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ALL VALUATIONS ON K(X)

by

- — - -V, Alexandru, N. Popescu, A. Zaharescu .

This work is & natural continuation of our previous works [1], [2], [3). We
: intend here to describe all types of valuations on K(X). This possibility is given by our
main result in [2) which give a description of so-called residual transcendental extension
of a valuation on K to K(X). Following an ideea of MacLane (see [77) we define the
‘notion of "ordered system of valuations on K(X)" (see 2) and the limit of such a
system. The main result given in section 5 shows that every r.a.t. extension w to K(X)
of a valution v on K may be defined as a limit of a suitable ordered system of r.t.
extensions of v to K(X)'.

In the last sections we are concerned wi'th the existence of r.a.t. extensions of
v to K(X) with a given residue field, or with a.given value group, or both.

»  Sometimes there exist some similarity between a lot of our resillts and results
of MacLane [7] (and even with some results of Ostrowski [9]). However, we remark that
all our considerations and methods of proof are based on our notion of "rﬁinimal pair of
definition of a r.t. extension of a valuation v on K to K(X)" and on the results we

obtained in [1], [2] and [3].

1. NOTATION AND DEFINITIONS

1. Let K be a field and v a valuation on»K. We emphasize sometimes this

situation saying that (K,v) is a valuation pair. Denote by k,, the residue field, by G, the

<«

value group and by O the valuation ring of v. If x€Oy, denote by x* the image of x

into Ky We refer the reader to [5], [6] or [10] for general notions and definitions.

Let K'/K be an extension of fields. A valuation v' on K' will be called an




e

extension of v if v!(x) = v(x) for all x€K. If v' is an extension of v, we shall idénti‘fy
- canonically ki with a subfield of ky and Cv with a subgroup of G
In what follows we shall consider a fixed valuation pair (K,v). Let us denote by
' .ﬁ’ a fixed élgebraic closure of K and by V a fixed extension of v to K. It is easy to see
that Gg is a divisible group, i.e. for every gé. G and ng N, there exists an element-
‘@écv such that n\gzg. Moreover, Gy= QGy, i.e. Gy is the smallest divisible group
which contains G-

As usual, by K(X) we shall denote the field of rational functions of an

indeterminate X over K.

%

2. Let w be an extension of v to K(X). Denote by W a common extension of w
and V to ?(.(_X), i.e. W is a valuation of K(X) which extends simultaneously w and V. In [3,

Proposition 3.1] it is proved that always exists a such common extension. Let us denote
(1) Mg ={Wx-a/ a6R}cog . |

According to [8] (see also [1], [2]) w is called a residual transcendental (r.t.)

extension of v if kW/kV is a transcendental éxtension. According to 2, Proposit‘ion 1:1)
w is an r.t. extension of v if and only if: G‘\? = Gy, the set (1) is upper bounded in GT/? and
contains’its upper bound. Let S be the upper bound of the set (i). Then‘ there exists
a€ K such that 3 W(X - &), and thus (see [2)) W is an r.t. extension of V defined by ¥,
inf, a and g (see [2]). Since W is defined by a and g, we shall say that (a,S) is a pair of
definition of W. Generally w has many pairs of definitions. Iﬁ (1] it is prové'd that two
pairs (a,g), (a', S'). of K x G define the same r.t. extension of ¥V to 'I?(X) if and only if
3=9 and V(a - a‘)_>_g. According to [2], a pair of definition (a,g) of W is called

minimal relative to K if the number [K(a) : K] is the smallest possible one, i.e. if (b, S)

is another pair of definition of w, then [K(b): K] > [K(a): K]. A (minimal) pair of

definition of W (with respect to K) is also called a (minimal) pair of definition of w. In

[2, Theorem 2.1] it is proved that an r.t. extension w is perfectly defined by v and &

minimal pair of definition (a,g). Later, we shall see that minimal pairs of definition are
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“also useful to define other extensions of v to K(X).

3. Let wy, wy be two r.t. extensions of v to K(X). According to [7j one says
that w, dominate.\-f\’é (written wy < wq) if wy(f(x)) < wo(f(x)) for all polynomials f&£ K[X).
This. —incquality‘may be understood in QG,, = Gg, since GWl and GW2 are of finite index
over GV (see [1],12] or [3]), and so they are canonically imbedded in QG,,. If w1 < w9 and

there exists f&€ K[X] such that wy(f)< wo(f), then one write wy < woe

PROPOSITION 1.1. Let K be algebraically closed and let w1 Wy be two r.t.

-extensions of v to K(X). Let (a; Si) be a pair of definition of wys 1= 1,2. The following |

-

statements are equivalent:
ghle T
2) 815_32 and v(ay - 82)25.1

Moreover, w; < w, if and only if 3 1< 82 and v(ay - 82)}_81-

Proof. 1):572) Sincé (a-,g-) is a pair of definition of wi, then wi(X - a;) =S
i=1,2. I w;<wg, then wi(X -a;)= Sl < wz(X - a;) —-mf(éz,v(al - 32)) and so
§1<§2 and g1<v(al~az) A

2)=p1) If v(ag - ay) > Xl"‘ then (see [1]) (ay, Xl) is also a pair of definition of
wy. Let f(X) €K[X] of the form £(X) =zbi(X - az)i‘ Then we have

wy(6) é inf (v(by) + 51

wyD) = inf (v(0) + 1 §)

NOW since 81 < 52, one has v(b;) + 151 < vib;) + 182, for all 1, and so wl(f) < wo(f), a

claim ed

£ Furthermore, let us assume that Wy < wo. Then there exists an element a€ K

such that
@ 5 wy(X - a) = inf( Sl,v(alv-—. a)) < wo(X - &) = ini( gz,v(az )

According fto the above equivalen_ce; this inequality is possible only if Sl < Sz-



Conversely, if Wl _<_ WZ’ and gl < gz, then Wl(X o= 82) = gl <32 = Wz(X " 82),

i.e. wy < Woe

4- Let I( be alﬁebraically Closed &nd W1 W2 tvvo r»t e)\ten5]ons Of Vv to I{(X)

Let (a],g :) be a pair of definition of wi, 1= 1,2. We shall say that w2 well dominates wy

if W) < wg and v(ayg - - 89) = g

2. ORDERED SYSTEMS OF VALUATIONS

1. By an ordered system of r.t. extensions of v to K(X) we mean a family

(Wj)iél of r.t. extensions of v to K(X), where I is a well ordered set without last element
and such that w; dominates w; when i < j.
Let (w, i)j €1 be an ordered system of r.t. extensions of v to K(X). For every

f &K[X] let us define:

(3) w(f) = sup w;(f)
i

- We remark that since w; is an r.t. extension of v, then Gy, /Gy is a finite group and so
: i :
GVQGW__C_. Gg- Hence (3) must be understood in G-« However, the element in (3) may or
i

may not be an element of G5. Therefore we say that the system (w )léI of nit.

extensions of v to K(X) has a alimit if for every f& K[X], w(f) defined by (3) is an element

_of Cv. Then one easily sees that the assignement:
f A~ w(f)

defines a valuation w on K[X] which may be canonically extended to K(X). This
" valuation w is arn extension of v to K(X), and will be called the limit of the given system

(Wi)i&I- We write: w = SElp Wi.

Let I( be algeb[‘&icauy ClOSCd and let (‘N-).el be an ordered Systern Of r.t. ex-
tensions of v to K(X). For every i€l denote by (a o5 ;) a pair of definition of w. Then ac-
cording to Proposition 1.1 the set ( ‘g) is a well ordering subset of G,. Moreover. if for

every i,j€1l, i < j, wj'well dominates Wi’ the_n (a;); Is a pseudo-convergent sequence on K
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(see [10, p. 39)). Generally, (ai)i contains a subset which is a pseudo-convergent se-
- quence. However, we do not deal with this situation, since in our further consideration

: “ all dominate valuations will be well dominate. One has the following result:

PROPOSITION 2.1. Let K be algebraically closed and let (Wi)iex be an ordered
system of r.t. extensions of v to K(X). The following statements are equivalent.
1) The order‘ed system (w,). has a limit w which is an r.t. extension of v to
K(X).
2) There exist.s an elemeht ag K such that v{a - ai)?_gi for all i€l. (A
se(juenee (ai)'f is pseudo-convergent in K if it has a pseudo-limit in K}). Also sypgi is
i

defined in Gv,

Proof. 1)=2) Let (a,g) be a pair of definition of w. According to (3) one sees

that w > W, for all i. Hence, by Proposition 1.1 one has:
(4) g > gi and” v(aj - a) > K,- o N

Therefore, aceording to (4) it follows that:

: S =w(X-a)= SUP wi(X - a) = sup (inf( gi,v(a - 8;)) = sup gi 55
, i i : 1= ;

.

(Also by (4) it follows that a is a pseudo-limit of (a;);-

e 2) =21) Let (358) be such that gz S{Jpgi and let a be such that v(a - ai)zgi
i :
for all i€ 1. Let w be a valuation on K(X) defined by inf, v, a ahd'g . Then it is plain that

W=SUp  w;,
i _
The following result (somewhat complementary to Proposition 2.1) is valid.

PROPOSITION 2.2. Let K be algebraically closed and let (w;); be an ordered

system of r.t. extensions of v to K(X). The following statements are equivalent:
_ 1) The ordered system (Wi)i has a limit w which is not a r.t. extension of v to
K(X).

2) For every a €K there exists i&I such that Wi(X - @) <g "
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Proof. 1) =»2) Let w = SUp ws. Since by the hypothesis w is not an r.t. extension
i

of v to K(X), then according to [2, Proposition 1.1], the set (see (2)):

M. :{W(X -b)[beK EQGW

is unbounded in G or it is bounded but does not contain its upper bound. Let ag K. In

both cases there exists 55 K such that w(X - a) < w(X - b). But w(X - b) = sup Wi(X: b)
and so there exists i€1 such that w(X - a) < w(X - b)_<_Xi. As w(X - a) = sylp wi(X ~ a),
we have W,(X - a) < w(X - &) < wi(X - b) < §1, as claimed. l

2)=7 1) Let a&K. Then since wy(X - a) <8j for a suitable j, it results that

SUp wi(X - &) = WJ'(X - a). Since K is algebraically closed, it follows that for every
i

fe€ K[X], sup wi(f) exists and is in Gv, and so w = sup W; is defined. Now we must prove
: I i
that w is not an r.t. extension of v. Indeed, let us assume that w is an r.t. extension of v

and let (a,g) be a pair of definition of w. Then by the hypothési's there exists j€I such
that ‘\.%(X - a) <§j. According to (3), it follows fhat w(X - a) < gj. Also by (3) one has
that w2 w. for all i€l. In particular, one has wilX - aj) = Sjg w(X - aj) =
za(X s ta- 8J-) = inf(w(X - a),v(a - aj)) 2 w(X - a), a contradiction. Hence w is not an

r.t. extension of v, as claimed.

. THEOREM 2.3. Let K be a (not necessarily algebraically closed) field, and let
’(Wi)iél be an ordered system of r.t. extensions of V to EZX). For every i€l denote by
(ai,g;) a fixed minimal pair of definition of W; with respect to K. Denote by w; the
restriction of W; to K(X) and by v; the restriction of ¥'to K(a,), i€l Then

a) For all i,j€1, i <j one has w; ¢ Wi, i.e..(wi)isl i 8- opdlened system of r.t.
extensions of v to K(X).

b) For all i,j&l, i < j, one has k, €k, and G, € G, .
i oy .
c) Assume that W = sup Wi and w is not an r.t. extension of v to K(X). Let w be
i
the restriction of W to K(X). Then w = sup w;. Moreover one has:
i
Ky = Li!kv and G, = Ki}Gw

i i



Proof. a) Let us denote by f; the monic minimal polynomial of a; relative to K,

and let n = dcgf = [K(a i) : K], i&1, Since w < wJ, it follows that w; < w; whereas i < j.

We note that in fact W, < Wie Indeed, if w; = w; then since (a 81) is @ minimal pair of Wi

by [3, Theorem 2. 2] it follows that g g), contrary to the assumption Wj < wj, lLe.
<8 (A short computation shows that w; o j)'< wj(fj)a'lf'l <‘J-) &

Since (ai"gi) is @ minimal pair of definition of w;, i€ I, by Proposition 1.1 we

have:
(5) m< hj T aj)zgi oo if Ay el
Therefore (Wi)iél is really an ordered system of r.t. extensions o(f v to K(X).

b) Let céK(ai). Then ¢ = f(a;), where f(X)&K[X] and n = deg { < n;. Since
(ai’gi) is @ minimal pair of definition of w; then for every root b of f one has

‘\7(31- - b) < gi' Thus by (5) it follows:
©) . WWlay) = vitlay) = Wila)) = vifla;) = vife).
Now let us assume that vi(e) = 0. Then Vj(c) =0 and ¢, the image of ¢ in k.
, i
coincides with the image of ¢ into Ky Indeed, let by,...,b,, be all roots of f(X) in K. For
: T :
any t, 1 <t <n, let d, € K be such that:
Via, - by) =Wa=hyl=Fd). 1<tin.

Then one has V((a; - b,)/d,) =V(a; - b,)/d,) =0 and so
1 ot ] ti=t

e R Ne T ) Ny ) Ve T 100

Hence

-

«a] - bt)/dt)* = ((aj L bt}/dt)* ,. 1<t<n.

By these equalities it follows that:

9

‘ flay* . (f{aj) W (an (a; - by)/d, T (a5 - by)/dp* -
fla,* el lEmemle ((a; - by)/dp*

ie., f(éii)* = f(aj)*é_ k, . as claimed.
e
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The inclusion GV’(_: GV follows easily by (6).
1 j :
¢) Since W = SyDWi, then it is easy to see that w = sup w;. Moreover, it is clear
i : i
- that w is not an r.t. extension of v.

Now we shall prove that k. <k, and G, CG,, for all i€L For that, let

i =
f(X)EKI[X] be such that n=deg f < n;, and let byseeesby, be all roots of f in K. Since
(ai, Sj) is a minimal pair of definition of wj, one has Waj - by) <Si, 16 <0, and 8o .

W(X —,bt) = W(X - aj + g - bt) =V(aj - by), 1 < t < n. But then we have:
(M W) =W(E(X) = Ti(ay) .

If V'(f(ai)) = vi(f(aj)) = 0, then w(f(x))=0 and as above one obtains that f(X)* = f(ai)*,

i.e. K <k, . Relation (7) implies that G, &G, Hence one has
1 : 1

(8) Uky €k, and UG, &G,, .
e i i

For proving that these inclusions are in fact equalities, let r(X) = f(X)/g{X)& K(X). Let
bl""’bn and CqaeensC be all roots (not necessarily distinet) of f, respectively of g, in i
Since W is not an r.t. extension of ¥ to “}'("(X), then by Proposition 2.2, 2) there exists an

i€1I such that:
¢ :
WE=byel;  1<idn
(9
w(X-cs)<gi L<sdm .
According to (9) one has: V(al. ~by) = Wlaj - X+ X - by) = WX - be)y 1< t<n, and
analogously Wai =eg)= WX - el  Ita m. Therefore we have: V(f(ai)) = w(f(X)),

'\'/'(g(ai)) = w(g(X)), and so:

(10)  Vr(ay) = vi(e(a;) = w(r(X)).

| Now if w(r) = 0, then by (9), Vi(l’(ai)) = 0 and as above we can easily prove that
(r(ai))* = (RN e ‘

(11) r(X)*& s

i :
Therefore by (8), (10) and (11) it follows that:

e e .
| pel 1 \i‘gaIG"i”GW’



© 8s claimed.

3. TYPES-OF VALUATIONS OF K(X)

it is natural to ask for the description of all valuations on K(X). In this work
we try to give an answer to this question. vIn this section we describe all types of
valuations on K(X).
. A) Valuations on K(X) which.are trivial on K. These valuations are well known
(see [10]): they are defined by the irreducible polynomials of- K[X] and also by the
vaiuation at "infinity", defined by 1/X. All these are of rank one and discrete. These
vamation.s play a prominent part in algebraic theory of functions of one variable and
elsewhere.
| B) Valuations on K(X) which extend valuations on K. Since distinet valuations
on K have distinct extensions to K(X) we deal only with extensions of a fixed valuation
v on K. We classify these extensions as follows:
- (RT) Residual transcendent extensions w of v to K(X). There are defined by the
conditioﬁ: G o
deg tr(kw/kv) =1.
R.1. extensions of v to K(X) ﬁad been described in [2, Theorem 2.1). According to this
1esult to deseribe an r.t. extension w of v to K(X) we have to know an algebraic closure
.K of K, an extensmn v of v to K and a minimal pair of deflmtlon of w. Now, a minimal
pair of definition (a, S) of w is in fact a minimal pair of definition of a common
extension W of w and V to K(X). Furthehnore, one has W = Wig, §) i W is defined by
mf v, a .and S l‘mally to know all r.t. extensions of v to K(X) we have to know all
- pairs ( a,%)éK X G such that (a,g) is a minimal pair of definition of W(a’g) with
x'espe(;t to K. This question is discussed in [3]. Although a complete solution is not given
in [3], the answer is glven in some important cases. |
(RA) Resxdual algebralc (r a) extensions w of v to K(X). These are defined by

the condx_t?on. :



e

k_w/kv is an algebraic extension.

Furthermore, r.a.~extensions are divided into two distinct classes according to
the nature of the valued group G, relative to G

(RAT) Residual algebraic of torsion (r.a.t) extensions w of v to K(X). These are
defined by the condition that the quotient group:

Cy/Gy

is abtorsion group (i.e. every elebment‘is of finite order). It is plain to see that w is an
" r.a.t. extension of v to K(\) if and only if G e CG-—-

(RAF) Residual algebraic extension w of v to K(X) which are >not of torsion
(r.é.f). These are defined by condition that the quotient group Gw/Gv is not a torsion
group. Later, (see §4) we shall see that G /G, is in fact a free abelian group; more

W

precisely, it is isomorphic to Z, the additive group of integral numbers.

- 4. RESIDUAL ALGEBRAIC EXTENSIONS. THE -CASE K IS

ALGEBRAICALLY CLOSED

Let K be an algebraically closed field, v a valuation on K, and w an r.a.
extension of v to K(X).

1. First, we consider the case when w is an residual algebraic torsion extension
of v té K(X). According to the above definition this means that kw/kv I1s an algebraic
" extension, and Gw/Gv is a torsion group. Nowy since K is algebraicaily closed then kv is
also algebraically closed and so kw = k. Moreover, G = G, since G is a divisible
group. But then, according to [16, Ch. 1], (K(X),w) is an immediate extension of (K,v).
Lét us consider the set M,, defined in (1). Since w is not an 1t extension i‘of v, then
accor{dihg.ft'o [2, Proposition 1.1] it follows that Mw_ has not an upper bound, or it does
not contain its upper bound. Furthermore, since M, is a totally ordered set, then
accordmg to (4, §2 L)\GI‘CI&;C 4] it follows that it contains a cofinal well ordered subset
i Sl'ﬁ ier Smce MW. _doesrnc_)t S:ontam'an upper bound, then I has not a last element. For

every i &1, we choose an element 'ai'g.}( such that:
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(13) w(X - ai) igi’ &1
Consider W, = Wy, g_), i.e. wyi is the r.t. extension of v to K(X) defined by inf,
i

§ .
- Vs 8y and i

THEOREM 4.1. With above notation one has:

a) w; < Wj Mg e %Wi}ial is an ordered system. of r.t. extensions of v

K(X). Moreover, for every i < j, W well dominates w;.

b) W < w for all igl and w = sup w; .
= 1e]

Proof. a) Let i < j. We shall prove that for every b& K one has:

(14) WX sbl e b))

First, we note that, according to (13) and the inequality gi < gj , one has:

(15) via, - aj) . w(a; - 85} = wlap - X+ X - aj-) = wla; - X) :Si "

But then, for every b&K, one has:
WX =b)= inf(gi, v(a; - b))
wj(X -b) = inf ( SJ’ v(aj -b)).

Accor‘ding to (15) we  have tha't: V(Bj - b) ‘:: V(aj = ai + ai e b) _>_ ]nf(g i’v(gi - b)) =

= Wi(x ~ b). Hence:

Wj(X - b) = inf(%j,v(aj =b)d inf(SpV(aj - b)) = w;i(X - b),
Le., w, < wj. In particular:

Wi(X - a5) :%_j > inf(gi, via; - aj) = wi(X - a;)

and so one has w; < wj. Moreover, by (15) it follows that wj well dominates wie
b) Let b€ K. Then one has: w(X - b)= w(X - ai;ai ~b) > inf (w(X - a;),v(a; - b)) =
= inf(gi,v(ai = b)) = wi(X - b). Hence w;<w for all i€l In proving that w = P w; it is

enough to show that for every b€ K one has .

(16) W(X - b) = sup wy(X - b)
i

Indeed, since w(X - b)émw, then there exists i€l such that w(X—b)<gi. Hence
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w(X - b) = w(X - i+ aj~b)> inf (S i»¥(aj - b)), and so w(X -b)= v(a; - b) <gi. Thus
wi(X - b) = v(a; - b). If j > i, then

(17) WX = b) = wi(X - b) = v(a; - b) = w(X - b) .

This shows that (16) is valid and so w = sup w;-
i

REMARK 4.2. 1. According to (15), it follows that Sgai?feiél is a pseudo-
~convergent sequence (see [11, Ch. II]). By (13), it follows that X is a pseudo-limit of
S‘ai%i'é.l in K(X). Moreover, since X is transcendental over K, then {aij’iél is a
transcendental pseudo-sequence. According to (17) it follows that for every f(X)&€ K[X],

one has:
w(f(X)) = SUP w;(£(X)) = sup v(f(a;) .
= i 1

These rem.ér‘ks permit to reobtain (using our (?onsiderations) the classical results of
Ostrowski (see [9, TeiI.IH] and to give a new proof of [10, Ch. II, Lemma 11].

2. We consider now the (r.a.f.)-extensions w of. to K(X). Thus the quotient
group Gw/Gv contains at least a free element (i.e. an element -g such that ng# 0 for
all n€ Z, n# 0). Hence in the group G, there exists at least an element S such that
zg (“\GV = 0. It is clear that we may assume that there exists a K such that:

S =wix-a.

We assert that:
el Guse sl

Indeed, assume that there exists g'é Gw sueh that g;gGv BZ e re:K(X) Bsiotah
that w(r) = 8'. Write r = f/g, f,g ¢KI[X), and f = a'{;r(X - a;), g = be'(X - bj)’ one sees that
8' = w(r) = v(a) = v(b) +7;w(X = a;) = Z‘W(X - bj). Since g&Gv j Z , then for at least
~one i or one j, we ha\I/e w(X - ai)f\%Gv +Z " or wiX- bj)ﬁGV +Z . Suppose that
51:W(X-a1)&GV+Z w22 Then v(a—al)=w(a-X+X—a1)=inf(g,gl), a

contradietion. Hence the equality (18) is valid.

Finally, the valuation w can be easily described. Let f(X)&KI[X]. Write:

f(X)=a,+aj(X-a)+..+ a, (X - a) .



- 13 -~

Then according to (10), we have that:

(19 wE(X)) = inf (v(a;) + i§> :
1

THEOREM 4.3. Let w be an (r.t.f.)-extension of v to K(X). Then there exists a
‘pair (a, S){-_K x G, such that w(X - a) —g Moreover G = G +7Z S and w is defined by
(19). '

Conversely, let G be an ordered group which contains (“v as a subgroup, and
i S&G be such that z&(”]c =0. Let ag K and let w: K(X)~»G be defined by the
equality (19). Then w is an (r.a.f.) extensxon of v to K(X). Moreover, Go= Gy # ZS, and

kw =Ky

The first part of the theorem results by the above considerations. The proof of
" the last part is obvious.

Let w be a (r.a.f.) extension of v to K(X). A pair (a, g)tﬁ K x GW as in the above

theorem is also calléd a pair of definition of w. How many pairs of definition has w?

One has the following result

REMARK 4.4. Let w be a r.a.f. extension of v to K(X) and (al’gl), (ag, 52) be

two'pairs of definition of w. Then

¢
(20) 6 J.= gz and \’(81 = 82)2_81 .

Proof Indeed, we have that: w(X - ay) = S,, Wl - ag)= gz, According to (19),
we infer: w(X -a,)= W(X - a5 +ay - ay)= mf(gl, al - ag)) _8 . Hence 5 12 gz,
: V(H - {12 > 82 By svmmetry, it follows that gl < gz and v(al - a2 >S l“ma]ly,
8] = 82 and v(a; - ag) > Sl, as claimed.

By the above considerations one sees that r.a.f. extensions of v to K(X) are
similar to r.t.-extensions. They are defined by inf, v and a suitable pair (a,g)éK xG,,
Moreover, (20) shows that‘the’relation between various pairs of definition of an r.a.f.
valuation is thé. same as the relation between various pairs of definition of an

r.t.-extension (see [1]). The only (but essential) difference is relative to the nature of
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5. For r.t.-extensions, g‘va:QGv while for r.a.f. extensions gbelongs to an
ordered group G which strictly contains GV and gé Gy- ‘

3. We define now a family of r.a.f. extensions of v to K(X), namely those
extensions w whose rank (see [5, Ch. VI] or [10, Ch. 1)) is different from the rank of v (of
course, we gssume that the rank of v is finite).- el

Let us consider the group G = G, x Z ordered lexwovraphcallv Then one has
el G)= rg(G ek islet g~(01 JEG, and a&€K. Denote by w the valuatlon on K(X)
defined by inf, v, a and g (see (19)). Since <‘¥: Jys then w is an r.a.f, extension of v.
Denote by w; the r.t.-extension of v to K(X) defined by the pair (a, O)ci.K x G, ey w1
is defmed by inf, v, a and 0). It is easy to see that O‘,Cow]L =G, Gy GV' Let M,,
and M be the maximal ideal of O . and 0., respectively. Then one has M. am

Wy W wq Wy w

and Ow is the ring of quotients of O relative to the complement of My,
1 .

Conversely, let a be an element of K and let Wy be the r.t.~extension of v to

K(X) defined by the pair (a,0)€K x G, v- Let Oy,. the value ring of wy and M, the
: 1 S

maximal ideal of'OW + Denote t=(X - a)*; then t is transcendental over k, &nd

1

Ky = ky(t), i.e. ky is the field of rational functions of t over ky. Denote v the
1 1 :

valuation on kv(t) (trivial on ]<v)' defined by the irreduciblevpolyno'mial t. One has
Rowik . G =T STl Oy = k(t) be the canonjcal homomorphism. Denote
v v Y ‘f W
L? (O ) M., L? (I\T\,, Then one has I\T C, MW(;OV,C,O - It is easy to see that
i

Ow is in fact the value ring of the valuation w on K(X) defined by the pair (a,g), where

=(0,1)& G, XZ (ordered lexicographicaily).

5. THE r.a.~-EXTENSIONS. THE GENERAL CASE

Now let K be a (not necessarily algebraically closed field) and v a valuation on
K. We consider the r.a. extensions w of v to K(X). As usual we denote by K a fixed
algebraic closure of K and by V' a fixed extension of v to K. Let be a fixed common
e_xtensio"n.of v énd w to K(X). |

1. First, we assume that w is a r.a.t.-extension of v. Then it is easy to see that



e

. Wis also & r.a.t.-extension of v, Consider the set M-« defined in (1 As in %4 i

{g 1&:1 be a cofinal well ordered subset of e bmce by the hypothesis w is not a

r.t.=extension, then I has not a least element. For every i&l we choose an element

8, g‘f%‘ such that
(21) WX - ai)'; Sl and Uf(al-) : K] is the smallest bos;ible one

(this means that if w(x - b)gg,- then [K(b) : K] >‘[1<(a-)' K]). Denote by W; the r.t.
extension of ¥ to K(X) defined by the pair (a S i) By (21) it follows that (a g-) is a
minimal pair of definition of ‘Wi relative to K. According to Theorem 4.1 we infer that:

W

]<’Wj S B

(22)
Wi KW for all i€l and W= spp"wi ’
4 e

For all i£]1 denote by W, the restriction of W; to K(X), and by v; the restriction

of V' te Kla;), It is easy to see that (a;, gi) is in fact a minimal pair of definition of w;e

Since '(Wi)iEI is an ordered system of r.t,=extensions of v to K(X) and W = sup w;, then,
i’i€) i

according to Theorem 2.3, one has the following result:

THFORFM 0.1, Let w be a r.a,t. extension of v to K(X). Then with above

notation, we have that:
. # .
1) Wy Wi, k. (_kvj and G, C_GVJ wher eas i< j.
2) (Wl)]él is an ordered system of r,t.-extensions of v to K(X) and w = Sup Wi
i
Meoreover, we have

()

w = t})kv. Ly : UG

- CPOROLLARY 5.2, If w is a r.a.t, extension of v to K(X) then:
a) ky/ky Is an algebraie extension countably generated (i.e. k,, is obtained by

adjoining to Ky at most countably many algebraic elements).

b) 'The. group GW/GV Is countable,

The proof results by Theorem 5,1 since {.kv.g ; and (G ); are totally ordered
- . = i

sets.
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2. Now we consider the r.a.f. extensions of v to K(X).

Let w be a r.a.f. extension of v to K(X). Denote by W a common extension of w
and ¥V to K(X). It is eas3; to see that W is also a r.a.f. extension of ¥ to K(X). According
tq Theorem 4.3, W is defined by a pa.ir' of definition (a,g). We shall say that'(a,g) is a

minimal pair of definition of w with respect to K if [K(a) : K] is smallest possible one.

Hence if [K(b) : K] <[K(a) : K], then according to Remark 4.4 one has: v(b - g) < g

THEOREM 5.3. Let w be a r.a.f. extension of v to K(X) and (a,g) a minimal
: pair of definition of w relative to K. Denote by { the minimal monic polynomial of a
over K and let ¥ = wip). 1f gE&K[X], then g = o+ gyl + oo+ gnfn’ where deg g < deg f,

0 Si_g n. One has:

w(g) = inf (v(g;(a)) + i ¥)
i
- Moreover if vy is the restietin of v to K(a) then

k =kv1 and GW:G\,IGEJZ%‘

: : - eant m o

Proof. Let &a = 81,.0,8 be all roots of f in K. Then: ¥ = w(f(x)) :"\X/(TT(X - &) =
= Xw - a .« Buf 3coording to (11) we have: w(X - al) "81, w(X - a, ) mf(é ,via - a )
= 1 «smM. This means that \é\&: and so /(‘{'\C = 0. The proof follows now in a

canonical manner.

6. EXISTERCE OF EXTENSIORS OF v TO ¥(X) WITH A GIVEN RESIDUE

FIELD-

1. Let us assume that (K,v) is such that'k is not algebraically closed. By

Corollary .2 it follows that if w is a r.a.t. extension of v to K(X) then k /k an

. extension countably generated. There exists a somewhat converse result:

THEORERM 6.1. Let k/kv' be an infinite algebraic extension countably

generated. Then there exists a r.a.t. extension w of v to K(X) such that kw&k.

Moreover w can be choosen such that GW = Gv' ‘



_.17._

Proof. Since ki is in fact an algebraic closure of ky we can assume that
_kvc:kc;kw\;»
Since k/k  is countable generated, there exists a. tower kVC¥<1CI<2§--~ of
finite extensions of k Sl]éh that{,}kn = k. We shall prove that for every natural number n-
n

there exists an element b &X such that:

1) b, is separable over K and [I\’(bn) s Kl= {kn sl

2)1f V, is the restriction of V to K(by), then k, =k
' n

ne
3) Kb )CK(byeq), n> 1.
The proof results by induetion over n. Indeed, according to [3, Lemma 4.2]

there eXiStS bl such that 1) and 2) are verified. Let us assume that n2>1 and by,...,by

are defined such that all condition 1) - 3) are verified. Again according to [3, Lemma
4.2] there exists an element ¢ &K such that ¢ is separable over K(bn)’

, where v is the restriction of v to

+k ] and k =1 ]

o n <+'
n+1 Virl n+1

I\'(bn,c). Since K(b,)/K and K(bp,e)/K(by) are scparable extensions, then K(b,,c)/K is

[K(bn,c) : K(bﬁ)] =1k
separable and so K(bn,c) = K(bnﬂ)’ for a suitable element breg of K.

Furthermore, let (K',v') be the Henseclisation of (K,v) included in (E,V) (sée (6,
pag. 131)). This means that K€ K'GK, v' is the restrietion of v to K', viis I‘blenselian and
(K',;v') is an immediate extension of (K,v), i.e. kv = kyt and Gy, = Gy (;ee [10, --Ch. 1)),

We assert that [K‘(bn) i K= [K(bn) : K]. Indeed, one has K(bn).@.w(bn) and
kvné;kvi], where vi, is the restriction of V to K'(bn).’S.ince k\,.= Ky thus kvn - kyr and so

according to 1) it follows that: {K(bn) v K= [K'(bn) : K], as claimed. Moreover, by 3) it

follows that for all n one has:
(23) K‘(bn)quv(bm_l)

Now, for every positive integer n we shall do‘fine a pair (an,gn)é'}?s x Gg such
that:

¢ ) If we denote by Wn the r.t. extension of ¥ to K(X) defined by inf, v, a,, and

ﬁ \ . . . . . . . - oL
e then (an bn’ is @ minimal pair of definition of W relative to K.
3
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=3

%) gn < gnﬂ and  Wapg - %’ng or equivalently Wn < Wn’rl (see
Proposition 1.1). .

) K(an) = K(bp) for all n.

The defintion of the pair (8,],7§n) is done by induction over n. Let us denote
aj = by. Since according to 1) ay is separable over K', by [3, Theorem 3.9] it follows_that
there exists glé(}v such that <al,§1) is a minimal pair of defintion of Wl with respect
to K. '

Let us assume that n> 1 and that there are defined all pairs (éi, gi), e
such that the conditions ot) - ¥) are accomplished. Since [K'b,) : KM = W(bn) : K] by &)

it follows that Ka )= K'(by,) and so by (23) we have

(24)  K'b.) = Ria,) GK'(bryep) .

Let a €K be such that
(25) - .w(a) > sup( gn, elay)) - v(bpe)

where az}(an) = supilyla. » ap)/e}, over all elements of K conjugated with ap over K and

distinet to an). Let us denote:

841 = 8bpey *+ 8y .
Ob‘\;iOUSI.V by (25) one has V(ﬁnﬂ = B D q}(én), and so according to Krasner's Lemma
(sec [6, pag. 22]) it results that K'(ﬁn)gK‘(anﬂ_)‘ According to (24) and the inductive
hypothesis ¥) it follows that K'(b41) = K'(ap41) and Kla ;) = K(b1)-

Let gnﬂ &Gy be such that |
(26) gnﬂ, > sup( gn,(é)(ﬁnﬂ)) :
Thus, by [3, Proposition 3.2], it follows that (anﬂ,gnﬂ)'is a minimal pair of défintion

of W'ﬁ with respect to K'. Moreover, since [K'(a_ .): K'] = [K(a,;) : K], and a_ is

n+1 =l
separable over both K' and K, by [3, Proposition 4.1], it follows that (am_l,gnﬂ) is a
minimal pair of definition of Wn+1 with respect to both K' and K. Therefore it is plain

that conditions &) - &) are verified by all pairs (81,%i), bz dntdy

Finally, let us denote by wp the restriction of Wn to K(X). By (%) it follows
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that Wh<wp+1 for all n and so %"‘"n}i' n Is an ordefed system of r.t. extensions of v to
K(X). We assert that this.sys‘tem has a limit. For that we show that the ordered system
(W, n'p has a limit. To do this we shall prove ’[hat the condition 2) of Proposition 2.2 is
| -vemfled Indeed, let ¢&K and assume that for every n one has n(X = C)Zgn- This
means that “\‘/‘Zan -¢) = Wn<an =X+ X=0) :gn. According to (26) it follows that
Wan - ¢)>ad(ap) if n > 2. Hence by Krasner's Lemma, it follows that K'(ap)) €K(e) for all
n > 2. But this is a contradiction since the sequence [K'a ) : k1] = [kp @ k] tends to
infinify because [k:kv] is not finite by hypothesis. Therefore by Proposition 2.2 it
results that (Wn) n has a limit W which is not an r.t. extension of 7. Then, according to
Theorem 2.4; it results that w, the restriction of W to K(X), is a limit of Q’\rn) i’ and
kw i (_E}kv =,Uk\, = k. Moreover, according to [3, Lemma 4.2], we can choose g n
such that Cwn = G for all n. Then by Theorem 5 0.1 one has G, = G+ as claimed.

‘Now, let us consider a finite extension k/kV (assume also that ky€ kCked. The

existence of & r.a.t. extension w of v to K(X) such that Ko ™ k is proved under additional

assumptions.

THEOREM 6.2. Let k/k be a finite extension. Let (R.9) be the completion of

(K,v) (see [5, Ch. VI, §5]). Assume that tr.deg K/K > 0. Then there exists an r.a.t.

extension w of v to K(X) such that ki = k. Moreover, we can choose w such that

Proof. Since k/k is finite according to [3, Lemma 4.2] there exists an element

cwds

a &K such that a is sebarable over K, [K(a): Kl=[k: kv] and kv =k, where vy is the
' 1

restriction of ¥V to K(a). Moreover, if (K',v') is the Henselisation of (K,v) included in

(X,V) (see [6, pag. 131]) then as above -

(27) [K'(a): K" =[K(a) : K] =[k: kV] :

i 3 o A 5 : g
Smce there exists an element @& K transcendental over K, then there exists a

well ordered set gé } ig1 of elements of G, and a system {a& of elements of K

such that:
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1) S ; is a cofinal subset of G, s

(28) 2) v(ai = aj) ::gi whereas i < j, i,j&€l,’
3) v(a; -9 :éi for all i &1.
Let ai= a(l),...,a(”), be all conjugates of a over K.

Denote ¢y(a) = sup(v(a - a(t)

), t= 2,...,}1). Accbfd{ng—to (28) l)i there exists wioél .
such that 8i0 > cJ(a). Bya suitable modification of the set I, we can assume that
(29) e (a) <.C€i for all igl.

Let W: be the r.t. extension of ¥ to K(X) defined by inf, ¥, a; + a and cgi. Since
all conjugates of a; + a relative to K are obviously a; * 8(1),...,5}1- - &(n), it results that
u?(aiJr a) = eda). Hence, according to (29) and [3, Proposition 3.2.], it follows that
(a; + 2, gi) is a minimal pair of definition of W; relative to K. Now since
K(a) = K(a, + g), by (27) and [3, Proposition 4.1}, it follov:fs that (a; + a,gi) is also a
minimal pair of definition of W, with respect to K.

We assert that in fact (W, Y; is an ordered system of r.t. extensions of v to

R(X). Indeed, one has: V(a; + a - (a; + a)) :Wéi - aj) :gi if i<j (see (28), 2)). Since
6 i <g)3- whereas i < j, by Proposition 1.1 it follows that TT; € "TT"}

Furthermore we assert that the ordered system (ﬁ"’i }ie::I has a limit. For that

-

we shall prove that the condition 2) of Proposition 2.2 is verified. Indeed, let b EX.
Assume that for any i&l one has Wi(x -b)> g}-, Then Wb - (ai +g)) =
:"{K?i(b e (ai + @) = gi. Hence the elemel"lt b-a éf&’ is also a limit of the Cauchy
system cai}iﬁl’ or equivalently o is algebraic over K, a contradiction. Therefore the
condition 2) of Proposition 0 9 eniBied o il &XK, and so (W, }i has a limit W.

Let us denote by W, th‘e restriction of Wj to K(X) for all i&l, and let w be the

restriction of W to K(X). According to Theorem 2.3 we have that: w = sup w; and
: ; ;

ko, =Wk, =k As usual v; is the restriction of ¥V to K(a;+a) = K(a) = K;. Finally
e :
Cio= gi}GVl = G,y since by the ‘equality [K(a): K] =[k: kv] one has le =G and since
gi €Gy one has G, =G, = G, for all i. |
: : 1 i _ :
2.1f w is an r.a.f. extension of v to K(X) then by Theorem 5.3 it follows that

-
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kw/kv is a finite extension. Now a somewhsat converse result is valid:
V

PROPOSITION 6.3. Let k/kv be a finite extension. Then there exists an r.a.f.
‘extension w of v to K(X) such that kg = %o

Proof. Since k/kv is finite, according to A[3, Lemma 4.2], there exists an
element a €K suc}.w that & is separable over K, [K(a): K] =[k: k,J and kv =k, where v

1

is the restiction of 7 to K(a). .
Let G=2Zx G"\;“ ordered lexicographically and §= (1,00&G. Let W be the
* extension of ¥ to K(X) defined by inf, V, & and g,lt is clear that W is an r.a.f. extension
of ¥ to K(X) and so \«", the restriction of W to K(X), is also an r.a.f. extension of v.
Furthermore since 5 > \é\for all @QGV (we remark that G, is identified to O x Gv) then
(a,g) is a-minimal pair of definition of w with respcet to K. Therefore, according to
Theorem 5.3, we have: kw = k"l =k, as claimed.
7. EXISTENCE OF EXTENSIONS OF v TO K(%) WITH GIVEN VALUE

GROUP

Let us assume that (K,v) is such that GV is not divisible. By Corollary 5.2 it
follows that w if r.a.t. extension of v to K(X) then the group GW/GV is ecountable. There

exists a somewhat converse result:

THEOREM 7.1. Let (K,v) be g valued field. Let GVCG €QG,, = Ggbe such that
G/Gv is an infinite but 'countable group. Then there exists a r.a.t. extension of v to K(X)

-such that G = G. Moreover one can choose w such that ki =y

Proof. Since G/GV is a countable torsion group, we may define a sequence of
subg‘roupsz

Gt .. 8. o
such that Gn # Gp+1s Gp/Gy, is finite for all n, apd that %)Gn = G.

Now we shall define for all positive ihteger n an element ané'ﬁ, separable

over K, such that:
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b) K({ln) C‘.[((a””)

c) If we denote by V,, the restriction of V to K(ay,) then G, =G
: n
The element a, will be defined by induction over n. Indeed, according to [3,

) £

Lemma 4.3], there exists an element a, such that 2) and ) are verified. Let us assume
that n>1 and that the elements a,..a  are defined such that a), b) and c) are
" satisfied. Again, according to [3, I.Jemma 4.,3], there exists an element bnﬂg‘-l?
separable over K(an) such that [K(ap)bpeq) « Klap] = [Gpeg :‘Gn] and Gvn+1 =G,
where v, is the restriction of v to K(ap,bp41). Now, since by, is separable over I((a‘n)
and 8. is separable over K by hypotheses, there exists an element an.,.]véﬁK such that

K(a,,bpeq) = Kla ) It is clear that the elements ay,...,a,,a are such that Ule

ntl
conditions a), b), ¢) are satisfied.

The rest the proof is made in the same way as the proof of Theorem 6.1 and it
is left to the reader.

In- the same manner as we have proved Theorem 6.2, we can prove the

following result: : .

THEOREM 7.2. Let (K,v) be a valued pair and let G be an ordered group such

. . o N o
that GVC,G and G/GV is finite. Assume that tr.deg(K/K)> 0, where (R:W is the
- completion of (K,v) (see [4, Ch. V, §5]). Then there exists an r.a.t. extension w of v to

K(X) sueh that G, = G. Moreover we can choose w such that R = ke

By Theorem 6.1..and 7.1 one'may derive in a canonical way the following
resultr: .

éOROLLi‘&RY 7.3. Let (K,v) be a valued pair. Assume that there exists an -
infinite valgebraic eXtélﬁSion k/kV céuntable generated énd an ordered group G such that
GV_CG and G/Gv.is an infinite countable tor;:ion group. Then there exists -an r.a.t.
extension w of v to K(X) such that Ky ook and G2

Also by Theorems 6.2 and 7.2 it follows:
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COROLLARY 7.4. Let (K,v) be a valued pair. Let k/k, be a finite extension

and let G be an ordered group such that G &G and G/G,, is finite. Assume that

N .
tr.deg (K/K) > 0 where (&?‘,W is the completion of (K,v) (see [4, Ch. V, §5]). Then there

' exists an r.a.t. extension of w to K(X) such that k,Qk and GWQ."G-
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