). Let W’t}e a common extensign of w and
v to K()&) and let (a,§ )€K x GV be a pair of definition of W (and w). How can we find a
minimal pair of definition of W (and w) with reépect to K?

We shall consider this qfxestion in the 'spec:ial case when v is a Henselian
valuatiom Hence, for the rest of this subsection we assume that v is Henselian.
Cénsider an element a C—’I:i, separable over K. Let us denote

w.(a) = sup Via - a)
where the supremum is taken over all a'C€ K conjugate to a over K and a' # a. Now since

v is Hensclian, we have that v(a) = v(a') if a' and a are conjugate over K, and so one has:

UXa) > V(a).
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: PROPOSITION 3.2. Let é be an element of G'\? and let a@fg be an element
\\\\\ which is separable over K. Denote by W the valuation on K(X) defined by inf, ¥, a and

cg\.\I‘fncn;

a) 1f §<¥(a), (0. 3) is a minimal pair of definition of W with respect to K.
5>

= b)Y §>wa). (a,8) is a minimal pair of definition of W with respect to K.

Proof. The assertion a)is obvious, and the assertion b) follews by Krasner's

lemma (see [6. pag. 122]).

What happens when cula) > § > V(a)?

elements of K conjugated to a over K. If I = ga.ai ....,ai'% is a subset of C, denote by
Z P -
gsj(I)} 1<j<r the symmetric fundamental polynomials defined by the elements el 1.

Denote also I{I = I_((SL(I)""‘Sr(D)'

PROPOSITION 3.3. Let ac¢ K be separable over K and let JG G\T be such that
w (a)> S >V(a). Denote by W the valuation on K(X) defined by inf, ¥, a and § . Assume
that one of the following conditions is fulfilled:
a) char k= 0. ;
b) K is perfect and v is of rank one.

v

Thén there exists a subset [ = ga.ai '""ai?X 6'f C and an elemént b @KI such that K(b) =
2 : :

r

: = K, and that (b, §) is 2 minimal pair of definition of W with respect to XK.

Proof. Let (b, (S\ be a minimal pair of definition of Ww. Denote by
° I= {a.aiq....;air} the subset o'f C consisting of all conjugates of a over K(b). With the
. above ngtation one has KIC_TK(_D). Aléo. if a‘él,. then, since v is Henselian. one has
v(a' - b) = V(a - b) 25 . Therefore if a # a' it follows that:
Va-a)=vwa-b+b-aN>J§.

5 i
According to [3. Proposition 2. pag. 425], there exists b‘-CKI such that

Via - 5’)25.

Therefore (b'. §) is also a pair of definition of W. But (b,§) is a minimal pair of



=

definition of W and since K g_KIc}-K(b'},“it follows that K(b) = K, = K(b"). The proof is

~complete.

o

REMARK 3.4. If char kV = 0, we may determine the element b as follows:
Since :
Via-a)> § a' € {a,a. aTS . e
> . "2 '

then one has that: v(a +a, +..+a; - ra)>§ andso
1 r -

e -a)zé

since v(r) = 0. Hence, we can take

3. Now we consider the question I). We reformulate I) with respect to an

element aC K in the following somewhat equivalent form:

CONDITION 3.5. There exists an element _Jé QGV = G\7 such that (a, §) is a

minimal pair of definition of Wiy - with reépect to K.

e As usual W(a 5) is the valuation of K(X) defined by inf. Vv, a and 5

One has the following obvious result:

'REMARK 3.6. Let (a. §)€K x Gg.

1) The following statements are equivalent:

a) (a. o) is & minimeﬂ pair of definition of W, 5) with respect to K.

b) If bCK is such that [K(b) : Kj < [K(a) : K] then v(a - b} < §.

2) If (a. ) is a minimal pair Of‘defi'nition of Wia, §) then for every 5‘@6\7 .

i)
é Zé)(a. §') is a minimal pair of deflmt‘xon of Wea. S,')..

" PROPOSITION 3.7. Let a ¢ K. Consider the following statements:

a) The condition (3.5) islsatisfied for a.



b) The set

me):{Wa~bdbeﬁ.wdnmmlxmhiﬂ>txmhfq}

is upper bounded in GV :

c) The set
P(a.K) = %V(g(a))/gGK[X], g monic and deg g < [K(a) :_K]}_ is upper bounded in
GV :

d) Let n=[K(a): K]. There exists Y€ G-, < inf (jVW(a)) such that the
: 1<j<n-1 o

~1+...A+ amé K[X], m<n and ~v(ai)> W

set: P(a.K.V)= {\T(g(a))/ g(x)= X" + ale
1<1< m} is upper bounded in G'\i'

Then the implications: aY=b)&e)=)d) are always valid. Moreover, if v is

Henselian then also d) =»b).

Proof. The equivalence a)=>b) follows by Remark 3.6, 1).
b)=)c) Let'(g be a positive upper bound of M(a,K) in G\7 and let g(X)€ K[X] be
a monic polynomial of degree smaller than n =[K(a): K]. Let g(X) =TIX - bi) be the
' i

decomposition of g(X) in K(X). For each i. one has [K(b,) : K]<n and so v(a - bi).<5 ;

Hence V(g(a)) = iV(a - bi) <n§. and so P(a.K) is upper bounded by Hio.
i - :

‘. The implication ¢) =)d) is obvious.

Now let us assume v to be Heriseh'an. If b and b' are conjugate o{/er K (i.e.,

~ they have the same minimal polynomial over K). then V{a) = V(a"). We shall show that the

e

ha
1T

implication d) =b) is also valid. Let us assume that d) is valid and b) is false, i.e.

set M(a.K) is not upper bounded in G. Let '\ be a positive upper bound of P(a.K,”)

"such that \>V(a). Let b€ K be such that [K(b) : KI<[K(a) : K] = n, and that

(16) v(a - b) >n)\- (n - Dv(a).

Then v(a - b) > v(a) and so V(a) = V(b). If b' and b are conjugate over K, and since v is

Henselian, one has v(b) = v(b') and hence T/(a_ - b‘)ZV(é). Let g be the monic minimal

polynomial of b over K. Then g(X)= TTX - bi), m<n, b=b;.. If g(X)= x™+
' : : .=l :
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+a1Xm—1 Fiiha then according 'to well known relations between roots and

coefficients of a polynomial. one gets: V(81)> inf (jV(b)) > inf (j¥(a)) >VY. Therefore

isj<m i<j<n
e m
"v(g(a)) €P(a.K.Y). Moreover one has: Vigla)) = V(T (a - bi)) =V(a - b) + Z via - bi) >
i i=2

>via - b) +(m - 1)v(a). By (16) it follows that v(g ) > A, which is a contradiction.

_Therefore d) ::}b as claimed.

O~

. 3 . A
THEOREM 3.8. Let (K.v) be the completion of (K,v). Denote by K an algebraic
= e o A ; St o~ A
closure of K which contains K and by vV a common extension of v and v to K. For an
element aGR the following statements are equivalent:
a) The set P(a,K) is upper bounded in Go

(e ~ { s
b) The set P(a.K) is upper bounded in % = GV’ and [K(a): K] = {K(a) : K]

-

Proof. Since the implication b)=pa) is obvious. we have only to show that

> a):pb). First, we shall show that [K(a): K] = [K(a): K] = n. Let

~ M , M-
(17) gl =X "hia. X tootaXta

: . o

be the minimal polynomial of a over K. Assume-that m < n. Denote by I a well ordered

Gt :

cofinal subset of GV (see [4. §2. Exercise 4]). Since aie K.i=0,....m - 1, for each e €1
(£)

and each i, Q <i<m - 1, there exists an element a; & K such that

(18) 'v’a. (f) ).

ﬁ’ <§’>

o _
Set f(\ —-a ainj_)lxm—leXmgK[X]. By hypothesis one has:

vig (a) _<_)\, where} is the upper bound of P(a.K). But aécording to (18) the set

¢
v<g§) (a) :'\\'(gy () - gla)) , Pel
is unbounded, and this contradicts a). Hence [K{a) : K] = n.
Now, let g(X) € Ix[h] be a monic polynom1a1 whose degxee is smaller than n (see
also (17)). As above, we define the polynomxals gf, )E K[X], such that the conditions
(18) are fulfilled. If ) is an upper bound of P(a,K), then V(gSD a)) < '}\for all ¢ . But, ac- |

cording to (18) the set Vg, (a) —-g(a))}f is unbounded and so V(ggo (@) = vig_(a)) =

> g
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A Syl : .
= v(g(a))ﬁ'}\ for suficiently large [ Therefore the set P(a.K) has also an upper bound,

as claimed.

THEOREM 3.9. Let v be Henselian. Then:
a) Condition (3.5) is verified for every element a(:_lz. separable over K.
’ . O~
b) If K is complete with respect to v (i.e. (K.v) =(K,v)) then condition 3.5 is

valid for all elements of K.

Proof. a) follows by Proposition 3.2, b).
b) Let ac K; it is clear that we may assume that agriK. Let [K(a): K]=n.
According to Proposition 3.7, it will be enough to show that the set P(a,K.V) is upper

bounded for some ) < inf (j¥(a)).
‘ : i<j<n-1

Let us assume that for every J . ) <inf(jv(a)). the set P(a,K.V) is not upper

J
bounded. This means that for every ). ) < inf (j@a)). there exists a triplet

19 Ty, =0 {gy(x)} .m)

where I is a well ordered and cofinal subset of GV (see [4, §2, Ex. 4] and ggf (X)} is
the set of polynomials over K, monic. and of the same degree m <n.

m .m-1

(X)y=X +a.§,X + ...t 8 ?GI

(20) i m

"
such that
v(aig)zv, i§i<m, §>€I

(21) 7
v(g? (@) —> o0

(The notation V(g?(a)) —> o2 means. that for every XGG‘T there exisfs
f(\() €I such that V(ggg @) >, for all P such that © >@ (8

In the set of all triples (19) we choose a triplet Tyo, corresponding to a suitable
v < ipf (j¥(a)), such that m is as small as possible. For this triplet we shall use also the
notatgon of (19) and (20). .

Since K is assumed to be complete, we note that m > 1. We claim that we can

assume that not all sequences:



g

(22) {aif} Co0<ikm, hagml ped
contain a (generalized) Cauchy subsequence.
‘Indeed, if this were not the case let {alf’} be a Cauchy subsequence of
? 193} where ?1 belongs to a cofinal subset I of 1. Replacing I by I we may assume
: that the sequcnce { 15;% is Cauchy. Furthermore we pass to the sequence {aZF} and
- 500N, Fmauy, we may assume that all the sequences (22) are Cauchy and since K is

Set g(x) = X" +a Sl e a_ . Then one has:

complete let a; = = lim a X

g

Vigla) - gs,(a)) = v(2~(a " 3 )a
' i=1

m-i
)

and since v(gf) (a)) = &9, then g(a) = 0. This is a contradiction since m < n = [K(a) : K].

Let io be the first index such that all the sequences gai?} 0 <is io are -

Cauchy but {ai e} does not contain any Cauchy subsequence. This means that there
o L

exists an element Y ¢ GV 'é >0, such' that for all e € I there exists an element ?’zgo

such that
(28) v, RICRLRY. <p
Denotc by I' the set of all elements e ' constructed as above; it is easy to see
that I' is well ordered, and a cofmal subset of I, hence of GV' Consider the set of all
polynomials:
m-i

Xm_1+ +b Q4 wp

f(X):g§+l(X)—g§’(X):b1§’ i.ogjx B

We write I instead of T' and . f instead of §>’. Since V(g?(a))ﬁo@/then also

h

v(h _ (a)) = »°. By hypothesis one has

¢

(24) : v'(4b Yoo ,_...v’(b(i ) => oo

1@ o LS
~According t._o (23) we have:
- (25) | ,"‘biof)ibf : forall @,

Denote

; : 0 X
RGeS 8D b sh X e :
5)( ) 1?. J'—'-Li ig | e m



g

Since v(h f(a)) —> 24, then by (24) one checks that \"/(k'P (a)) =>~= and by (25) one sees
that b, - #0-for all ga'; also by (25) it follows that vib: L
LS 1of

Yk, (@) —>o0

5

where k_ (X) = (b, )ﬁlk' (X). It is clear that the polynomials k _(X) are monic of the

§ e %

. same degree, and conditions (21) are fulfilled for the triplet TV e =
, ; - o a1 : e
=1 {kgj (X)}, m - io) .. Since MO - \(<Vo < inf (jv(a)) we obtain a contradiction
with the definition of the triplet (19) because the common degree m - i, of kS’(X) is

Jai Therefore one has

smaller than m. Hence the set P(a,K.V) is upper bounded for some M < inf (j¥(a)),
T 1<j<n-1
as claimed.
i ; :
COROLLARY 3.10. Let (K,V) be the completion of (K,v). Assume that Vs

Henselian. Let aC K. Then with the notation from Proposition 3.7, one has that M(a,K)

is upper bounded in Gy if and only if [K(a): K] = [T\’i(a): Kl.

Proof. If M(a.K) is upper bounded in GV then by Theorem 3.8 it results that-
[K(a): K] = [,I\'/(a): g] The other implication résults by Theorems 3.8, 3.9 and
Proposition 3.7. i :

In particular. one has:

COROLLARY 3.11. Let v be of rank one and let a ¢ K. There exists an element

< e ~
b (—'Ggsuch that (a. §) is a minimal pair for Wia 5) if and only if [K(a): K] = [K(a) : K].
The procof follows from Corollafy 3.10, since Vis in this case Henselian (see [8,

Ch .

COROLLARY 3.12. Let v be Henselian and let the valuation pair (K.v) be
complete, i.e. (K,v) = (K.v). If algi-{. then there exists a, GE, separable over K, such

kv = kv where vi is the unique extension of v to K(ai), =19, z
1 z

‘Proof. According to Theorem 3.9 there exists é EG\Tsuch that (al, 5) is a mi-

nimal pair of definition of W = W(a Sy Aécording to Theorem 3.1 there exists azc K
e : 1
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such that (az. y) is also a minimal pair of definition of W with respect to K, and &, is
separable over K. If w is the restriction of w to K(X), then according to [2, Corollary
2.3], .kvl = kvz, and this is the algebraig closure of kv in kw' .

Moreover, we can give a somewhat independent proof. Let bGK(al) be such

that vl(b) = 0. Then one has b = g(al). where g(X)¢€ K[X] and r = deg g(X) < [K(al) : K] =

= {K(az) s K]z et

r Y
g(X) = cTI(X - d)
i=1

be the splitting of g(X) over K as a product of linear factors. Now, since (al,é) and
(az,_é) are both minimal pairs of definition of w, it results that for suitable elements

: hi ¢ K one has
V(a, - d) =V, -d)=V(h)<§ . 1<igr
and so

5 r
wgX) =vie + 3 WX -d)=v(e)+ T Va

i=1 e e

r
=vie) + ) Via, - ) = Vigla,)) = V(gla,) =V(b) .
i=1

a, - d. a, --d.

Finally. since v(al - az)Z 5. then ( lh Ly* = ¢ lh Lt 1<i<r, and so g(al)* Sk
i i ; .

, and by symmetry it follows that kv = kv , as claimed.

= (g(az)) - Therefore k, Tk 1 :

1 2

REMARK 3.13. By Theorem 3.8 it follows that, in general, not for all aC—T«Z"

there exists § € Ggsuch that (2,5) is a minimal pair of definition of WSy This is the

bl
~

[
case, for example, if a%K but a ¢ K.

4. SOME APPLICATIONS

-+

In this section we give some applications of the results proved in previous
sections. Theorem 4.4 gives the existence of some r.t. extensions of v to K(X) with

prescribed residue field and valued group. Also in Theorem 4.5 we give a general frame-



T
work in which the fundamental inequality of [7] becomes on equality.

1. In what follows we shall *denote by (K ) the Hensealization of (K.v)

1%

included in (K.V) (see §7 It is known that (lxl,v ) is an immediate extension of

1

V). e kv = kv and GV = Gv . One has the following result which will be useful later
- 1 1

(compare with Theorem 3.8):

PROPOSITION 4.1. Let a€ K be separable over K and suppose that [K(a): K] =

=[K,(a): Kl] Then there exists J ¢ G such that (a,d) is a minimal pair of definition

)
\“\[‘84-8{‘:%‘(‘,2&/{—0/}( (i.e. Conditions 3.5 is fulfilled for a).

Precof. Since a is also separable over Kl" Theorem 3.9 a) implies that there
exists §€G\7 such that (a, 5) is a minimal pair of definition of W(a 5) with respect to
Kl' Now we assert that (a. §) is also a minimal pair of definition of W(a 5) with respect

to K- Indeéd. if b ¢K is such that [K(b) : K] < [K(a): K]. then by hypothesis one has:
[K (0 : K, 1< [K(b) : KI<[K(a): K] = [K(a) : K ).

Now since (a. $) is a minimal pair of definition.of ‘W(a $) with respect to Kl it follows
i 3
that v(a - b) <§. But this means that (a.§) is alsoc a minimal pair of definition of

W(a, $) with respect'to K.

LEMBMA 4.2. (see also [7, Theorem 4.6]). Let k/kV be a finite extension. There
exist (infinitely many) r.t. extensions w of v. to K(X) such that k  is isomorphic to k(t),

with t transcendental over k. Moreover we can find w such that:

deg [w/v] = f(w/v) = [k : kv] ;

Proof. Let k = kv(xl,.,.,xn). We shall prove that there exists an element a¢ K.
separable over K such that [K(a):h’]:[k: kv] and that kvz = k. where Vg is the
restriction of v to K(a). For that we shall proceed by induction over n. Now since kV is
an algebraic closure of kv. we can assume that kv§ kgk;. Let us assume that n > 1,

Clk,xp) sk 1=5>1 and let qjl(Y) s e Yt cSYS be the minimal polynomial of

xl over kv. Let 'Ai QOV be such that Af = ci, 0<i _{s, and such that Al # 0. Then the



Te0gn -
polynomial: |
s

&Q(Y) SA A e ALY

is irreducible and separablle over K. Let bl,..'.,bs be all roots of LP(Y) in K. It is easy to

see that V(bi) >0, 1 <i<s. and that there exists an i such that bi* = X.. Denote bi =a.

i
__Ndw, by -+induction hypothesis. there exists azé‘lz, separable over K(al), such
[K(al)(’az): K(al)] =[k:k(xl)]. Let aefz be such that K(a)zK(al,aZ). This a is the

desired element.

Let v, be restriction of v to K(a) and let v\, be the restriction of v to Kl(a). It

2 =2
is clear that k= kV and [K(a): K] =[k: kv]. Now since (Kl,'vl) is an immediate
, 2 s
extension of (K.,v), then one has: [hl(a) : Kl]z[kv2 : kV] :«[kv2 : kv} =[K(a) : KI>

> [K (a) K ] Therefore [K(a): K] =[K,(a): K], and since a is separable over K. accor-

l(

ding to Proposmon 4.1 there exists an element Jg G such that (a, §) is a minimal pair

with M/f\l
of definition of w \I‘-@J‘ww/{g K. Now since Gv is cofinal in Gm, we can choose

a,4)
(S €G, (see Remark 3.6. 2)). Finally, let w be the restriction of W 2, ) to K(X). By [2,

Theorem 2.1] it follows that kw = k(t), where t is transcendental over kv' Moreover,

one has (see (8). (9), (10)):

(26) deglw/v] =[K : wle = [K(a): K]e = f(v2/v)e(v2/v)e = f(w/v)e(w/v).

Furthermore. since [K(a): Kl= [kv- :kv] it follows that e(vz/v) =100
2 ; !
equivalently Gv = Gv . Let f be the monic minimal polynomial of a over K. Then one
2

has:

n
f(x) = Z‘fi(x)(x =
=l
where fi(X) EK(a)X]. Thus:

Y = wif) = inf (v,(f,@@) +id).
i
By this équality and the condition éer, it follows that Yz w(f)GGv = Gv and so in
2
the equalities (26) one has e = 1. Therefore by (26) it. follows that deg(w/v) = f(w/v) =

= [k: kv'],' as claimed.

LEMMA 4.3. Let G be a subgroup of C\-/— such that GVQG and G/GV is finite.
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Then there exists an r.t. extension w of v to K(X) such that GW = G. Moreover, we can

choose w such that deg(w/v) = e(w/v) =[G : Gv]‘ (As usual [G: GV] denotes the cardinal

of the finite group G/Gv).

Proof. Let n =[G : GV]. By induction. over n we shall prove that there exists an
element a €K, separable over K, such that [K(a): K1 =[G : Gv] = e(vz/v), and Gv =0

2

where v, is the restriction of v to K(a).

2
Let us assume the assertion valid for all n'<n. In fact, we assume that for
every field K' such that KC K’gf{‘ and for every G'§G‘7 such that GV,EG‘, with
.[G‘ s Gv'] <{n, there exists a"éf{i a" separable over K', such that (K(a")-y K=
=[Gt Gv,] =ely"/v!) and G G". (Here V' is the restriction of v to K' and v" the
restriction of vV to K'(a").)
Let GlAbe ésubgroup of G such tlvlat Gi/Gv is cyclic and [G1 : le = pis prime.
Let )\ be a positive element of G such thaf 7\ tile coset of A relative to Gv’ generates
: G/Gv' It is clear that pis the smallest non-zero po§itive integer e such that e}{@ Gv'
Let b be an element of K such that v(b)= p}\ . Let ¢£K be such that
vie) > (p - 1)}{. Consider the polynomial h(X) = xP +eX+b of K[X]. Let a' be a root of

h in K. Then one has:
(27) aP+ca+b=0

According to general properties of a valuation it results .that in (27) two terms
has the same valutation and this wvaluation is smaller than the fhird. Since
'v(c) >(p - 1)>~\ . the only posibility is WaP) = v(b) = DQ\ Hence V(a') = >\ This show that h
is irreducible. Since h is a separable polynomial then a' is separable over K.

Let K'= K(a') and lét v' the restriction of v to K'. It is easy to see that
Gv' =G, and [K‘ : Kl = [GV, : Gv] =p. If p#n then we apply the induction hypothesis
relative to K' and G, since [G: GV,] =n/p < n. Hence there exists a"CK, a" separable
over K‘, and such that [K'(a"): K'1=[G: GVJ = e(v"/v'); here v" is restriction of ¥ to
7 K'(a"). Also; one has Gv" =

Let a ¢K be such that K(a) = K(a',a"). Then a is separable over K and by the
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.above assumptions one has: [K(a): Kl =n=[G: G ] and also G = G, where Vo = v s
: “p
the restriction of v to K(a).

Furthermore. as above, let Vo be the restriction of V to Kl(a). Since (Kl’vl) is
an immediate extension of (K.v), then one has:v[Gv G . J=l6 2@ 1=IK@a):K]l=

“=”[K1(a): hl]. Hence sz = G, and o s

(28) e(vy/v)) = é(vz/v) =n=[G: G ]=[Ka): K]

Now, according to Proposition 4.1, there exists ééGVsuch that (a, 5) is a
minimal pair of defirﬁtion of W(a,(S ) with respect to K. As usual, since Gv is cofinal in
G\7 we may choose JGGV (see Remark 3.6, 2)). As in the proof of the previous lémma
we méy check that if f is the minimal (mohic) polynomial of a, With respect to K, then

w(f)¢ G, where w is the restmc‘uon of W to K(X). Finally by (28) it follows that

~

a. §)

f(w/v) = 1; from (26) and since &"g”fzé@ we have deg(w/v)=elw/v)=n=[G:G ] Hence

G =G, as claimed.
W

THEOREM 4.4. Let (K,v) be a valued field and let ka kgkv and GV<§ G<& GV
be such that [k :~kv] © and [G: Gv] <. Then there exists an r.t. extension w of v to
K({) such that k, is isomorphic to k(t). ‘with t transcendental over k and Go= 6.

Mogeover we can choose w such that

fw/v) =[k: kv]_- e(w/v) =[G : G\-,] ..

and that

deg(w/v)=[k:k IG:G. 1

Proof. The 'proof is based mainly on the previous lemmas. According to Lemma
‘ 4.2 we can find a separable element a‘{i such that [K(a") : K] = [k : kv] and t.hat, if v'is
the restriction of Vv to K(a'), then kv": k.'By Lemma 4.3 we can find a separable
element a"¢ K such that [K(a") : K]=[G:G] and that if V" is the restriction of V to

K(a") then 'Gv” = G. Let aCK be such that K(a) = K(a’,é”) and let v, be the restriction of

2
V to K(a). Then, 'since k ;ck , one sees that [k :k ]>[K(a): K]. Also. since
g vi=TY, Vi W
GV"SGV" one has that [G  :G ]1>[G ,:G_]=[K(a"): K]. Finally, one gets that

2
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- IK@): KI=[K (@) K] (K@Y :K)=[K (a"): K] and so [K(a):K]=[K (a):K

DB

[K(a) : K] = [K(a) : KIK(a") : K] and

(29) ke =izl @ =m0 ‘ : ,

Furthermore, since <K1‘vl) is an immediate- extension of (K.v), one easily sees that
I

1 1 1 1 1

Hence, by Proposition 4.1, there exists (-5 GG\—; such that (a, é) is a minimal pair of

definition of Wiy 5) with respect to K. Since GV is cofinal in GV we can choose & € Gv

" (see Remark 3.6, 2)). Let' w be the restriction of Wia <) to K(X). Since AC«GV , then by

(29) it follows that the algebraic closure of k, in k is just k, =k andso k = k(t),

2
with t transcendental over k. Moreover, Gw =G and e(w/v) =[G : GV]. Finally, one has

(see (8). (9). (10)): 5 \

deg(w/v) = f(w/v)elw/v) = [k : kv][G : GV] g

as claimed.

2. At this point we shall give a somewhat general framework in which the

fundamental inequality
deg(w/v) Z e(w/v)f(w/v)

becomes an equality. The notation are as usual. Remind that (K.v) is the completion of

(K,v) (see [5, Ch. VI. §5]) and that (E,v) is an immediate extension of (K,v).

THEOREM 4.5. Let (K,v) be a valuation pair. The following statements are
equivalent:

1) For every r.t. extension w of v to K(X) one has:
deg(w/v) = e(w/v)f(w/v)

: , o
. == o 4 . . . . -
2) The valuation v is Henselian and for every finite simple extension L/K,

o~
L = K(a), one has:

~
[L : K] = e(v, /V)tv /)

‘is the only extension of vto L.

where vl



=20

Proof. 1) ==»2) Let w be such that e(w/v) = f(w/v) = 1. Thenbby 1) it follows that
‘w has a minimal pair of definition (a, §) €K x G, i.e. w is defined by inf, v, a ¢K and

' land
0(6 G- But then, according to [2, Theorem 3.3] it follows that K is algebraically closed

in a maximally complete extension (K',v) of (K,v). First, we have that (K,v) is

= A
Henselian. Indeed, let Kl/K be an algebraic extension. Then K’Kl/K' is also an algebraic

extension. Now, since (K',v') is Henselian (see [8, Ch. II, Theorems 6 and 7]), it follows
that v' has a unique extension to I_{'Kl, But then it follows that necessarily V has a
O Al ’
unique extension to Kl’ i.e. (K,v) is Henselian.
A . e L . -
Furthermore, let K be an algebraic closure of K which contains also K. To
complete the proof of the implication l):>2) it will be enough to show that for every

a€K one has: [K(a): K] = e(vw/V)I(V/V). where V is the unique extension of v to K. For

* ’ A -~
that, let X be an indeterminate over K and a¢.K. According to Theorem 3.9 a), there-

~~

exists AGGO such that (a, §) is the minimal pair of Wia $) with respect to K (here

$
Pl

Wiy é)vis the valuation on K(X) defined by inf, 'f}, a and o). Let w' be the restriction of
, -

W S) to K(X) and w restriction of w' to K(X). Since w' is an r.t. extension of V. and
o~

(K,\ﬁ is an immediate extension of (K,v), it follows that w is also an r.t. extension of v,

and one has:
~ ~ s o~ ~
(30) deglw'/v] = deglw/v], e(w'/v) = e(w/v), f(w'/_v) = f(w/v).

Hence the equality
o~ e o ~
[K(a): K] = e(vl/v)f(vl/V)
follows from (8), (9), (10), (30) and assumptionil).

2):>l) Let w be an r.t. éxtensipn of v to K(X) and (a,d) €K x G\-/- a minimal
pair of definition of w with respect to K. Since (a,§) is a minimal pair of definition for

w, then a verifies the condition 3.5 and so, according to Proposition 3.7, the set P(a,K)

-

is upper bounded in G\«;. Now, according to Theorem 3.8, one has

o ~
(31) [K(a) : K]l =[K(a): K].

. o~ o~ ’
Furthermore, since (K.v) is an immediate extension of (K,v), we have:



o~
Vi)t

(32) e(v'/v) = e(vl'/ ), )= fkvl/ﬁ.

: A :
where V' is restriction of v to K(a) and vy the restriction of v to K(a). Finally, since by

hypothesis one has

[ s ~

N
[K(a): K] = e(vl/v)f(vl/v) :
relations (8), (9), (10), (31) and (32) imply
deg[w/v] = e(w/v)f(w/v),

as claimed.

COROLLARY 4.6. Condition 2) of Theorem 4.5 is fulfilled if:
a) v is of rank one and discrete;
b) v is of rank one and char(kv) &) >

¢) v is Henselian and char(kv) =,

The proof is stréightforward. The statements a), b), c) in Corollary 4.6 are

respectively the conjectures (0.1). (0.3) and (0.4) of (71
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