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SINGULARITY OF RADIAL SUQALGEBRAS IN H,1 FACTORS
ASSOCIATED WITH FREE PRODUCTS OF GROUPS

Florin BOCA and Florin RADULESCU

A possibfe way to analyse the structure of type II4
factors (from the point of view of their ergodic properties)
ls provided by the study of their maximal abelian subalgebras
(briefly M,A.S,A.,’s)., This approach was Initiated in the later
50°s by J,Dixmier [7), L.Pukanszky [40) and M,Takesaki tﬂ6],
who introduced a number of invariants related to such subalge-
bra;i
An Impcrtant result in this field is the Conngs-Feldman-Weiss
theorem [6], which asserts that regulars M.A.S.A.'s in the
hyperfinite factors are also conjugate (see also [12) for an
operator algebraic approach of the proof).

Recall that, following Dixmier®’s classification, a
M;A.S.,A. A in a von Neumann algebra M is regular (or Cartan)
tf the von Neuménn subalgebra generated in M by the normali-
ser NM(A)={u€M : u unitary in M, uAu*=A} is M itself and A s
stngular if NM(A)“=A. While examples of regular M.,A,S.A.’s
are rather easy to be obtained by the classical group - measu-
re space construction of Murray and von Neumann, detecting sin;
gular M,A,S.,A.’s is a more difficult task L7, 4042, 43].

"The Pukanszky invariant [40] (also considered in an
unpublished work of Ambrose and Singer) for é M.,A.S,A, A in a
type 11, factor M with canonical trace & gives a finer classi-

flcation. The description of this invarlant is briefly as fol-
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lows: let M acting In standard way, by multlp1ication to the
left on LZ(M,G) (the Hilbert space completion of M with respect
to the norm ux“2;6=l(x*x)]/2, xeM), let ]:LZ(M %) L2(M,E Yo,
Ix =x* the canonlcal conjugation (JMJ=MB),f£=(AVJAJ)" the abe- |

lian von Neumann algebra generated by A and JAJ in.B(LZ(M,E))

and for any 3 in-LZ(M,I ), denote by pr the corresponding cy-
no,

clic projectlon onto Span A% =§;;F_K?R"lb . Denote
~also by u{,thé commutant of € in B(LZ(M,Z )).Thenaqug;B(dez(M,vt
%)) is maximal abelian (the unit 1 of M is regarded as an element
In LZ(M,C)) and the Pukanszky invariant is the von Neumann alge-
bra type of the discrete von Neumann a]qebracﬂz4-p4)f Pukanszky
showed that in the hyperfinite factor R there are M A.ScB. s An
such that the corresponding\da have the property thataf:(ﬂ—pq)
ate of homogeneous type I . ‘
By the work of S, Popa [12), if A 1s a Cartan M.A.S.A.
then v is maximal abelian and Ifa(‘(4-p4) s of the homogeneous
type In’ nz2, then A is singular,
We will Be concerned with the von Neumann algebra M= ;
=£(G) of a group G which is the free product G=G4*...£GN of

groups Gi’ all of finite order k (but not necessarily isomor-

phic)_or all isomorphic to & and with their radial subalgebras
A generated by XdEﬁﬁ(G), where x4 is the left multiplication
with the characteristic function of the words of length one in
G, These algebras where considered by F?gh—Talamancé; Picardello,'
Cohen, Pytlik in connection with their work on harmoﬁic‘analysis
and representation theory on this groups. In particular it was
provea by Pytlik [11] that the radial algebra is a M,A.S.A. In
L(c) for G=F) (moreover, it is singular (14) iﬁ this case)
and also for G=Gy%...2G, with N>k n.

The aim of the present paper is to give a precise
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description of v, A¥ 21d of the Inclusion A, JARICVE, when A
Is the radial algebra as before, We obtaln that A (1-p,) is
of the homogeneous type loo 1T N%3 and maximal abelian if‘ Gls
the amenable group G=22x}22:.l Consequently, A Is singular in
the first case and Cartan in the second case, Moreover, if ¢
Is before with N»3 or if G=F), then € is Isomorphic to

A® (AQA) (corre§ponding to the decomposition A=p,+1-p,) with
A,JAJ sitting inside as direct tensor factors in the second
summand and collapsing into the first, If C=2Z,x Z, (so ¥(c)
s the hyperfinite factor [5]), then £ is Isomorphic to ADA,
with A,JAJ co]lapsing (modulo a certain automorohism) onto
both factors, }

The idea Is as in [14] to show an orthonormal infin/ite
family Bidos LZ(M,z),}O=1eL2(M,z) such that Ry A" "
are ortyhogona] and the corresponding cyclic projections p
have all the same central support ’I-p,1 Indf: for nyl. In om;der
to do this, we prove that the intertwining operators a ‘fn-—-)
—ay , aevt @@ invertible,

The last part of the paper contains a precise descrip-
tion of tﬁe spatial action of Xd and JX,IJ, which is shown .to
be related to the unilateral shift S on I.Z(N) In all these
cases, In particular, the spectral measure of )l,l and 'JX,]]
on each 7n is computed,

!




1. THE PUKANSZKY [NVARIANT FOR RADIAL SUBALGEBRAS

Let G4,G2,...,GN be finite grouns with the same order
k%2 and let G=61*G2*...%GN their free product, Denote G?=
=GI~{1G} o Each element g in G,g#ﬂG may be wrftten uniquely
in the Leduced form as g=94g2...gm, where gjeG?i} i4#...¢im.
Define the length of such a word g to be m and denote
fgt= m,l1G|=0, o(g)=94, t(g)=gm. This length function corres-
ponds to the actlon of G on his associated tree, Denote
Em={w€G:tw|= m} the set of words of length m, with . .gardina-
litz TR T EO={1G}. Denote also p==VﬂI:TTTZ?TT.
The radial: function Xm on G is the characteristic function
.of the set Em.

Let M=¥(G) be the associated von Neumann algebra of the
group G.Ciearly G has infinite conjugacy classes hence ()
s a type I'l, factor acting standartly on IZ(G), identified
5

with the space L”(M,8) of the GNS representation associated to

the trace @ on M and |l “z'coincides with the usual norm I\M2
on I2G6) & Denote by ¢, » the scalar producton T

Denote ‘the group ring €(G] of G over € by Mo and identify
Mo={x:x=22%Aw.w finite sum,]kwc @} with a subalgebra of ¥(G)
which acts by left translation on 12(8). It is known (4] that

2
X2=X1-(k—z)x,l-n(k-1)xo | : | (44

and

xm+1=){my’l-(k‘2)xm- (gzxm-’l’ my2, j , (1.2)




hence the von Neumann subalgebra A of £(6) qgenerated by the %% s

is abelian, It has been shown in [M#]that A is maximal abelian |f

“and only If Nyk,
Let vf=(AVJAJ)' be the abelian von Neumann subalgebra of

B(17(5)) generated by A and JAJ (J:12(r)—>12(g), !

for veG, is the canonical conjugation)., For each vector F in

; . —f
IZ(G), denote by %evf’ the cyclic projection of IZ(G) onto £} L

et St ty, /
=Span AJA % and by z(p}) the central support of p} Liv kL

Our aim is to show that ! is of the homogeneous type | _ on 1--p,|

©0

(where 4=XE€EM) and to give an exnlicitelv descrintion of the
)

operators X, and JX,J on 121R),: 18 order. to-de this, we cons-

truct as in [M4] a family of vectors {}n} in IZ(G) such that

neN

the corresponding cyclic projections p are orthogonal, with

. \ . 1n
the same central support l-p,l in v* and ;;ﬁp¥n = APy

The linearspan of words with length 1 is denoted by Mé and

the projections from IZ(G) onto M; and respectively onto

() :
Span{AwA:weE]§ : by ay and by Pye An important step in our proof

is to check that P1-191791P 4 and the range of.p]_4Aq1 is nre-

cisely %]=Span{q](qu),q](wx1):lwlél-4}. For any vector J in

1

o 171, we denote

M

{f'+r+s(xr;xs) - Fox f,szO

Foyis

0 s for r<0 or s<0,

Let us consider ian(M;) the-self-adjoint operators q]th]

and Jq,)ﬁq]] =9 Jxr}q‘ « For each__. W_C«E.T_-,jr-b/z we.get

and




lawl =1-1

$0 qlxqq](f‘)C?f] for 122, Clearly this inclusion is stil] true

also for I=1 and It follows that for any 191, B,=q,%,q
, ’ 1 [y )

: ?4€&f

and C]=jB‘]=q]]X4]q] are self-adjoint operators in

B(M;eyﬁ) defined by

o |

B(Zx Z(ZA

vl =1 vi=1 1tal =
lavl—l
C,( z ,A cv)= 2 ,( 2 1 RN
i =1 tvi =1 at =
Wal—l

"Remark also that B1=C4, B]C]=C]B] for 122 and BI=C]=0 whene-

ver k=2,

The flirst Lemma describes the snectral properties of B] and

C] and gives nice formulas relating the actions of Xh and jxqj on

Spani}m,n}m,nzO L

LEMMA 1,4, i) For any 1% one has

BY=(k=3)B+(k-2) I

€= (k=3)C 4 (k=2) 1
(tn this Lemma, I denotes the identity operator on MééBﬁn)}

ii) For any 17/2,'{€P'1le.‘i° , N0 one has

xa}o,n=}4,n 5 (Blz)o,n;,
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}n,ox'l::}n,'l 4 (c]})n,o'

1ii) For any ;GMZGY » n20 one has

)q;o,n=%,n & (84;)o,n_(JB4}+J?)o,n-4;

?ﬁ,oxﬂ=;n,4+(cﬂg)n,o_(JC4}+J})n—1

Proof, Let E :1 VEM @? Then
vl =1

s LT 2 Ay, v

Ivi=1 1al=1 Ib|=
favl =4 \bav\—l

Letting ba=c, only two cases occur: b=a-q with lal=1,
lavl= 1 orlc}=1, with {cvl= l,lal=1,la-1cl= 1, lavi=1, There
are k-2 choices for a in the first case and k-3 in the second

(since c#o(.v)-q). Thus

827 = (k- 2)21 s vt (k=3) Z(ZA Jv= (k=25 (k=3)8,7 .

vl =1 wi=1 \|cl=
fcvi -l

Jo

This finishes the proof of part i), since C,= JB]

11) Note first that )l,l ;O.,n=;4'n+q,+n(ﬂ’4}'o,n)+q1+n-q (%I?o,n)

For 121 we get

ql+n (x'l ?o n Zi Z—_—: Av'avvw= z: (Z, A )V s

Wi '-l bal =1 _, vl =1 \al—“

jwi = lavw}=1+n: fwi=n lav?] =1

vwl =]+n Wvlwl=1l+n
=(Bl})o,n 4

Also, for 132 we get
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9 +n- ‘I(x*l-fo n) Z: Z: A AW Z: 2 o(v)"'1 =

vi=] lal=1 vl =1

fwi=n lavwi=14+n-1 iwl=n

|vw|'=l+n lvwi=1+n : -
8 T T :

s st lby'Y w—m):n ( }E'T:_])bv.)v' W

ibl=1 Wowl=14+n-1 =11 W

1bv ) =1 v iwl=1+n-1

Since ? Is orthogonal on Y], one gets for any v'eE] -4

?M i l vl =<}",X,lv>=0, so we obtain Ut o ()lq'{o n)=0.
Ibv’l =1 '

iti) For 1=1 the last calculation is different., More precise-

q(x,,;on S ZAavw—Zl A2 ) e

v = la) = vy =1 lwl =n  (vi =1
lwi = Iavwl lwi=n Wvwl =n+1
tvwi =n+1 fvwi =n+1 ;

Since } isorthogonal on ‘fq, z )L =0 and we obtain
vi =

(%o )= D _ (Z 1,)w -}:10(” 1w (1.3)

wl =n wi= Iwl =n
tvwi =

The statement follows noticing that

.JB,‘}'=Z(Z A ,-1)b Z 2 X,)b

ibi=1 saz—ll ibl =1 ivl-—1
S lab ) =1 \vbi=

and

=1 b




hence the first term in the right side of (1.3) is equal to
v

By the previous Lemma, eabh.B1 has two eigenvalues, namely -

=~ <5 - :
(JB'lf)o,n-'l and the second to (Jz)o,n-ﬂ'
~4 and k-2 and similarly C], Denote by P4 and respectively by

5 ; 1 1 :
QM the projections of Moe‘f] onto {?€M0@ﬁ=33='}} and respecti-

1 3 ot Ty : LY J
vely ontto{'iéMo@‘f].C]}— 3}, Then p = Pra and 0y, = 1=0y, (1 1s
the identity operator con M;@Y]) are the projections of Mle‘f] onto

| ' . 1
{'{GM;@Y]:B]}=(I<-2)}} and respectively onto {'{eMoe:f]:C]}=(k-2)}} ‘
Since B

1€1=C¢B;, the projections P,. and Q‘j'commute, bod=t2e

Denote by ‘g‘ the range of P,.Q,., i,j=1,2, Then, for any 122
ij 114 ’

Mob?]=' @ %]

. (]
e j=1,2 /

®

4 4 4 1 1
\ For 1=1, Moe)o,‘=‘é,|@‘£2, where %4={7€M06:f,‘:841=-}§ and
1 1 :
$,= {Ten @Y, :8,]=(k-2)}} .
The six standard recurrence formulas listed below constitute

the basic tools in the proof of the main results ofithe paper,

1

LEMMA 1,2, i) For any vector | JeM

121

2
Xq?m’n=}m+4.n+(k-2)?m’n+15 m=1,n ! m21, n30;

2
}minx1=?mon+4+(k-2)?m,n+P }m’n-’| 4 m7/0: n>/4-

ii) For any ?e‘g:i, 1%2 4 i=‘1,2‘or}€“£2 and m,n30

xm}o,nz?m,n-}m-'l 15

tii) For any'{é‘é}q, 192, 1=1;2 0f '{e‘é: and m,n%0

?m,oxn=7m,n-?m,n-’l '



iv) For any ;e%;i, 122, 1=1,2 and m,n30

xm;o,n=}m,n+(k—2)}m-4,n-(k—q);m-z

v) For any }é%lz, 122, i=1,2 and m,n30

;m,oxnz?m,n+(k‘2)?m,n-ﬂ-(k-q)¥m,n-2'

vi) For any§€f§ and n%0

)%?o,n=?4,n+(k-2);o,n-(k_q)}o,n-4 )

}n ox4=?n 4+(k-2)?n,o"(k'q);n-q.o e
ﬁ?r +(k 2) } —1,0-(k—4)?n-2,o )

?xn=;o,n+(k-2);o,n-1-(k-q)?o,n—Z'

Proof, The proof of i) is routine, these relations being

the analogue of (4.2}, By Lemma 1,1, taking intc account that
1 ’ 1

Bif=-F for g€, s 1%2; 124,2 and C,7=(k-2)] for ‘ge‘éZi, 122

we obtain

] =
2l o s Tein for Je%,, M2, i=1,2 (1.4)

- o 1 s
quo,n-?,"nﬂk 2)"{ s for 2’6‘2“, 122, i=1,2 (1.5)
and the analoguous equality for the action of J)%J.

1 . ©y s
I f ?C%%, then qu+z= 0, hence according to part iti) in

Lemma 1.1 we obtain

. : 1
xﬂ?o,ﬁ =?4,n _?o,n i Teél, a0 (1,6)



L
Take now'{ E ,1 ve‘é Then qu+ —(k ‘1)'{ and by the defi-
vl =1

nitton of B,‘ one obtalns for each veE,1

(k=1) 1 j{:: 1

lal =1
- lavi €1

In particular 1V=)v_4 for any veEk,, hence J§= $ and by Lemma
1.4

quo’n=}4 n+(k-z)}'o'n-(k-4)§o’n_4 for ;etg (4.7

Finally, the statement follows by Induction, combining (1.4)-

(4.7) with the recurrence relations of Xr: s (1.,1) and (1.2),

\ :
COROLLARY 1,3, Let 7 be a-vector In Mlef{’], 1721, Then
: & 1
SP?"{me"n}m,n;o = Span{}m'n}m’n?’-g. Moreover, for '{G_Ué,‘w‘], 1}2 or

'{€"&2 and m,n%»0 one has

7lm?SXn=}m,n'-(‘gm,n—’l"'}m-'l ,n)+-fm-4 P )

R L

: ' s ]
LEHHA Aok lewil, ;' be vectors in M_,131,
i) For}€‘£i)j, %2, Ny d=l,2 or'{e“é:]‘ and m,n,m',n wone has

<?m,n,?m',np=;m,m~" J.n,n ﬂ?(m+n)<? ? >

ii) Forgc‘éqz,m,n,m,'n'zo one has

tm-m‘l

) <3 i

2(m+n) (- 4

<}m n’ }m >= m+n, m‘+n‘{5
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(J}j denotes the Kronecker symbol);

Proof, Since <7m,n’ ?m',n‘> =<hm+n+](xmzxn)»qml+nt+](xh'?x%'y>
it s enough to check the statement when men=mé+n?, Assume that

mé-m=n-nt=r30, Then

<zm,n’?é',n'> =<}m,n’xm*}‘x%;>=<a%|?m,nxno .}'>=

’@](Xg:}m.gzga).}'> ; (1.8)

‘ I .
Note .that xma?m’nxno_q f)lml_;, ?m,n xnl,,zeng)MMo, in parti
culaf ql(xm‘}m,nxn‘—4)=‘ql(xm‘-dzm,n- x )=0. Thus, (4.4) and

(4.2 yield

nt-2

ql(xm‘?m,nxn‘)=ql(Xm‘§m,nxkxﬁ‘-1)’ i n’>4 (1.9)
and
_. ¢
ql(xm'}m,nxn‘)_ql(xm‘-4xﬁ?m,nxn‘)’ for w2l

Combining Lemma 4.2 and (1.9) and taking into account that

ql(xm'im,n+4xn’—4)=ql(xm‘?m,nxn‘-4)=0 Wi B
, _ 2 & '
q](xma}m'nxna)—ﬁ q](xm.}m.n_qxn,_q), iyl

A similar formula is still true on the left side, lterating

the previous formulas we find

' ; |
Ay i3, nEnt) = S )ql(xr%,r):fsz(mm 0y iy Jo, o1



D=
where we have used the fact that q](X}_q}o‘r)=q](X}_z}o'r)=0.

When ry and}C%]”, 132, 1;)=1,2 or'f’C"E:}, Lemma 1.2 yields
(x e L )+€q, (¥ ))=0
9 m'?m,n ald=p N r-4?l,r 9 r-4?o,r

(€=-1 for;ebz,,‘”, 124, 1=1,2 and £=k-2 forJet),, 122, 1=1,2).

When r21 and}éé;, we get by Lemma 1,2

q4(xr?o,r)=q4(xr -1 4?0 r) qﬁ(xr 4?4 r)+(k 2)q4(xr 4?0 r

'(k'q)qq(xr-q?o,r—4)='(k-q)q4(Xr-ﬂfo,r-4)'

Conseguently
Ny K ) =62 (- (ke Ty (1227 (M- L T

and the statement ii) follows by (1,8), V Ea
The following elementary lemma is quite probably folklore

but for the sake of completeness we sketch the proof,

LEMMA 1.5, Let a be a real number with{al 1, Then, for any

integer 1%0 and any complex numbers lo""'ll

4+2|a\+2a i=0 I,J

In particular, the vectorsi}

}m ns0 2'e linearly indepen-
’ 9 :

dent when}ééz,'?#D and N23.

Proof, A direct calculation shows that the operator B] given

by the matrix with entries blj=a"—J‘. 1,020, s0sy) ls Invertible

and
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s;“=(4-a2)"'((4+a2).t-a(N‘+NT)-aZD]), (1.10)
where N‘ is the nilpotent operator with nij=£i,j+1 and D] is the

diagonal operator with d .#0 only when i=j=0,i=j=1 and doo=d”=’l.
The flrst inequality follows readily by (1.,10)., The second inequali-

ty is obtained direct]y by

; ‘
4 TN #1i V
B]-|+i2;l‘a (N +-NTY). %
any
LEMMA 1,6, i) For 121, the projections Pyqand q; commute and

ff] ts the range of P1-19;-.

ii) For any orthogonal vectors}’,}é%qu%qu U "é: P the

122
bdisd 2

projections p and p are orthogonal,

s 1 ¢ 1

iii) When N=k=2, °(]=dim(Moe§f]) is zero for any 132 and one
for 1=1, In the other cases 0(17/1 for any 121 and

N =1) 7 ) T (e s ()4 r2e )

Proof, 1) Since ¥, is included into the range of Dy gl et

Lo
is enough to check that for any }’eMo o, X€1-1 ,m,n30
q, (¥ 3x )€Y, G o

When =0, this follows by q]()(])=ql(7t,lxl_4).‘Argqihg by induc-

tion, let 1<% € 1~fand assume that (1,11) is true«for -1, Let 7 be a
vector in M:. I f fé“.& , then xmgxn is in the range of Py hence
(Xm}xn)e@.] by the previous assumption, lf'{é‘érj,i,j=4,2 , then
)lm'ixn€Span{';r’s} SRt by Lemma 41,2, hence it is enough to check

that q](7r,s)=qlqr+s+ﬁ(?r,s)€9l' Thus r+s+%=1 and according to



D

' ' A R -1
Lemma 1,2, ql(}r,s)“ql(}r,s~12%) with‘?r’5_4€Mo for s31 and

3 1-4
q](}r s) ql( ?r 1, ) with ?r-4,s€Mo for rz1,

Part ii) is an immediate consequence of i) and of Lemma 1.4,

In order to prove iii) remark first that for N=k=2, M;=ﬁa
when 122 (since both have dimension two and since dim V=1, .=
=2-4=1), In this case M4 69§ﬂ1 =%g.

In the other cases, since q!(X X 4) q](Xl . X)) we get

dim &Pl\z Card E, ,-4 and

1=-4

oy=Card Ey=din P 3N (N-1) T2 (k=) 1T ((N-1) (k1) =2) 4131,

Moreover, in this case it is possible to compute pnrecisely %y
By Lemma 1,2 the projectlions p; and q] commute whenever }(:%¥j,
| \
i,j=1,2, r€1-1 and dlm(p?q])n]-r+4 since the vectors{?m’n}m+n=]
are linearly independent ﬂm'}éfgj,i,j=4,2,ra4 by Lemmas 1,4 and

1.5, Thus we obtain
1-4 ] = | 7
® =Card E]-dim(pl_4q1)=N(N-4) (k-1) —(4+§_::(1-r+4)ocr). %

Remark, 1f k)3, then for any 1>,2,i,j='1,2,"&:j#{0}. Indeed,

% % %
assume that XgsYq€G xq#yq, xz,yzer,xz#y2 and 3€G3. Then

(xq-yq)x (x2 yz)E‘éqq,

a(x 2}:: b-x., 22{: )e%%z :
G

b€G ceG

&7 ]
Z:xa’% (xz"/z)‘g(éu'

Let us remark also that in this case‘éz is spanned by the

vectors x =X, where x. and x, are distinct elements of the same

set G*, n=4,...,N,‘é4 is spanned by the vectors E ia-Z b, where
n 2 * *
ae‘Gm bEGn

m#n and dim%:: =N(k-2), dimcg;ﬂu,q ;



If k=2, then for ahy 121, B‘=C]=0. Consequently M339H=

] : A o
-‘222 for 172 and M_ 6504—‘62.

. LEMMA.1,7. If N>k23, then for any vectors 7€%:4, 1214 and

]
jled),, 1132, withlTl,= K3, =1, the operator

) : /
To:Span{Xmixn}m,nzﬁm,Span{xmixn}m,nao

defined by

' 2
To(?m.n)=?;,n+(k-4)(Yé,n-4+?;-4,n)+(k-q) ?;-4,n-4’ el

U
that for any m,n20, T(mexn)=xm}%%. In particular the cyclic projec-

/
tions p and %4 have the same central support In v,

Proof., According to Corollary 1,3 and to Lemma 1ol {}m n}m n 0
’ A

—
is an orthonormal baiss in uf}] . Thus T_ Is a well-defined opera-

tor and by Corollary 1.3 we get

To(xmixn)=To(7m,n-}m-4,n)-To(?m,n-ﬂ-?m—ﬂ,n-4)‘

Let us remark that by Lemma 1.2 and by the definition of T

To(;m,n-?m-d,n)=§;,n+(k-2)?&-4,n'(knq)?é—z,n -3
+(k'4)(7$,n-4+(k‘2)?&-4,n-4'(k‘4)?é-z,n-4)=

=xm(§g,n+(k—4)§;,n-4)

and
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T e e =Y n et s 1)} ) for m,ny0,
Hence, for any m,n»0 we get
e ’ i - '
Tomlie =t (10 %l 2)§3 . ( 4)} gl X
Let us define the operators

—nn, | -
SL’s ] SL(}m,n)=?m—1,n’SR(?m,n)r';m,n-l

U:af.?'"l——-ivf}' 3 ; U(}"m n)=}r; n » for m,n»0,

By Lemma 1,4 U 1s a unitary and llSLllallSRl|=(§'4. Since
= . i ) i e T
T=U(t+ (k=1)S ) (1+(k-1)s.) and H(k 1)5 H=U(k=1)s_ li= gl | £,

it follows that T is bounded and invertible . Clearly TeA’, hence

the polar decomposition of T yields a partial Isometry ve ¢! with

v*v=p} ’ vv’(=p;' Bgs [ particular Z(p}_)"Z(D},)- ,/é;

Remark, If S is the unilateral shift on IZ(N), then 1+5* s

one-to-one, When N=k)»3, the operators l+(k-'|)SL and I+£k-4)SR are
i

‘unitary equivalent with (I+S*)®I, hence T€uvf is this time one-to-

one and with dense range; therefore Z(p} )=Z(pya)in this case also,

LEMMA 1,8, If N>,k>,3, then for any vectors }’é‘ﬁ 124 and

14
?6%42' 1852 with H?l\z“}il =1, the operator

L q-n-, ‘
To'Span{xm}Xn}m.nzO Span{?m‘? xn}m,nzo
defined by To(§m I_‘)aa'{n‘“ﬂ<f‘(k--4)'}'f"‘1 n=q0 Myn20,
’ ]

' il N UL
extends to a bounded operator T: v —> AF' such that for any
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m,ny0, T(¥ 3% )= Y§ . Moreover, T is invertible for N>k and is

one-to-one with dense range for N=k. In particular z(p})=z(%,).

Proof, The proof Is analogue to that of Lemma 1.7. In this
case T=U(I+(k-’1)SL). %

Clearly, by the some way we get that z(p?)=z(p7') for any

1 1 l '

J€%rqs 121 and ey, 1932, with},} #0. |

A similar argument shows that for any}é%éz, 122 and }%ﬁg,
},}'#0, the projections g; and %, are Murray-von Neumann equivalent
h1v€: However, in this case the computation is a bit more complica-

ted,

LEMMA 4,9, If NYk»2 and N>3, then for any vectors}%%; and

N

Vel o 150 W= 3N = 1, the operator
} 22 z z
. JE 3 4
To'Spénxxmixnkm,nBO Spa“{yﬁi xn}m,nzﬂ

defitned by

To(gm,n)=}$,n+(k;q)?$_q.n_qv m,n%0

e T

extends to a bounded invertible Operator Ts A} — A} Tsuch

that for any m,n%0, T(X 3% )= X'§¥ In particular z(p})=z(p},).

Proof, By Lemma 1,5 the vectors {}m n} are linearly in-

m, n>0
i
dependent in vff and the operator R: ¢%} uf}' <l R('{m n)— }m &
m,n»0 Is bounded and invertible, Denote” }E:( 1) (k- 4)J'?m -j,n=j
.
J20

(the sum is finite since }r S=0 for r<0 or s<0).for m,n»0 and
?

ﬂm’n=0 for m¢c0 or n<0, By the very definitlon of T it ls:-clear

that
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Tocﬂm’n)=}$’n for any m,n30 . o (4.42)

Moreover, for any m,n30 we get

}m,oxn=vm,n+(k-2y7m,n-q'(k'q)qm’n-z . . . 45.43)

{ndeed i 7 and for n=1 we obtain

$or A B s S )%, 0~ ln +(k-2)"lm'0. (4.14)

Note also that for any m,n>0
= j 4 j n n
\lylm,nx":(j:ZO(—])J(k_?)-’?m-j',n-_i’+(-1) (k"‘) ?m_n’d)x,‘=
T (ke 2
s?;%(-q) (k-1) (?m-j,n-j+4+(k-2)?m-j,n-j+P ?m-j,n-j—‘l)+

(=" (k=) (4= (k=1 +(k=2)}

m=-n=4,0 m=n o

='7m’n+1+(k-Z)'?m’n+132'7m.n-1 y | ) (1°15)
Thus (1.4), (1.14) and (1,45) yield

?m,ox2=(qm,4+(k—2)7m,o)x4-(k-z)(Vm,4+(k-2)nm,o)-

-N(k-ﬂ)?m’oéﬂmi2+(k-2Y76,4+ﬁ%7m'0+(k—Z)Ym’4+

#em2) - (k2D g Ce2) Ty N R o

="Zm'2+(k-2)’lm.,l-(k—'i )"lm'o.

Now (4.13) follows by induction on n as before combining

(1,2), (4.,15) and part i) of Lemma 1,2,
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In virtue of (1,12), (1,43) and Lemma 1.2 one has

=3 _. I g A ' -1/
o(‘;m,o'xn)—}m,nq'(k 2)}m,n-4 (k “?m,n-Z—{m,oXn’ m,n20, hence

for any m,n%»0 we obtain

%)=

m=2,06

Togmeyn)zTo(?m,o’é b2 (?m 1,0 ¥ =t b g
=(7r:1,o+(k-2)§r:|-'l ,;)-(k—ql')-{r;u-z,o)=xm‘{'%n'.

--u iy

: : o
Finally, we remark that denoting D=S, Sp: off ‘s vt} Tone

obtains D('{:‘ n)=}:n-4 noqMsn%0 and T=(l¢£—}—’”1 +(k=1)D)R, Since R
] ’
1

I's invertible and by Lemma 1.4 I(k-4)pl= X1 i =1 <1, it follows
2
P

\
that T is bounded and invertible,

Remark, For any 1 l'/l, i,j=1,2 and}’é"él,,}e‘é‘ or
}€‘ﬁ]’ 7l€°é }’f £0 it is clear that z(p )=2z(p ,) since ;(*fx

)
‘and )(m}xr" ‘satlsfy the same+recurrence relations.

PROPOSITION 1,10, The radial algebra A 1s a Cartan M.A,.S,A,

in M=£(22*ZZ) o

Proof, Denotg by X, and Xy the generators of szlz and set

x=x1-xzei(22k22). Then X,l‘x=-x)54. In this case the spectrum of /“t’,‘
dt

is [-2,2] and the Plancherel measure is dM(t)= « Thus
| S

oc(‘)d,l)=-7£4 extends to an automorphism & of A and for any a€A,

®

ax=xx(a). Note also that x x=x?‘=2-)l2 and it Is easily see that

2- X, is one-to-one, hence s(2-X,)=1, Now, the polar decomposition

x=vix| yields a unitary veZ(Zzﬂsz). Since s(ixl)=1, it follows

that av=va(a) for all aeA, hence v normalise A and M={x,)£4} "=NM(A)"_.E
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THEOREM 1,11, Suppose that G=G4*..;*GN Is the free product
of N groups eaéﬁ having order k¢N, Then:

1) For N=k=2 the radial von Neumann subalgebra A is a Cartan
McALSWA, in X(Z,xZ). In particular of=(AVJAJ)" Is a M.A,S.A.

1) In all the other cases v is of the homogeneous type I

on (f—pq)lz(G). In particular A is a singular M,A,.S.A.

£
-

Proof. It has been proved in U?ﬂ that A is a M.A,S:A. in
Le) 1£f Nyk,

When N=k=2, A is a Cartan subalgebra in%(lzxzz) by Proposi-
tion 1,10, In thils case 22122 is amenab]e,.hence %(22*22) is isomor-
phtc to theill,l hyperfinite factor R by Connes theorem or writting
the dihedral group as a semi-direct product Zék2§=2x22 and construc-
ting directly matrix units in X(ZZ£22). By ['2) it follows that - -

V= (AVJAJ)" is maximal abelian, The last assertion follows also by
Lemma 1.6 since in this case %:j=%q={0},122, 1,j=1,2 and %; is span-
ned by the vector J=x,-x, (x, and X, are the generatqrs‘of Z,x2,) .,

In the other cases (G nonamenable), take for any 121 -an ortho-
normal basis {?l}4éf€ql in Mkagﬂ such that ?16%£()%; for 4$r$d4 and

}:€ ) ‘ﬁ:j for 122, 4<réw‘ . One can actually deduce by Lemmas
: i1,j=1,2 :

1.4 and 1,6 that the projecf!ons {p } are mutual orthogonal

}] 4Si€°(]
] r
and Zp

. 1€1
t-p, + Since p4€uf(see e;9.0%), Lemmas 1,7, 1.8
;
and 1.9 yield for any 11, i=4,...,«l that z(p ])=|-p4. %

COROLLARY 4.12. Each vector}é“é:‘luf‘z;u U %:i, F#0 has the
{ Jed,2 1
122

central support Z(p7)=l-p1 in o,
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2, MORE ABOUT THE STRUCTURE OF THE ALGEBRA L

In this section we use the recurrence formulas in order to
glve an explicit description for the spatial structure of the al--
1
gebra vf=(AVJAJ)'" on each cyclic projection pz. For }e‘quﬁé?L’k) cé "
s A - (m+n) : *2 |
7#0,m,n%0 denote ?m,n—“§m,n ?m i ﬁ gm,n‘ Denote also by
e } _. the canonical orthonormal basis in lz(N) and by S the unila-
n*nz20 4
teral shift on lz(ﬂ), Se_=e_.4» n%0. The projection onto Qe  is P =
< x® ; s ) . <
57, ] By Lemma 1,4 ?m n}m ny 0 is an orthonormal basis in
==t My,
a{}' "Span{X ?7(} whenever ;e“é v L_) ‘é] ';750 and U
i,j=1,2
122

m, nz

— I
aé} s (N)xl (N), U (}m : e&&en is an unitary operator, According

to Lemma 1.2, we obtaln for each 122, i=1,2

\
U}x,lpzu;‘=((k—z)i+p(s+s*))®| for 7e%,, (2.1)
Upd%d pyUF=1@((k=2)) 1+ p(s+5%)) for Je4 1, (22
u;y,‘%u?:((k-z)x-(k—1)Po+{s(s+s*))®r for 3e%, (2.3)
' 1
U.;JX,‘Jp_fU_?ﬂ@((k-Z)I-(k—’I)PO+{5(S+S*)) for 7€%., (2,4)

The formulas (2.3) and (2.4) are still valid also for ?GLé:.

It remainds to find explicit formulas for 2Hp? and J)%Jp} in the

case'ﬂ?é;. Let us recall that acccrding to Lemma 1.4 one has

-m? : -
L b ‘ , where a==(N-1) j

<-§;,n’ 3 ;‘ ,n'>=orm+n,m'+n‘

In order to orthonormalise the Qectors{};’n}m n0° denote as in
Lemma 1.5 B]=[a'i-jq0$i’j$]. It is well-known that the positive de-
finite matrix By has the Choletsky factorization B]=CTC], where C,
is the triangular matrix with entries cql=aj, cij=v;j;7:aiii,
1€1¢j¢1« Moreover, C, is invertiﬂle-and't;4=D], with the only non-

zero entries d_ =1, djj=(1- al 2y>1/2 =-a§4-a2)-4/2 1<j<1,

(o]0} J ’

d. .
: J_‘I’J




oL

It follows that the vectors{"zm.n}m'm’o given by
- 30 .
ﬂzo,n—}o,n ' (2'_5)

2,-1/2 ?
AZm,n::(q—a ) v (?:1 n_a7;-4,n+fl)' my1, nz0 50
]
' n

define an orthonormal basls in Jfl * . . Moreover
;o =a"y_ +(4-a2)4/%%igaj7 (2.7)
m,n ’10,m+n =0 m=j,n+j* %

Rewritting the first two relations in Lemma 1.2 vi) as

: k=1
X’l}g,n=ﬁ}’?,n+(k-z)?g,n"“m_{g,n-ﬂ (2.8)
73;o“1=f"?g,ﬁ+(k'2)7§,d“ H_{:-d,o (2.9)

X

and taking into account (2,5)-(2,7), one may readlly verify the

following four relations

"1,“."754=)e!,.7m,n+,]+(k—z)"{m’n+,l,'7m’n_‘1 for m,nz0 (2,40)
and -

X’l?o,nz:ﬁly'l ,n+(k-2)f7o,n-v-k—'ﬁ;—;'r(N—1-“N :N—z)nzdv,n-

k=~1
!rm(ﬂzo,nHy?o,n-"l) (2,11)
T I (R L AT ! L= R T b

(2,12)

9/4‘Zm’_n=ﬁf7m+,|’n+(k-2)7m,n+,€“/m_,l'n for m22, nz0. (2,13)

il I
Thus, denoting U.;:th’ i—-’712(N)xlz(N)‘,U.’,("?m’n)=<«zm®en, we obtain

for any }'e"éq, 7 #0

Upd Y dp, UF=1®((k=2) 1+ p(5+5%)) (2.14)
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] 'x,‘p ((k- 2)r+{s(s+s V—_(N 4-VN(N )(P S®S P ))@l

3
-qTﬁ-z—-;- Po®(s+5 1 5

The recurrence relation of )("’s describe the action of the

—l T ————--—~tl fy ;
operators )/,l and J)(,'J on 1 % -Span{l’} N30 " More precisely,

denoting by U, the unitary Uy v('l el

2 2(n=1)
wherel\ynllz—N(k-’l )[3

s, D21 one obtains

*_ R g x
U,,Jx,‘.lp.,,u,l-u,ly,lp,]ur(k 2) (1=P_)+p(s+S™)+

=1 (VN-YN=1)(p _s™+sp ) (2.15)

Putting all these facts together and according to Lemma 1.7-
1.9 one obtains
X

THEOREM 2,4, Let G=G4t...£G each Gi having order k€N, k22,

N’
N23. Then

1) There exists an unitary

2(6)=12 @)@ (12 )12 (0) )12 (M) such that

ux,‘u*=s,,@((s +5,)@1) , with
S4=(k=2) (1=P )+ p(s+5™) +Vk=A (VN-YN-1) (P_s*+sP ) 3
S,=(k-2) 1+p(s+s*) | )

s3=(g-2):-(k-4 ‘-Po+{3(s+s*)

~11) For each }€‘£:}U‘é"u J %],} #0, the von Neumann al-
i51=1,2

' 122

gebras afp} and AQA are isomorphic. In particular vf is isomorphic

to A@ (A®A) ,
it1) For each}e"é:: U IL'J’I Z%h,}’#ﬁ,vf.‘p} and A@A are spatial
s J=, 5

122

: v ;
Isomorphic (A acts on LZ(A,Z), 7 identifled with 1®1, 1€l (A,2)).
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Let us consider now the case GéFN and let us recall some

facts from [44], reformulated in the following lemmas (in this case

e O gt

]

LEMMA T, 1) For Jem! 122, one has
X, }o o o |
1 m,n=v2N~](;m+4,n+}m—4,n) for m21, n20 (2.46)
) e o
?m'nxh-VZN 4(?m,n+4+?m,n-4) for m20, nzl, (2.47)

ii) For Mgaf], 122, the previous two relations are still
true for all m,n%0,

N 1 SO ;

tii) For 7€MJ3$4 such that JJ=€%, €€{-1,1} (since MJB%% is
%ot 1
=1, Moef,f‘f,]@‘f_,‘, where

ol o
Be={3en 0¥, 103=7 } one has

J—]nvarfant and J

o VIN-13° (3 o i ,
quo’n= 2N—4?o,n+4 ¥ iﬂﬂfﬂ'?o,n-4 (2,18)

o ks ~ =20 _ g o
}n’ox4—VZN 4}n+4,o ok }wd,o for m,n%0. (2.49)
LEMMA 11 i) For ;en(‘)@ﬂ’, 1%2, m,m’,n,n0 one has

<;;,n’7;',n;>=5;,m"6;,n’ ,

it) For }6%%, s€{-1,1}, m,m’,n,n?30 one has

Clo i el (- €(2N-1)) " Im-m¥

mtn,mt+n?

Therefore, for each }eMl@&ﬁ, 172 we get

R_ s *
Uz X, P; Us ={V2N-1 (5+57)®!I

* R
U ={ZN-1,I1®(s+s™),
;JX,|Jp} U = yZh ®@(s+s™)
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where Uz is defined as in the case G= G1x...xGN.
For ;e%’ ‘we repeate the calculation of (2,10)-(2, 43) but
with (2.148) and (2.19) in place of (2,8) and (2,9). Noticing that

-1/2

(2,5)=-(2,7) are still true with a=- (2N-1) we find in this

U JX,lJsz.i—\/ZN 1, 1®(5+5™) °

(VZNTA (s+s*)- ZN=1- z\lN(N -4

z;1!,|pu )(P s*e5p J))et-

€
= e ®(s*s )
VZN-1

The recurrence relations ofyhfs 2]

2
X4=X2+ZNXO
N\ - = \ -
thn~XnXﬁ~xn+4+(2N 4)Xn_4, n22

yield in this case

U %ypyU 4 =U,J%,p,U; 2 _VZIN-1 (5+5%)+ (Y2N-V2N-1 P s 2esp o (2,20)

8 Wy n-1

where Uyt B1" 512 (M), U(X)=I¥ N, .e,, n20 and W i 5=2n(2n-1)""",

nyl. Thus we obtain the following statement

THEOREM 2,2, Let G=FN be the free group on N2 generators,

Then

i) There exists an unitary

2()=12Me012M@12 (M) such that
U %, U*=s ®(VZN-1 (s+s*)®1), where
“VZIN=T (S+5*) + (V2N -,Vzn-q)_(posﬁsz’é).




e

‘t1) For each }e‘éqU‘f,_,‘U ]%’z(Mleff]), 3#0, the von Neumann al-
gebras afp_{ and AQA are isomorphic. In particular £ is isomorphic

to A. @ (AgA).

iii) For each ?E]EJZ(MCL@EP]), }#0,..16(0} and A@A are spatial iso-
7
morphic (A acts on LZ(A,Z),'{ identified with 1®1, ’|€L2(A,B)).

Denote the vector state associate to each 'felz(G),“'fl\ =1 by

w

3

babtlity measure on R with compact support. Finally, we shall compu-
{ 1 1 o

te d/llz for ‘{,lU"éZU U .. when G-G,'x...*GN gnd for

i,d=1,2 H
122

. Then the 'functiona’l/LE:E[Xj—#@,ﬂf(xn)=w§.()6:) =<X2 3 132 ts 2 pros

|
1

}'G%,‘U‘Z_,]U U (Ml@ﬁ) when G=F . For =1 these are the Plancherel mea-

122
sures computed in [4] for the first case and in (11,031 ,0(41] for

the second:
\

N Vi (N1) (k1) - (t42-K) 2

dfty (£) = e T dt for X,€X(6, %, .26, ) N3k

NVk (2N-1) - £2

T(@NEL?)

dpy ()= dt © for XEl@,).

In fact, according to (2.15) and (2,20), the Plancherel measure Is
the measure /4§:(E[X}—9¢, /4§(Xn)=Tr(§nPo) associated to some finite-
dimensional perturbation S of s+s*, our aporoach here in the case

G=G,%...%xC, is to apply Theorem 3 in (4] in order to find explici-

N
tely the probability measure ME associated to the one-dimensional
self-adjoint pérturbation '§=a(l-Po)+dPo‘+p(S+S*) of a|+pIS+S*),a,

-&,ﬁeR.

LEMMA 2,3, The continuous part of d/t§ is

o mz-(t-a)z

dig(t)=
/3 T((a-x) (t-a) + (a-e) 2+ p7)

dt
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The discrete part of QNg is.

b2

d/‘v%(t)=2(l-

(Here>a+=(a+|al)/2 and &(x) denotes the Dirac measure of mass one

concentrated in x),
Proof. Consider the sequence of polynomials defined by
P 8y a2
po(t)=1, p,l(t)=t—°(, pn+4(t)=(t-a)pn(t)-p pn_,l(t) for nyi,

" ~ ~ 2 2
Clearly po(g)eo=e°, pq(S)ep=be4,pz(S)eo=b(S-a)e4-b e ,=b"e,. By
induction we find pn(g)e0=bnen for ny»1, hence

%

’ m+
Fzlp p,)=p "Im'n for all m,n70 . A (224}

Thus Theorem 3 in [4] applies and the statement follows.

According to Theorems2,1, 2,2 and to Lemma 2.3 we obtain

COROLLARY 2.4, Let G=F . Then for each §€¢%,U¢_,UU (n@¥)
N » 1 -1 17 2 (o} ek

$#0 one has

Vi (2n-1) - &

d/%(t)= TIZN-1)

COROLLARY 2,5, Let G=G,%...%Gy, each G, ‘having order k¢N,

Then

‘ 7
1) dp(e)= \mizm,f‘)"({z,;)(”z'k) dt for Jedy U L{
22

2
1) oo LD Gkl o rorget] U L)



o
and the similar results for JX,J.
~ Note that in order to compute d/%.in Corollary 2,4 and in

part 1), Corollary 2.5, we need only d/%+s£ and one can readily

2

obtain %#S+Sx(t)= % h-t by a direct calculation of the moments,

by Lemma 2,3 or using the principal functionsof S, as In [181 .
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