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ON SUB-RESOLVENTS AND SUB-MULTIPLICATIVE
FUNCTIONALS OF A MARKOY PROCESS

by Emil Popescu

The aim of this paper is to present properties of
the sub-resolvents and the sub-multiplicative functionals,
starting from known results for resolvents and multiplicative
functionals. ’

In section 1 are given some properties of the sub-

resolvents of kernels on a measurable space. In section 2

1s presented a result referring to the sub-resolvents exactly
subordinated to a resolvent. This result is analogous with
that one known fof subordinate reSOIVents. In the last section
are transposed a series of results from [1] » referring to

the multiplicative functionals of a Markov process, to the

sub-multiplicative functionals of the process.




1. Sub-resolvents

Throughout this section (E, € ) will be a measurable
space.

~Definition L.l

A family CU'-“‘{Vd: A >O}of kernels on (E, €) is called
sub-resolvent (of kernels) if : :

i) VA< Vi< VA #(pp -=) V*VF for any«,3 >0 end
< f. :

ii) v¥vP= Vﬁvdfor any a(,[b >9.

The subsresolvent %V“ : X D> O}is called sub-Markov
(resp.Markov) if for any « > 0O we have

LTS T deeps L =)
In the sequel we shall consider only sub-Markov sub-resolvents

without to specify this thing. Then
e ok 1
vV (x, E) < ';2

for any x; hence V¥ is a bounded kernel on (E, ). From i)
it follows that

o ——— Vd(x,.)
is decreasing and continuous on (0,° ). Consequently we can
define the initial kernel of the sub-resolvent ?fl

V(x,.) = sup Vd(x,.) = lim V“(x,.)

e e o0
For any %« >0 we have
| W sy

and

VL V¥4 vy

If A> O and we define

gl
for « > 0, then {Ud 1 o{> O}is a sub-resolvent with the initial

kernel

[eoe




i ke
U = sup U%=vP
A
U is a bounded kernel.
s i {V"( ool s O}is' a sub-resolvent on (E, £ ), then
it is also a sub-resolvent on (E, Ex) because
X —»U o {x; A)

is ‘E,x -~ measurable whenever A € "é,x.

From now on, if f is a numerical nonnegative € =

measurable function on E we shall write f¢€ E+. Moreover, if f

is bounded we shall write fc b<§+

Definition 1l.2.

Let fecé; and o > 0. £ is called « -supermedian with
respect to the sub-resolvent iV"( s> O}(briefly of - V super-
median) if

ot ile o 2
for any f3> > O.‘

f is called « -excessive with respect to the sub-
resolvent {V"( : > O}(brieflyo( - V excessive) if f is -V
supermedian and

1im p VP =
e o o :
| We denote by So,v, (respe Z,U.) the set of the
o =V supermedian (resp. & -V excessive) functions.
The next proposition gives some properties of super-

median end excessive functions with respect to a sub-resolvent.

Proposition 1.1,

let U = {V.’":ooo}a sub-resolvent of kernels on
(E, ¢ ). The following assertions hold:

i) 3’{0— and cg,u,are convex cones; moreover if f, g

)
€ ¥ then £ A g = min (£,8) € 3",\),

i) It (f )18 en increasing sequence in 5’ (respe.

o




el =
o ? <
E'u‘) then £ = lim £ is in Jy (resp. E.u— )e
: ek 87"‘ : °‘+f-’ S
iii) If £ € Jyy, then the function fsv——-iﬁv £ ig
1ncreas1ng. :
lyy 12 féjaeu-then vir e ‘Ev—
v) Let £ ff . Then f = lim r;V ‘g{ is the largest

fs-v()o

o - V excessive function dominated by f and V(’J f= Vf= f for
any p> 0. '
Proof., i) and ii) are immediate from definition.

jii) Let f be x - V supermedian bounded function

and [b > n. Then

@VQH.P" 0(+r\_\ ({)V =41 +f>(f\ ﬁ) =(+/5 VH-Y)_ rtvo{-l»r\:

oL+ o+
=(p v (1 - p VP
From this inequality we observe that (%»[w e f is increasing.
Let fc yfu— and £ = £ An. Then f T £ and t i o =V super=

median bounded. Therefore for any n, if (5>n then

p+e N+l
b e n v L

and letting n-— oo we obtain ii).

iv) It is enough to show for f bounded. We have

pv Pt vte = vX (pv*Pe) Ve for any > 0. On the
other hand :
vie < VP e pvt v s
It follows that
e bjfgﬁv
v) From iii) we deduce that if f is « -V super-
median then there exists
f(x) 11m YSV fsf(x)
of course, f € ‘a— f £ andfis « -V supermedisn.
Let g € ‘Z,vand g < f. Then (sv e <g>v°“"” £
and letting P—-oo we find that g < < ¥. Thus, to complete
Al




e
the proof, we must show that f is o -V excessive. Suppose

first that £ is bounded. Then we have:

vEF = vPain o v £) = Lin n VP Ve > 1in .
\L—bno . 4= 0O
L n o(+q-p
Mgy = yPe - |
since £ < £ it follows VPf = VP £ for any (3 > 0. Consequently
%Vﬁpf =(&V°‘+Pf 1% as P#oo and so T is % -V excessive. If f

is unbounded, let f, = £~ n. Then {¥V°(+_an is increasing in

both (%and n. Therefore f = 1lim V‘“r’ fow Adm s “dm ‘w“*f’fn:

f,-s-w
n-oo "s-»co

A 2
= 1lim fn . But the 1limit of en increasing sequence of « -V
N 0>
excessive functions is « -V excessive.

Definition 1.%., A family W= SLW“: > O}of kernels

on (E, €) is called super-resolvent if
A i) wi>wh +(p = )W * wPfor all;z,(g> 0 and
1ii) w¥wl = whw for all «yp > 0.
- The super-resolvent }W“}is called sub-Markov if

Sty e

»

for any « > O.

From definition it follows that for any fég+ we
have

d<p = wirmul e,

and therefore the map W from Zs into t-& defined by

Wf : = sup W £ :
is & kernel on (E, ‘@) which is called the initial kernel of
the super-resolvent {W* E For any d >0 we have

Wi = W and W WY+ W™

We can define the o« -W supermedian and « -W excessive_

functions of a super-resolvent similar to definition l.2.

Proposition 1l.2. Let iUd :«>0 § be a resolvent and

~ of
{Vd :o(>03$a sub-resolvent on bz+ such that V£ < U T for

ol
LA N N e b<é+ and U.(V’%= V(’U for all o« ,p>0. Then

(vPr -




C .
: G :
there exists %W P> 03 super-resolvent on b+ such that

X f = vYf + Ww¥f

 for all £ >0 and f&€ bé-l-.

Proof. Let W£ : = Uo(f - v*f, Then forlany o(,{’g |
> 0, o(<f: and fEba we have £
w¥emwbe + p-oru¥wl £,
Indeed, :
ute - vie > ule -vhe+ (p-)@WY- v )ulr - vPe)
since - :

YPE -y - (po)VEUPE 4 (p-o()(v“uf*f + UXVRE)> 0

vEE - vXE 4 (poa)WIUP £ VAL - VUL 4(p-x WL > O

. and U% Vit > v ke, of course, the relation vyl yPu®

implies WXwh = Wl

Definition 1.4. A sub-semigroup (super-semigroup)

on (E, %) is a family P = {Pt : t»0} of kernels on (E, §)
such that '

1) Pisg
1i) B, = PPy
iii) For any function f EZ+, the map

< (>) PtPS, for any t, 8= O

(t, x) — P.f(x)

is measursble on the me asurable product space R, x E.
The sub-semigroup (super-semigroup)P is called

Markov (resp.sub-Markov) if Ptl =1 (resp.»Ptl < 1) for eny
t;a.O.IIn the sequel, we shall consider only sub-Markov sub-
semigroups (super-éemigroups) without to specify this thing,
It is nﬁt assumed in definition that P, = I; of course, if
P is sub-semigroup, then Pg =P

Proposition 1.3, Let P =$_Pt ot O}be a sub~-

semigroup (super-semigroup) on (E, ¢ ) and for any <>0 let

v be the kernel on (E,E ) defined by
: /o e e




: L
°‘f(x> 2 S =" P, f(x)dt, f e,

Then the family V= iV o > 073’18 a sub-resolvent (resp;

super-resolvent) on (B, §) which will be called the sub-resol-

vent (super-resolvent) associated with the sub-semigroup (super-

semigroup) P.

The proof is immediate.

Remark. We can define, similar to the case of ae‘mim‘
groups, the « = supermedlan and & =~ excessive functlons with
respect to the sub—semlgroup P. We denote by E the set of
- excesmve functions with respect to the sub-—semlgroup P.
Then Z o 51,3 Indeed, let f € ? . Since e~ tf < f for
any t.= 0 we get =

@v‘”f’ £ = 3 Y,e"(‘"*(*)tpt £ dat < f.

% : ()
On the other hend,

oo 9o .
r»v“‘*f’ f = S fse”.(“f’)tptf at = S i T B, £au
: J 3

increases to f as r:-—oo .
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2. Sub-resolvents Exactly Subordinate to a Resolvent.

Let (E, €) be a measurable space. We denote by B =
= b & the Banach space of all Eounded ¢ -measurable functions
under the supremum norm. Let U= }_U"( gl O O} be a sub-Markov
resolvent on B. Of course, a sub-resolvent VonBisa family
of positive linear operators on B which veArifies the relations
i) and ii) from the definition l.l. for any fe B,.

Definition By A sub=resolvent 'U’=§_v°‘ s A > O}on

B is called sub-resolvent subordinate toiudf if
¥ o U F
for anyX>0 and f € B,
| Prop081t10n 2.1, Let N = S,'V 1l > O} a sub-resolvent

on B subordinate to §U~}. If f e B, and o >0, then U f -
- v¥f is« -U .supermedian.

Proofs For £ € B, (U¥f - ¥¥f)e B, for any «>0.

ue - yle - putt @ - vY) = v ~ v < pultiut e o

of
UV U i sy T hgs0
for any « , (’> >0,
Definition 2.2. A sub-resolvent ‘\r= i V“ : o(>0}is

called exactly subordinate to the resolvent %U«}if it is

et L S
subordinate to {U""f and, in addition, U“f -V T is«-U ex-
cessive for all f€B_ and <> 0.

Theorem 2.1l. Let X‘Vdi be a sub-resolvent on B sub-

ordinate to §U% }. Then
w¥£(x) = lim \’:UP’ v ¥ £(x)
fpoo
exists for all f€B,, *>0, x € E and the family Swhx>0%
is a sub-resolvent exactly subordinate to %U %a Moreover, for
each >0 and X€E we have on B_:
: o
Kl 2 W (200
We denote Dby Ev the set of the points y€E for which

exists V' > O such that
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vWy) + (F-o) VIV Uy) = VL)
fof any o > Os |
. Let x € E; be such that exists ¥> 0 with the property

pUP VT 1(x) — vV 1)
as p-—»oo « Then ,

V.°((x,.) = W“(x,.)
for any « > 0. In particular equality holds at” any x € EV for
which :

PV P1(x) —1

-as fa—-—w.

Proof. We shall adapt the proof of the theorem (4.9)

from [ 1] , Chap.III, to the case of sub-resolvents. If f e B,

from the resolvent equatien of iU“ E we have

ute -pubvir= e +f>u‘”°‘u°‘f —{suf’*"’

vt -

p+ol

- po Ut Uty =p Pt - v e) + o0 )

since “UP”\<% . Since Udf - Vdf is « =Usupermedian (prop.

2.1.), it follows that exists lim (’~’UC> qu and Uqf e W°( f is

{;->oo
the « -U excessive regularization of Uc(f - Vq’f . Therefore
W¥e = 1in puf v
(s-’co

exists for ell f € B_. We observe that wXr< U™t for any

f € B,, since

N

WY f<lin o UPUTE <lim(f+ Ut ute = u¥s

r,-u-w p-soo Y

On the other hend, for any f € B,,
% . A
W“f =30 0 U“V“f) lim Y\U“quf}llm xlv *‘*v"‘ 2
- 00 : - Q0 i

R oo
S Mo (V- Me)=v"2
oo
Now, we have:
v¥e - vPec(p-svPute <(p-e vEWT S

for any f € B_.
» Operating on this relation by r{Un and letting n-»o°

we obtain

Lsise
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vt -whe <(p-wbuw*e, reB,.
Since SkU"(}is resolvent and US £ - W f is the« -U excessive
regularization of s £ - V°(f, fe B, it follows that

ot wle -wtey =ubw¥e -WSe)
for any p > 0 and hence that

ubvie = utuxs
Furthermore for f € B we have

o=uPw -vr>vPEw =¥z > 0.
It follows that

by e gh v £a

Let us show that

wiwhre = wbw¥e,

‘for\ all f€B,_ and « \s>o. Indeed,

WP = lin n Ut v<uP £ = lin n U VFf*llmr\UnVFV 2

nere ‘l‘-’oo

= %in;qurlv/"‘w £ =P £,

Therefore {w 1s a sub-resolvent Since U Rpl oyX g
is ®-U excessive for any £ € B,, it follows that {W™ Yis
exectly subordinate to S\Uq}.

Let us show the second part of the theorem. We show
glready that V Bl )l W™ (x,.) for any x and « > O. Let
X & EV be such that . A

pulfu’ i) —v¥ 1)
as f,-»-oo , for some fixed ¥ >0. From deflnltlonthﬁVYl-—%’

w¥l es [%--oo. It follows that Vr(x,.) = YU(x,.)_. There-
fore,

puby¥e(x) —w e = vVr00),
for an'y feB,. Let x>0 be and

vH1 - vl < (F-x) VIVE L
Operatlng on this by (au\s and 1ett1ng f:—-»oo we ot

w1 et = ) W R

/




In the poa%ni x we have
w¥1(x) = v¥(x),
W) < WTL(x) + - WEY¥icx) = v¥U(x) +
+ (F=ol) TV R = vFAU(2)
since XGEV Therefore, »
v (x,.) = ¥¢x,.) s

on B

iy for Bny >0,

In partiéular, if{ﬁvﬁl(x)-——»l as _fa-'-oo s then
suP i) -pvh i) —o.
Let>0 be. Of course &« V¥1 <1. We have:
(pub-pvPvtico <L (puf - pvf) 1(x) —> 0
as (w-»oo + But, from Prop. l.l., iv) it follows that V 1e“é o
Hence
[w‘“ Pidlle) v
as.‘s—»oo . Therefore, it follows as above
e s WS

and the proof of theorem is complete.
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By Sub-—muliiplicative Functionals of a Markov Process

Let X = (n,}lg,.}{,t, Xt’ et, P*) be a Markov process

with state space (E, é¢) in the meaning of [1] .

Definition 3.1. A family M =§M,: O<t < o Yof
real-valued random variables on (S, ) is called a sub-
multiplicative functional of X provided:

i) Mt (= ‘,Tt for any t > O.
L) Mt+8
iii),o<mt(w) £ 1 Por all & and e

< My .(Mo0 8) = Mg (My08,) a.s. for any t, 8 >0

M is called right continuous (or continuous) if
t —»Mt(w) is right continuous (or continuous) almost surely.

We observe that for all t and s, My = M, a.s. The relation-

; P Ll
sh;&p M, < Mo.(MOo 90) =M, <M, a.s., hence M, = M_ a.s.

+8

implies that almost surely M, is either zero or one. Like
at multiplicative functionals, a point x € E is called
permanent for M if Px(Mb = 1) = 1. We denote by EM the set
of permenent points which is universally measurable. If X is
normal, then x€E ~ By if and only if PX(MO = 0) = 1.

In the sequel, we give a few examples of sub-multi-
plicatiwe functionals: »
1. M, = exp (-t?) end B, = B
2. Let T be a terminal time. We define

exp(-t%) if t < T(w)
M, (o) =
0 if 13> T(w)
S_Mt}is a right continuous sub-multiplicative functional and
. = J x -
EM~{er‘P(T>O) 1y
%, Let X progressively measurable with respect to thgand

let f &b Z+. Then i

M, = exp(-t { oex,) 88 )

© : =
is & continuous sub-multiplicative functional with E, = E.

o7 ok



| e
Definition %.2. A fmmily S =is,6 f OEL-®) of

real-valued random variables on ($2,~ ) is called a super-
multiplicative functional of X if .

1) Sy eff—t for any t > 0.

ii)st_} St‘(ss 0 et) = sz(sto 98) Gl For emyt, a2 Q.
1i%) O <St(w) <L 1l for all t and .

'Proposition.B.l. Let Ny be a multiplicative func-

tional of X and th ¥ a sub-multiplicative functional of X such
that Mt << Nt for any t> O and

' Mt" N O Gt + Nt‘ Mso et = Ms’ Nto 98-*' Ks. Mto es
for all t, s> Q.
Then there exists. a super-multiplicative functional of X,
S.Sti , such that

Ny =M, #8s)

for any t== O.

Proof. Let S, : =N, - M, > O. { S, } verifies the
conditions of def. %.2. Indeed, i) andiii) are evident while
ii) one checks through computation from the relationships of
hypothesis.

As example, let the multiplicative functional N, = 3
and let the sub-multiplicative functional M, = exp (-t2).
Then St =1 - exp(-—tz) is a super-multiplicative functional

of X.

If M is a sub-multiplicative functional of X, we
define for any t > O an operator Q, on b‘éf by
4 Sy
Qf(x) = E¥{#(x) m, } .
Like at multiplicative functionals, Q is & positive linear

operator from bgf to b%f such that Qt <Pt’ where Pt is

the trensition operator of X. We have:

s
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Qe T(X) < QQ il . "

QgQy f('X) = Qg F(x)

Q 1<1. '
It follows that {Q, & t> O}is & sub-semigroup on bgf, called
the sub-semigroup generated by M.

= X :
One observe that Q f(x) = E {f(XO)MO % SEf X s

normal then Qof(x) = IEM(_X) £ix)s IT EAisi a metric space, X

is right continuous and M is right continuous, then Qtl(x) =
X e : iy :
EX{ M, ; X, € Jtends to Q 1(x) = EX{M_; X, € E}as t —0.

We make the notation B = b&>*, B is a Benach space
under the supremum norm. We have PtB cBfor-eny t =0 ( [1] 1s
The sub-semigroup iQt : 1>0 }of‘ nonnegative linear operators
on.B_ is called subordinate to §.Pt } if Qf <P, f for any
t >0 and £ € B,. In the sequel, if M =§_Mt}is a right con-
tinuous sub-multiplicative functional of X, then

SsUa
and

(o}
v“ﬂxyzExSe‘“Vﬂxamgt

(]
will be the sub-semigroup, resp. the sub-resolvenicorresponding
to M on B,. If we denote by {Pt ’3 and{U"‘} the semigroup and
respective the resolvent of process X then iQt } is subordinate
to {Pt.}while iv"‘ } is subordinate to §_U°‘§ on B, .

Definition 3.3. Let (E, @) be a measurable space.

~ The function Pt(x, A) defined for t>0, x€E, A € Gis called

a semi-transition function on (E, &) provided
3 A“-——»Pt(x, A) is a probability measure ‘on & for any t and_x.
ii) x‘——th(x, A) is in € for each t and A
iii) Pt+s(x,A)‘ <I Pt('x, dy)Ps(y, A)=S Ps(x,dy)Pt(y, A)
for all t, x and A. '
[eoe
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We shall call semi-Markov process & process which
satisfies the conditions from the definition of a Markov pro-
cess in the meaning of [l] , excepting the Axiom M (Markov
property) which one replace by the following condition:
Pl Al = EXSLEX*'(foxS); Je ExiExs(foxt);/\.}
Por el 5, b, 8 L & bz+ and /\E-Mzt.

Proposition 3.2. For the semi-Markov process X,

define Ny (x, A) = PY(X, € A), XEE ) A E ¢, . Then
N, (%, AY, O < ti= 00 ie @ semi-transition function for the
process § % {over ($2,M, P*) with values in (E,, .

The proof is immediate from the conditions of def.
2.3

Definition %.4. The semi-Markov proce'ss X is called

strong semi-Markov provided that for each stopping time T

with respect tojM, { end fE D ZJ( one has:

; P

i) XT e J\/{JT/"@A -

= b -l (e AU :

i4) B ) €T {F [2x)]} - |
Tet X = (2 "M”‘M’t’ Xer Oy P*) be. Asemi-Markov

process Y with state space (Ey» Zg) where E_€ Z’, '&’ﬁ :‘g* .
)

is called a semi-gubprocess of X if its transition sub-semi~-
group %.Qt \§ is dominated by %Pt} : Qtf(x) <Ptf(x) for all
x €E, £20, f€ bE* end £ is taken to venish on B ~E_.
We define -dt on B = bEi by setting

Q‘Lf

EO(x) id x € E0

R, ).
0 if xc Bl
where f € B+.' Then }..Qt?[ is a sub-semi-group of nonnegative
1linear operators on B, and"cit = Qt on bgz. Y is semi-sub-
process of X if and only if SL—dt 75 is subordinate to iPt?& ;
/...
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Let X be normal and let M be a right continuous
sub-multiplicetive functionel of X. If X satisfies this con-
ditions, one cen construct a semi-subprocess of X whose
transition sub-semigroup is génerated of M. Indeed, we observe
that the construction for subprocesses from [1], III.3. one can
make as well in our case. We denote with % = (fi,ﬁi,iii, i;,

A A
et, P¥) thie process constructed. We have the following result:

: o)
Theorem %.l. X is a semi-Markov process w-1ith state

space (B, Ex) such that
ekt = F{rm

for any £ € B, that is X is a semi-subprocess of X whose

transition sub-semigroup is generated by M.

The proof is that from [1] for subprocesses, with
the_mention that in the place of Markov property for i one
verifies the property of % concerning to be semi-Merkov. This
can be shown using the fact that M is a sub-multiplicative

functional of X.

We now suppose that X is strong Merkov, M is a right
continuous sub-multiplicative functional of X and let X be the
semi-subprocess of X constructed sbove, corresponding to M.

pefinition 3.5. Let M be a sub-multiplicative

functional of X. M is called strong sub-multiplicative if M
is right continuous and
B* § £ (g yp )My < ) B ey ] gy
for all ;c, i, £& bgwi%t% stopping times T.
The following proposition is analogous of the prope.
(3.12) from [1] .
Loss




= ‘l;? 3 -

Proposition %.%. Let X be a strong Markov process

and let M be a strong sub-multiplicative functional of X.
Then the semi-subprocess ﬁhcorresponding to M is strong semi-
Markov. ' = '

_ From now on, X will be a standard process with state
space (B E) e

Proposition %.4. Let M be a right continuous sub-

multiplicative funectional of X and 1e£{_Qt} ,V* { be the sub-
semigroup and the sub-resolvent corregponding to M. Let &W“%
be the exactly subordinate resolvent corresponding to %sz}
in theorem 2.1, Then:
IR ARG IR RCRY ‘
for any x € By N Ey
Proof. Since x € E it follows that Qt 1(x) — 1

gs t — 0. Therefore PV‘FI(X) —+1 as ﬁ-—»co. The conclusion

result from the theorem 2.1l.

Proposition %.5. Let M :th% be a right continuous

sub-multiplicative functional of X such that
x[xTeE\(EMmEV); M >o] o
for all X% and{JW; % stopping times T. Tnen
B i e Ky Wy 4y O K {LX(T)Q te(x, Myat |ug §
for all %, 1, T and £ & b‘é+.
Proof. Iet,ivﬂ‘}denote the corresponding sub-resolvent
to M. Let {W“fbe the exactly subordinate sub-resolvent asso-.

ciated with%V‘f%in theorem 2.1. For each continuous and

positive f and « >O, the map WhE = g% - (U.“f Swtay s

 bounded, nearly Borel measurable, finely continuous and

equal. with vZf on EM‘ﬁ‘EV (according to prop. 3.4.). The
proof follows as the proof of the theorem (4.12) from [11,
III, using the fact that M is sub-multiplicative.



e

For M strong sub-multiplicative functional ihe result
(4.16) of [l] , Chap. III becomes:

Tet T anijvl,tg stopping time, Y& b and Re?, R > 0.
Then ' |
X{(3{ ) GT)M(T + R o GT : A.i EX iEX(T)(Y M )M,r, A}
for alk A€¢Pt and X. :

Using this result we obtaln the following prop081t10n,
similar to prop. (4.21).

Proposition 3.6.

Let M be a strong sub-multiplicative functional of
X.Then 4

pX :

(Xp€ B ~Ey; Mpy>0) = O

for- any x and for any§$b {stopping time T.

The proof is that from[llobserv1ng that is sufficient
to use only the fact that M is strong sub-multlpllcatlve.
Tf R =anf %t P Mg = szthen MR = 0 almost surely from the
_right continuity of M. Let T be any}ﬁtt% stopping time. Then,
using the above result, we have:

E*M(T + R 0 8p); T < B

p o ) &
€t e T <)
Since the right side of the inequality ie low, it follows
that

X L

E*§ M(T + R o ey); T Pae
Consequently T + R 0 64> R almost surely on%_‘]}< '3% and
80 '

P*(Xp € E ~Ey; My >0) =0

Remark.

The propositions 3.5 and %.6 give for the

[ooe



sub-multiplicative functionals; the analogous of thé following
result: eny multiplicative functional is regular if and only
. if it is strong multiplicative.

On the other hand a right continuous sub—multiplica~
tive functional M of which the corresponding sub-resolvent
%V“*}is exactly subordinate to the resolvent %Uci% satisfies

the relationship from the proposition 3.5,




1

[2]

[3]
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