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1. INTRODUCTION

Let X be a complex Banach space and let TJ:D(TJ)CZX——%-X (j=1,2)!

be linear transformations in X .Following [12],we.say that Ti A T2

are permutable (or permute) if . ]
AR e ?
T1T2x =T,0,x , XGED($1T2)/\D(T2T1) " (A.4)

Multiplication (unbounded) operators by independent variables of
partial differential operators with constant coefficients on various
function spaces provide examples of permutable transformations.

_A.motivation to introduce a joint spectrum for a permutable pair
of linear transformations is given in [12] .In particular,it is shown ;
that such a joint spectrum can be used to characterize the commutat1v1ty
of the spectral measures attached to a pair of permutable selfadjoint
.operators (see Thm.2.5 from [12]).

The aim of the preéent paper is to define a joint spectrum for an
arbitrary finite family of permutable paraclosed transformations (see
the definition below),which is different and,perhaps,more natural than
the corresponding definitions from [10] or [5] .The actual definition
extends that given by J.L.Taylor in the case of commuting linear
~ bounded operators [9](another type of extension can be found in [147).
Unlike in [12],where only genuine complex numbers are used, the present
joint spectrum is a (closed) subset of a Cartesian product of copies
of the Riemannvsphere 'ﬁ==¢UGw}.Among other results,we prove that the
projection property of the joint spectrum (see Thm.3.2 from [9])

still holds



in this context.As an application,we shall characterize the
commutativity of the strongly continuous semigroups of linear
operators in terms of the joint spectrum of their infinitesimal
generators.Some elements of Fredholm theory for permutable
families of paraclosed transformations will also be mentioned.

Let Lat(X) denote the family of all Banach subspaces B

of X ,i.e. those linear subspaces 2Z of X which have a Banach
,spacé structure of their own that makes the inclusion ZzZcX
continuous.If Zl,ZzezLat(X),then both Z, + Z, and Zy N 2,
belong to Lat(X).In other words, Lat(X) is a lattice,as the
notation suggests.A linear subspace Z<X is in Lat(X) iff it
is the range of a linear and continuous operator defined on a
certain Banach space.A member Zeziat(x) has a uniquely .determined
Banach space topology and,moreover, Lat(Z)=:{WGELat(X) s ezt
~ All these assertions,which are simple consequences of the closed
graph theorem,can be obtained as in Lemma 2.1 from [11,Part i
It was G.Julia who firstly pointed out the importance of the
class Lat(X),at least in the case of Hilbert spaces (see (2] for

a complete list of references).The members of Lat(X) bear various

names (for instance,they are called paracomplete subspaces in [61)

but we prefer the terminology of [13].
Now,let Y be another fixed Banach space.A linear transforma-—

tion (or operator) T:D(T)CX—>=Y is said to be paraclosed if

its graph G(T) is a member of Lat(X>Y).(Note that a paraclosed

operator is called in [6] paracomplete).

Every closed operator is paraclosed but the converse is not
true.(Indeed,if Z<Lat(X) is not closed,then the inclusion Z<X

is paraclosed but not closed.)
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The family of all paraclosed operators,defined on linear
'subspaces of X with values in Y, will be denoted by DX
The set ZD(X,X) will be briefly designated by I (X) |
Ty s T,€D(X,Y) ,then B ¥ T (defineq,of course,on D(Ti)/\D(TZ))
is also in £ (X,Y) .Moreover,if TeD(X,Y) and SeD(Y,z) ,then
STeD(X,2) .Finally,if TeD(X,Y) is injective,then T Led(T,X)
(these assertions follow as in Section 2 from [11,Part 1]).

Let Te?(X,Y) .Since D(T) 1is the projection of G(T) on
the first coordinate,we have D(T)GELaﬁ(X)'.In particular, D(T)
has a(ﬁniquely determined)Banaéh space topology and the operator
T:D(T) —Y becomes continuous.In particular,if TeD(X,Y) and
D(T)=X ,then T is bounded (see also Prop.2.1.5 from [6]).This
simpie remark will be often usedin the sequel.The above discussion
élso shows that if TeD(X,Y) ,then ker(T)ELat(X) and
in{T)=TLat(Y) .

The isolation of the class P(X,Y) also goes back to G.Julia
(see [2] or [6];see also [13],[11],(15] etc. for some extensions).

Let T D(X;Y) berbijective.The above arguments then show
that- 'I""l is bounded.Therefore in this case T must bé closed.

For an arbitrary Te€2(X) ,we denote by GE(T) the set
of those z&€l such that the operator z - T : D(T) —X is not
: bisective.We define the spectrum o (T) of T Dby the equality

e(D)=op(1) if DT)=X and o(T)=oy(T)ufes] if D(T)#X .

The~set g(T)=JE\¢r(T) is the resolvent set of T .It is easily

seen that g(T) is 0pen in E In fact if g T)7f¢ then

.g(T)f\E;fﬁ and, as notlced above an thlu case T is closed, |
Let us sp801fy what we mean by commutatlvity‘inbthé class Dlxy:

Let T ,TZE.Z)(X) .We say that T,,T, commute if g(mj)%gz



and for some zjezg(Tj)r\E (j=1,2) the bounded linear operators
-1 -1
(Zi-Ti) and (z2~T2) commute.
It is known (and easily seen) that this property does not
depend on the particular choice of the points Z 125 .In other
: 1 -1
words,if T,,T, commute, then (wi-Ti) and (w2-T2) commute
for all wjeg(Tj)nm Cisst2). : :

If Ti’TZ commute, then TQ,T2 permute.Indeed,if

X ED(TyTy) ND(TyTy ) =D((2)-Ty ) (25=T,)) A D((2,-T,) (2,-T,)) ,
xl==(z1-T1)(z2-T2)x and x2==(22—T2)(zi— 1)x ythen an obvious
calculation with inverses shows that =X, .

On the other hand,it is well known that even for selfadjoint
operators there are permutable pairs which do not commute (see, for
instance, [8]).

To define a joint spectrum for several permutable linear
transformations,the most appropriate class seems to be that of
paraclosed operators.Cne reason is that this class leads to
chain-complexes of Banach spaces and continuous linear
operators for which a suitable perturbation theory is available
(see [1]).To get a better understanding of the general case,we shali

first perform our construction in the case of two operators.

0

Let T=(T,,T,)€2(X)° be a permutable pair.Let &

2 2

=D(T,T,) ND(T,T,) ,let Xy =D(T,)@D(T,) and let X:=X .
For every Z'=(z1,22)e{az we define the mapping SO(T(Z)) from
X0 into Xl by the formula

0
oY

with Ty(2)x=(24-T5)x if z %00 and T (z)x=x if z,=co,

S_O-(T(z) )x =T1(z)x@T2(z)x , XEX

j=1,2 .

Let also. éﬂ(T(z)): X% —%>X§ be given by



5 (N2))x,@x) = ()%, - Ty(a)x, , n@x el ,

with Tj(z) defined as above.Since Ti’T2 permute,it is easily
seen that 51(T(ZDSO(T(Z»::O for every 265&2 .This shows that

the sequence

0 3%x(z)) A $Hr(2)) 2
T e TR

is a complex of linear spaces.As a matter of fact,by the preceding

0—>X —0 % (’1.2)
discussion the spaces Xg (k=0,1,2) have a .

Banach space topology and . ° the mappings Sk(T(z))(k==O,1)
become continuous.In other words, (1.2) is a complex of BRanach
spaces.

By definition,a point =z =(Zi’22)€:ae is in the joint

spectrum o (T) of T if the complex (4.2) is not exact.
In spite of some combinatorial (and graphical) difficulties,
we shall see in the next section that the general case is well

reflected by the above situation.

2. A JOINT SPECTRUM FOR PERMUTABLE OPERATORS
Let n>2 be an integer and let &(n) be the group of
permutations of the set {1,...,n}.Let also {ja,...,ij:{l,...,n}

be such that 'léj,1<...<jp\<n y,where 1< p<n-1 .we shall

“designate by 93 3 (n) the set of all bijéctive mappings
1.'. p % |
7y _{1,...,n-p}—->{’l,...,n}\{j,l,...,jp}.
I1f p=0 ,we define &%(n) = $#(n) .Note also that ‘570,1 n(n) ¢
When no confusion is possible,the set <£. j (n) - will

be denoted by <. :
31"'3p
Let X be a Banach space.In this section we shall work with

finite families of paraclosed linear transformations



T=(Ty,...,T )SD(X)" ,which will be designated, following

[11,rart II],as multioperators.When every pair (Tj’Tk) permute,

then T is said to be a permutable multioperator (briefly,a p.m.).

Let T=(T;,...,T )ED(X)" .We associate T with the family

of indeterminates'W:(G‘i,...,c—n) If 0¢pgn-1 and qf€50 i
1 e o p

~

we set T’",: T’T(/l)...Tﬂ(n—p)

Let AP[s,X] be the space of all exterior forms in Threesog s
with coefficients in X ,of degree p (see [9] or [10] for details).

We denote by XP the linear subspace of AP[e,X] which consists of

T
vectors df the form
¥ = Z:_‘ X gn i, Sy, A A T '
31(."<Jp Aty Y P
: (2.2)
(i SR 8 =R (T i
Jl jP 'ﬂ‘e‘fj - ('”')
"D

With the above convention, ng=f]{D(Tﬂ) ;'ﬁez&f(n)} .We also

define xg =A"[,X] and xgz{o} IE opd-l op psn il

24. LEMMA. Iet T=(T;,...,T )eD(X)" andlet z',zrel” .
p —yP

- Then for every p>»0 one has XT 2 XT-z" .

Proof. It suffices to assume that O0gpgn-1 .It is also

sufficient to show that

. B{-zt) )= O DTt ,  (242)

31..3 _ ~31".3p
;for every family of indices jﬂ.<"' {jp .This can be easily

obtained from the formal equality
(-r S R e Y A D i)
s k ; k k e 8. k ] iy .
! }-(1 ,q q o A _._q'?‘q-»-~_., A
where q=n-p , jR‘-is a sum of ‘monomials in Ty =Zp  seenyT) =2
: 1 1 Q q
of degree less than q and ki”"’kq is a family of distinct

indices.Then (2.2) can be inferred via (2.3)



Note that the translation invariance expressed by (2.2)
does not require any condition of the type (1.1).

2.2. LEMMA. The multioperator T =(T,...,T )SD(X)" is
permutable iff T-z is permutable for a certain zer® .

Proof. Inaeed,from (2.2) we havé,in particular, for all pairs j,k

D(T3Ty) NPTy Ty) =D(U(T4=24) (T,=2,)) ND((Ty-2, ) (T-25))
from which we derive easily the assertion.

We shall define in what follows a joint spectrum for every p.m.,
following the ideas of J.L.Taylor in the bounded case [9] .Let
T=(Ty,...,T,)ED(X)" be a p.u. associated with the family of

indeterminates G“:‘(c“i,...,crﬁ) et 0Lpgn-l , let ’l<j1<...<j <n

b
and let
XE N D(Iﬂ)
TS .
1™
(where <. . =4, =%(n) if p=0).Let also 1g<kgn .Then for
R
every zeT" we set
o e o T R R
Jpdp p
=(z, -7 )% if k¢{31,...,jp} and iz 00, A 2.4)
=% : it k¢{j1,...,jp} and z, = o0

Note that if kgé{ji,...,jp} , then

k
T e SN BET 3 (2.5)
Jnieen TeL:, s, T

qordy e(fal"‘-}p#l ‘

~ where jl,...,] is obtained by ordering {k’ji""’jp} .

§+1
Let EGX;; be a vector represented by (2.1).We set

k,p k : 5.6

e Z:J Tj - (z)xj Sy eeA oy o k26
' ji<.n<jp b g ae ok P L P

. ) 1
Then we define a linear mapping from Xg inite. AR re: % T by

the equality



SP(2E= 3 AT R i (2.7)

It follows from (2.5) that §P(T(z)) takes values actually in X£+1 ;

2.3. LEMMA. The sequence

' o 1 -1
010 3 <T<Z>Lx’,§5 5 (T(zi...sn (1(2)) Baio. ey

is a complex of Banach spaces and continuous mappings.

Proof. From (2.6) we obtain

Sp.’-i(T(Z))Sp(T(Z))E:kZ, 6‘1‘(Agvm(Tk’p+1(z)Tm’p(Z)—Tm’p+1(z)Tk’p(Z))g
<m

p
iy

TP ()1 P(2) 8 - 1P ()18 P(2)E =0

for each ¢ &X, .According to (1.1) and (2.4),we may assert that
for all indices k,m .Therefore 5p+1(T(z))Sp(T(z)):=O ,that is
(2.8) is a complex of linear spaces.

Since XgézLat(j\pEr,X]) and SP(T(z)) is paraclosed,it
follows that xg has a Bahach spice bopoldgy and. the :
operator §P(T(z)) becomes continuous (see the Introduction).

Therefore (2.7) is actually a complex of Banach spaces.

2.4. DEFINITION. Let T =(T,,...,T)eD(X)" be a p.m.The

joint spectrum o(T) of T is defined as the set of those zelTl
such that the complex (2.8) is not exact.The set g(T)=:ﬁn\¢T(T)

is called the resolvent set of T .We also define Gb(T)zur(T)r\mn :
(5 S0 a1
r =0(T;) » Xg
to X and 50('1‘(2)) acts as x—»l%(z)x 5 st(T,l).Therefore

1f T::(Tl) is singleton,then X is isomorphic
a point z €T is in ¢(T) iff im(z-T,)=X and ker(z;-T,) ={0};
in other words,iff z,-T,  1is bijective.The point soe=o(T) dAff
D(T,l)=X .This shows tbat cr(T)-:G‘(T,l) and G‘E(T) = G’E(Ti) (see

the Introduction).

At



One of the most important and useful properties of the joint
spectrum of a coummuting (bounded) multioperator is the projection
property (see [9],Thm.3.2).We shall try to give in the following
a version of this result.Unfortunately,Definition 2.4 does not
suffice to our purpose.A more sophisticated definition is needed
to present such an assertion (see also [12]).

)eD(X)"
be -sueh that : T=(T", PP (X" is s p.m.We associate T with

Db 2r—n s S e ® g Dl o m

the family of indeterminates c‘:(c‘,...,cﬁ+m).With the notation
which precedes Definition 2.4,if f& x2 swhere O pgn+m ,there

I

exists a uniquely determined decomposition €= = €"  ,vwhere ¢!

: p ;
does not contain Shel?c 99 °We denote by XT';T" the linear
subspace of Xg which consists of such «' .Note that X%,,T"'={O}
9
if n<pg¢n-m and that for 0gpgn we have g'e}(p,;‘T" iff. g
has. the representation
z" = 2{: X, s O Ae e s AGT
A¢iydcign 1y i
( (2.9)
X . N D(T,) .
J{L"'Jpeqregf. . (nem)
d1-edy
In articuiar for =n , X4 —{x SR AsesA s xeXO
; p ’ b= s P AR AR Tn
For every z'eé@n we define
§P(1'(21)51") = 5P(1(2))| 2, (2.10)

;T" ?
where z=(z',z")eg " (z" may be arbitrary) and $P(T(z)) is

given by (2.7) .1t follows from (2.5) that SP(T'(Z');T") maps

4P ; p+1
XT';T" into XT';T" .
2.5. LEMMA. The sequence
O il 1 t T Yerpn
ot §U(T! (2');Tm) X’l..r..g (Tl fp28) (2.11)
BEs T il i

is a complex of Banach spaces and continuous mappings.



-10-

The proof is similar to that of Lemma 2.3 and is omitted.
2.6. DEFINITION. Let T'=(T,,...,T )eD(X)" and let

T“::(Tn+1,...,Tn+m)6555(x)m be such that T=(T',T") is a p.m.

The relative joint spectrum of T' with respect Lo -~ T" is the

set o(T';T") cons isting of those p01nts. z'eT" such that the
complex (2.11) is not exact.If T"=¢ ,we set ;r(T';ﬁ)::c(T') 3

Note that if T'::(Tl) and T"::(Tz) is such that T =(T T 2)
is a permutable pair, then G(T‘;T")==6(T1;T2) is the spectrum of
the operator Ty ¢ D(T1T2)/\D(T2Ti)'—*>D(T2) ,where D(T2) is
endowed with its natural Banach space topology.

Let T be a multioperator.We use the symbol S<T to specify
that S is aﬁ ordered subset of T (and hence a multioperator

"contained" in T) or the empty set.

We are now in the position to prove the projection property

of the joint spectrunm.
2.7. THEOREM. Let T'=(T,,...,T)=D(X)" and let

":(T Ssgrll

e )e D(X)" be such that T =(T',T") 1is a p.m.

n+m

Then we have the equality

pE oW N o D058) (2.12)
S<LT"

where prn et ﬁn+m —ﬂ>ﬁn' is the projection on the first n
rcdordinates.

Proof. Let T"—(T T, 1) and let T! :(Tn+2’ "’Tn+m)
(1f n=721 we put T"-—¢) We shall prove that

- Vemu -—‘ 1 U ' " T

- P; n+'1°(T T') c(T T')\Jo—('l‘ T) gt (2.’13)

Since n and m are arbltrary,by succealve progectlons we: oerlve

easily (2.12) from (2.43).
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Let us prove (2.13).First of all,let us designate by
{HP(T'(Z');T")}p>O the cohomology of the complex (2.141),which
will be used in various instances.We need the following.

2.8. LEMMA. With the above notation,there are linear mappings

+1
o X%;T"*—’Xg';tr" and vP : X%;T" ——>x¥,;T" such that the
n n'on n’"n
sequence :
p p
u +1 v +1
O—"Xgl;Tn -—"ng;Tu'ﬁ_?Xgl;Tn el (2'14)
n nln .

is an exact complex of Banach spaces.In addition,there exists

a long exact cohomology sequence

: 4P +1 $p+1
e e BT (20 )51 ) BPPH (T2 (22) 1)L
p+l p+1 (2.15)

P+
= P e ) O B g

A 3
where 2z'=(z ""’Zn) 5 z£ =(z’,zn+1) , 4%, 9P are induced by

by uP , VP ,respectively, and 8° is induced by (-1)° times

the actionrof (2.4) ,computed for T, and Z4
Proof of Lemma 2.8. The mapping u® is given by

wPg'=(-1)P o A £',which is well defined.Indeed if g'ex®

Al
is represented as in (2.9),we have

X s ey BEERY B ) =

= _
Jfl."':?p w’e?j : (n+m-1) ey

13y
i r/f\ o D(TesTa) ) .
e Uoj,l...jp,n-r’.t

To define v® we first observe that for gexp there

';T"
n’ n
exists the following unique decomposition 4= £ taL s ey

where botb £' 4, £" do not contain S el .I? is clear that
g'é.X;}),;T,, , and therefore we may put vp‘g_= €,

It is easy to see that (2.14) becomes an exact complex of

L A : An+l
Banach spaces.Moreover,if z'eT® and zﬂ'=(z',zn+1)ezm 5



and z

‘i'%c’(T';Tg)u 6(T';T") .Then the complexes {Xp,.,l,,, , 8P(z' )50}
]
n

12

it can be easily shown that
+1 +1
Wt sRemangmmy - s T (g jsamyal
Therefore the family {up}p>0 induces a morphism of degree one

of the complex {Xp SP(T'(Z');TQ)} into the complex

|;T" 9
n
{XPI .T" 9 SP(TI;(ZA) ;TR)}
n’"n
We also have

p20

p20

e S CUE DT IER L T R

Hence the family {vp}p induces a morphism of degree zero of

50

the complex {X3, .4, » 52(T)(2})5 1)}
n’'n
P p .
{X ';T" ’% (T'(Z')7T")}p)0

The existence of the long exact cohomology sequence (2.15) is

30 into the complex

now a conseQuencé of a well-known result (see,for instance, [7]).
Neveftheless,we need a more explicit expression of the connecting
morphism 6p .From the general theory (see [7]),it follows that
Gp is induced by an additive relation ¥ —* ,where §§€EX5,;T" 5
S A =0 5 S, zexpﬁ;Tﬂ and: SHEEL(2L) 5T =nky
Since Xg';TrCZXgé;Tg |

Sp(Tﬁ(zﬁ);T")g::upQ shows that T

ywe may take = £ ,and the relation

i B P
nﬁi(zn+1)g"(‘1) u*’ ,where

— o il R .
$n+i(zn+1)§:'(zn+1 Tnvi)g when Zn+l"00 and Tn+1(zn+1)g" €1if

Z = 0 (this is precisely an action induced by (2.4) for A

n+1).This completes the proof of the lemma

We go back to the proof of Theorem 2.7,more precisely to the

proof of (2.13).%Let z'e:prnficr(Tﬁ;Tg) and assume that

nip>0

and {Xp,;T" s Sp(T'(z');T")}p>o are exact and so the complex

. P , .
-{XPI’I;TH % (Tﬁ(zﬁ),Tg)?pzzo is also exact,by (2.15),for every

~ . . . . n r
zn+1e;m .This is equivalent to saying that z'géprn+1cr(T';E£) 5

which contradicts our assumption.
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Conversely,let z'<®" and assume that ztgfprﬁglo“(Tﬁ;Tg) .
This means that for every zn+lefﬁ one has zﬁ::(z',zn+1)§§o—(T£;T£).
Using again (2.15),the exactness of the complex {XP,;T" ’5P(T£(Zﬁ);T£ﬁ
~shows that the linear spaces i

ker §2(1'(2');17)/im 5271 (10 (21)517)
(2.16)
ke SR (2t s ) 5 2 (020 )5T)
are isomorphic,and the isomorphism is induced by the action of
Tn+1(zn+1) .Looking at the formula of Tn+1(zn+1) (Lemma 2.8),we
deduce that the canonical mapping from the first space in (2.16)
into the second one is just an isomorphism.With the terminology of
[13),the spaces (2.16) are quotient Banach spaces,and Tn+1 induces
in each of them a morphism whose spectrum is empty.This may happen
only if the spaces (2.16) are null (see [13]) for all p ,which
is impossible by our assumption.This contradiction completes the
proof of the thedrem.

To make Theorem 2.7 really useful,we should observe that it
remains true even if the projection has no privileged form.

2.9. THEOREM. Let T =(T ,...,Tn)ejb(x)n be a p.m. and let

M::{mi,...,mp}c:{l,...,ﬁ} be a family of distinct integers.Set

_ : "y P . e
TM-(Tmi,...,Tm Yo wlf pry : U"—= L% is the projection
z=(z ,...,zn)-—e»zmzz(zmi,...,zmp) ,then we have the formula

prmo‘(T)‘—’- s (Ty;8)
S<R ;

where E{=(Tk1,...,Tk ) and {k ,...,kn_p}={1,...,n}‘\M 5
n-p

Proof. We first observe that if #we (n) ,then
& ((Trgayr e Tr(n))38) = zgay oo w02 ) )5 (g0 002 ) ES(T39) ]
for every multioperator § such that (T,8) is permutable (see,
for instance,lemma III1.9.6 from [10],which can be easily adapted

to this case).This remark allows us to reduce the actual statement



to that of Theorem 2.7,from which we derive readily our assertion.

2.10. THEOREM. Let T=(T1,...,Tn)e:23(X)n be a p.m.Then
& (T) is a closed and nonempty subset of /&;n .

Proof. Let 1<pg<n-1 and set

(o s vosd iz DET) - »
X‘I‘ 1 P W

Ted.,
3ye-dyp
Since XT(ji,...,jp)esLat(X) ,we may fix a norm “X”ji‘"jp in
XT(ji""’jp) .Note that Xg is isomorphic to the direct sum

@ Xp(dgserendy)
1€§,<.. <] &n |

and therefore Xg can be given the norm

= =

j,l<...<3 K Zexp ‘
p

S TR | e
179 17 p

0

where % has the representation (2.1).1t is also clear that XT

can be given a norm "X"O .

Now,let zo=:(zg,...,zg)§ﬁr(T) and let also

Z'=(zi,...,zn)eiﬁn
be such that zk;foo it zg;éoo and z, #0 if zg=°<> .We define
/ff]{,l”ap(z)x = (2,-1,)x it Voo , z 7#oo0,
=% = zf’Tkx if zg=°° y Oz Feo
= X if zgr::x; y Zy = eo

“f(“)rb_all X&Xy(dgs--rd;) and kg’{ji,...,jp}. When ke‘:‘.{ja,...,jp}

- we sét T? Wiy (z)x=0 .Clearly,this definition can also be adapted
‘for p=0 1 7

. Let Ak’p(z)" and bép(/‘f(z)) be glven by (2 6) and (2.7),where
: 'Tk-‘ e .(z) 1,s replaced by Tk | P (z) and T ’p(z) is replaced
Jg el pedy _ , »

by T ’p(z) ,reupectlvely Then by using the argument from the proof
of Lemma 2.3,one can easily show that '{XT ,5p(T(z))}p>O is a
3 d

complex of Banach spaces.Note also that
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I62(E(2) - 52(r2% g, <
= Z. ok

0
20s o g<m<iy 13 | 2,2y | ”in.“jp”ji.?jp =

e ‘k ] (2.17)

e STMENE e L

z) = o0 31<-u<3p ke 1 Bl Ty

3 _1 .
< €, ( max |zk-zg‘ + max lzkl )”g”p ;
Zk¢b° z) =00
where (P i » C_ are constants independent of gz ywhose existencé

31'-Jp p

is.insured by the continuity of the mappings

Tk.z XT(jQ"'.’jp) _-*XT(ji’~--,j£¥1) ’
with k,ji,...,j§+’as in (2.5) (note that the embedding XT(ji""’jp)
into XT(j']'.""’jI'wl) is also continuous).

Since the complex {X% ,SP(T(ZO))}p>O is exact by the hypothesis,
. B x | e
if max{[ zk—zkl ; zg;tw} and max{l zkl H zgr-'w}are sufficiently
small,it follows from the stability of the exactness of the complexes
of Banach spaces (see, for instance, [9] or [10]),via (2.17),that the
complex {X% ,%p(/l?\(z))}p>o is also exact.

We have only to show that the latter complex is exact iff the

1S | - . 0 _

complex {X ' (T(z))}p}O is exact.Indeed,let Wes if o RS
and O;:fzk-;.‘oo yand let w, =71 otherwise.Then we have

b

1.( . (2)=w f[“k . (z) for all indices.We define a transformation ¢
Jp o= k Jp o]

p Y
of X2 into itself by setting

T

zP ¢ = > ey il Xj L RAREE /\c;‘j ’
. Jp<e<iy 1 P HlE g R P

with % given by »(2.1).We also put 7%= identity .The mapping =P

is clearly bijective for every p>0 .We also have

5P(1(2) pP =T 5P (%(2)) e .
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Therefore, the complex {AP ,SP(T(Z))} >0

{X ,SP(T z))} o is exact.Using the first part of the proof,we

I

obtain that the complex {Xp ’SP(T(Z))}pQ:O is exaght for 'z in
a neighbourhood of zo ,that is,the set Q(T) is open.

Let us pro?e that the set o (T) is nonempty.By virtue of
Theorem 2.9,if we project the set <S(T)' on the j¢h coordinate,
we obtain a union of sets of the form 6‘(Tj;R) ywhere

R‘<(T1,...,T 1’Tj+ ,...,Tn) .But the sets G‘(Tj;R) are nonempty

gl
forsome j and R ,and hence o(T) is nonempty.
271. REMARK. Theorem 2.10 can be stated for any relative

spectrum of T ,by using similar arguments.We omit the details.

3. AN APPLICATION TO SEMIGROUPS OF OPERATORS

In this section we shall characterize the commutativity of
sevéral strongly continuous semigroups of linear operators in
terms of the joint spectrum of their infinitesimal generators.

Let {S(t)}tzo be a strongly continuous semigroup of linear
operatérs acting in the Banach space X .We denote by B the
infinitesimal generator of S={S(t)}t>l_o . We have

Bx= 1lim t-i(s(t)x R R
t=—=0

provided the limit exists in X ,and B : D(B) —>X 1is closed.If

wy(s)=1nf {71 mls(e)l 5 w0},
then we have the formula
o0
(z - B)—1x=g g2l S(t)x-dt -, x&X , (3.4
0 _ '
whenever Re z)moO(S) (see [3] for details).In other words

G(B)c{zsﬁ ; Re zéa)o(S)} H

here and in the sequel we set Re zm-o00 if g=co.

is exact iff the complex
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3.1. THEOREM. Let 31=:{31(t)}t20 Fisin 3n=‘{8n(t)}t;o be
strongly continuocus semigroups of operators acting in X and let
B ,...,Bn be their infinitesimal generators, respectively. The
following conditions are equivalent:

(1) Por all j,ke{i,...,n} and t',t">0 we have

55(£1)8,(87) =5, (£")3,(t")

(2) B=(B ""’Bn) is a p.m. and

G‘(B)c{zr(z P )c—:'ﬁ:n ;. Re. 2. gaw (8.) , Gt n}

, ’4n ’ S heale j ” mmiclywgoey *

Proof. Assume that (1) holds and let the indices Jsk be fixed
(j#k) .let also xeD(Bj) .Since

<7 -1

t (SJ(t)Sk(S)X ot Sk(S)X) = Sk(s)(t (Sa(t)x o X)) ’
it follows that Sk(s)XED(Sj) and BjSk(s)x =Sk(s)Bjx for each
8> 0 .Therefore,if XeD(Bk)nD(BkBj) ,we have

g -1 : -1
B.x = lim $ 7(8 (t)B.x - B.x)= lim B.(t7 (S (t)x - x)) .
g _t+0 e L e -

Since Bj is closed,this implies that kaeD(BJ.) and

Bjka-_-BkBjx -As a matter of fact we have proved that

D(Bk)r\D(BkBj) =:D(Bj)/1D(BjBk) = D(BjBk)/\D(BkBj) ’
and so B"::(‘B ,...,Bn) is a p.m.

For the second statement of (2) ,let z:(z,l,...,zn)e-:/(f:n be
such that Re zj>a)0(Sj) for some j .With no loss of generality
we may assume j=71 .We shall show that zgo(B) .

‘ Let o= (r,...,c—n) be a system of indeterminates associated

with B .We have to prove that the complex {Xg ,Sp(B(z))}p>O is

‘exact.To this end let us define a mapping ~5p on X2 by the

B
-1

relation 'up‘g:-.(za—B,l) £ ywhere €= A €' +£" is uniquely

represented with «' , €¥" not containing 5 .Then TP takes

values in Xg-i .Indeed,if



i i ""18—

'g"-: Z. X R Ao AT s

: . i wn] J J £
Ja< e<ip g 1™%p=1 "1 p=1

then agé{ji,...,jp_i}_ and we must show that

e /N D(B_)

Ky = D O

-1
(z,-B,) :
o S 31."jp_1

This follows from the next computation,via (3.1):
o0
-z, t
-1 E 2 —
(za- 1) Bjx = So e Si(t)Bjx at =

= gt -
= : Bj(e Sl(t)x) dt-= 33(41—31) Ko
valid for every erD(Bj) and all j (Bj cormutes with the

integral by Theorem III.6.20 from 31

We now prove the equality

TP $P(B(z))% » 577 (B(2)) TP E = %, gl . (3.2)
Indeed,if £ = G‘i/\ €' + €" is as above,then,using (2.6)v and (2.7)

in the present context,
: n
1 k,p-1 1
TP SRl )E = g7 = T o AB P @) (2,5, )
= k a4

and

n
5P7(B(2)) BPE = oyag + k2;2rk/\fsk’l"'l(z)( N

" whence we infer (3.2)

~

: Certainly, (3.2) implies the exactness of the complex
CdyP P

{x5,85(B(2))} o »and s0 2o (B)
Conversely,aosume that (2) holds and let us prove (L)
It follows from Theorem 2 9 that v .

~ Vit e i
o“(B Bk c:pro'(B C’{(z ' 2y )EE ;. Re zq. wQ(Sq) ~ q:;],k-}

for every pair of indices j,k=1,...,n , j#k ,where

pr 2o (2 ,...,zn)-—ﬂ>(zj,zk) .Therefore,with no loss of generality,
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weé may suppose n=2 .
: 2 ' ;
Let z=(zi,zz)em be such that Re zj>ooo(Sj) (d=12,.29

From the exactness of the complex:'{X% ,SP(B(Z))}p>O it follows

that :
A _ A ‘
baieBg o mm) e sz Y e (3.3)
for every xe&X .Indeed,the form vl-:-'(z ) xcr 4 (z )°1x T,
satisfies Si(B(z))1;=O .Hence there exists ve;X% such that

-1 -1 A . ok

(za-Bi)v==(zz—B2) X and (zZ-B2)v :(zQ-Bi) X ,which implies (3.3)

From (3.1) and (3.3) we derive the equality
co rov -.(tlz1 + t222)
go SO - (3 (1) 9,(£)=5,(£,)8, (£,))x dt,dt, =0 (3.4)
for all xeX and (21,22)€iE2 with Re z‘_j O(S Yeold=2 21
Relation (3.4) implies the statement (1) via the following.

3.2. LEMMA. Let f&I,((0,00)%(0,29)) be such that

Soo g ~(pty + Xot,)
e £ty b)) dtah
O 96 ar 2 e

570

for Re Xi s Re 22 sufficiently large.Then 'f(ti,t2)=:0 almost
everywhere.

Lemma 3.2 is (a version and) a consequence of Lemma VIII.1.15
from [3], by Fubini's theorem.

The proof of Theorem 3.1 is now complete.

5.3. REMARK. Condition (2) from Theorem 3.1 is obviously
equivalent to the condition

(2') B= (B ceer By )~ ds a pen. and

G'(B /\{z-(zi,.. 2 )eﬂ) ; Re z. >a.) (S) ‘ ;j-'l,...,n} ¢

Theorem 3.1 yields the following extension of Theorem 2.5 from[17].

3.4. COROLLARY. Let Agy..-y A, e (unbounded) selfadjoint

n

operators in a certain Hilbert space.The following conditions
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are equivalent:
(a) The spectral measures attached to Ays.-+, A, mutually commute.
(b) A=(A1,...,An) is a p.m. and <5'm(A)c:Bn 4
Proof. Indeed,condition (b) is equivalent (by Theorem 3.1 and
Remark 3.3) to the commutation of the groups of (unitary) operators
{exp(itA1)§t>O ""’{eXp(itAn)}tzo ywhich in turn is well-known to
be equivalent to the commutation of the spectral measures attached

to AA""’An g

%5+ REMARK. If A=(A,1,A2) is a permutable pair of selfadjoint
operators,theh the following dichotomy holds:Either GE(A)==E2 or
GEE(A)CZR2 (see [12]).The direct extension of this fact is no longer
true for n3> 3 .A similar result for a permutable family of selfadjoint

operators Az(A{L""’An) (n> 3) involves not only the joint spectrum

but some relative joint spectra as well.We omit the details.

4. ELEMENTS OF FREDHOIM THEORY
In this section we intend to define the essential joint spectrum
of a p.m. and to give some of its properties.It is beyond our scope
to present this subject in a more comprehensive way.A more detailed
list of the properties of the essential joint spectrum will be
- published elsewhere.
ofet oo T e ,...,Tn)ezib(x)n be a p.m. and let o = (o3 ,...,wh)
Abe a system of indeterminates aésociated with T .For every integer
- p>0. we define the mapping $P(T) : x§ —>'x,¥*1
i 3P(T)=§§P(—T(O))_(i.e; -kap(z)_ is replaced in (2.7) by -Tk’p(O)).

by the equality

';fAs_ﬁéticéd'in’the ﬁfooffoffTheqrém Z.Qb,we can‘élwaysifix g norm.an
Xg which*makés the'mappingn 5P(T).CCntipuous; e
4.1. DEFINITION. A p.m. ‘I‘=(‘I‘,_L,...,Tn)e:.‘2§(x)n is said to be

is (semi-) Fredholm

(semi-) Fredholm if the complex {xg ,gp(T)}p>O



o

(in the sense of [1]).In this case we may define the index ind (T)

of T . 1o bebequal to the index (i.e. the extended Euler characteristic

' p p
see [1]) of the complex{xT S (T)§p20

The essential joint spectrum ¢

-ess(T) of T consists,by

definition,of those points ze T" such that the complex

{Xg,SP(T(Z))}pzo is not Fredholm.Obviously <réss(T)cur(T) ;

4.2. REMARK. If T:=(T1) is singleton,then T ié (semi-)
Fredholm iff Ti 3 D(Ti)C:X —>X 1is (semi-) Fredholm,that is,
im (Ti) is closed in X and either ker (T1) or  X/im (Ti) is
finite dimensional.Note that in this case T1 is necessarily a
" closed operator in X .Indeed,let {Xk}kC:D(Ti) be a sequence
such that X, —x and Ty %y -—--y- {k-—»<o<) in X .Since im (T’.L)
is closed,we may find a éequence '{xﬁ}kC:D(Ti) such‘that X

pas
(k—>eoo) in the topology of D(Ti) " and Xp-¥ Eker (Ti) .Therefore
T,x'=T,x and so x'-xeker (Ti) ,showing that XGED(Ti) and T,x=y .
4.3. THEOREM. Let T =(T ,...,Tn)ezaj(x)n be a p.m.Then the
£ is closed in TV
sev c_éss(T) is closed in T .
Proof. We can give the same argument as in the first part of the
proof of Theorem 2.40,using the stability of Fredholm complexes
under small perturbations (see [10] or {1]).
4.4. THEOREM. Let T=(T,,...,T )&(X)" be a (semi-) Fredholm
‘p.m. Assume that Xg is given a Banach space norm which makes the

mapping EP(T) : X¥ -—>X£+1 continuous.Then there exists an €T>O

such that if T=(%,,...,T )eD(X)" is a p.m. with the properties

b($j)==D(T5) for-all ] ,‘Bp(ﬁ) : X§ -“>X¥+1 is continuous and

Is*() - 8P(1)lI< €, for all p3>0 ,then T is (semi-) Fredholm,
din ker 3°(T)/in 3271 (%) ¢ din ker $P(T)/in 5P~ 1(1)

- P’ -
for all p >0 -and  ind (T)=dnd (T) -
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Proof. The assertion is a direct consequence of Theorem 1.4
from [1]. ‘

4.5. EXAMPLE. Let Ilc:mz be a strongly pseudoconvex domain
and let L2(£1) be the space of all square integrable functions
on L2 .We denote by LB(Ii) the space of (0,p)-forms on L2 ,whose
coefficients are functions from LZ(Il).With our ﬁbtation, Lg(ll)
equals the space j\p[dE,Lz(lljj ,where dE==(dE',d22) is regarded
as a system of indeterminates.’

Let Tj be the closed operator that is induced in IL,(£L1)
by the differential operator"a/ais (j=1,2).1t is easily seen that
IP=(T1,T2) is a permutable pair in LZ(II) and that D(TiT2): D(TZTi)'
Moreover, the operator $P(T) is induced by 5::(9/92&)dzd + (3/95é)d52.;
We want to ﬁrove that T?=(T1,T2) is semi-Fredholm. .

£ N Lg(Il)'—*'Lg(Slg is the Neumann operator,it is known
that "L'—‘—sa‘Nvl for each 'LE‘.L‘S(_O.) ,where & is the formal adjoint

o

of 9 ,extended in the sense of the theory of distributions (see [4]

i

for details).Let g:ﬁ'NleLg(.ﬂ_) o uxnp designates the norm of

the Hilbert space Lg(ll) ,then we have the estimate

2 | 9f .2 =3
< 5=i||0 < FUvh2 + B3 = Tup? (4.1)
Js

since ¢ =0 ,where £ = f, 4z, + £, dz, .In fact, (4.1) is easily .
. obtained for forms that are smooth in a neighbourhood of 23: ( see [4],
f Seqtion I1.1).The general assertion then follows by a-standard
procedure,using star-shaped neighbourhoods of the boundary points
and a partition of unity.We omit the details.

It follows from (4.1) that ijZD(Ti)f\D(Tz) (j=1,2) ,and so
the mapping ?51(T) is surjective.

s i3 1 : 1 LR
Next,let 4’: g, dz, + g5 d22€(L2(.Q.) )T be such that § (T);:'BZ—O-§
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From the general theory it also results that there exists

h€L2(.Q_) such that 3h =/ ;hence g1='3h/9'z—1 and g2=9h/9'2':'2 ;
0
T L]
. P P ; :
In this way the complex {(;2('0')‘1‘ S (T)}p20 is semi-Fredholm,

showing that heaD(T1T2)==(L2(11))

that is, T 1is semi-Fredholm.
It would be interesting to prove a similar property for a

strongly pseudoconvex domain of dimension =3 .
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