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THE AUTOMORPHISM GROUP OF A FREE PRODUCT OF GROUPS

AND SIMPLE C* -ALGEBRAS

V. Nitica, A. Torok

L. Introduction

The aim of this paper is to introduce a new class of discrete groups G for
which the reduced C* -algebra C*r(G) is simple with unique trace.

Powers ([P]) showed that the reduced C*-—algebra Ct(FZ) of the free
nonabelian group on two generators in simple with unique trace. His result was
generalized by Choi ([C]), for the free product 2’2 % 23, and by Paschke and Salinas

((P-S]) for a free product G, * GZ’ where G, has at least two elements and G., at

1 1 2
least three elements. De la Harpe ([H]) introduced the class of Powers groups,
which contains all the previous examples. He showed that the Powers groups have
the reduced C* -algebra simple with unique trace. In [B-NJ, the results of de la
Harpe are generalized for a larger class of groups, called weak Powers groups.

Another direction in looking for discrete groups for which the reduced

C* -algebras are simple with unique trace is given by Theorem 3 in [A-L].

Theorem (Akemann and Lee). Let G be a discrete group which contains a
normal free nonabelian subgroup with trivial centralizer. Then the reduced
et -algebra of G is simple with unique trace.

The natural question, asked by de la Harpe ([H]), is the following.

Question. Can one replace the free group in the previous theorem by a (weak)

Powers group?



In [N-T], it is proved that the answer is positive for some free products of
indecomposable groups. (In this paper, a group is called indecomposable if it is not
a free product of nontrivial groups.) Here we prove that one can replace the free
group in the Theorem of Akemann and Lee by any proper free product (i.e. of
nontrivial groups), which is not the infinite dihedral groups (i ZZ* ZZ)' This can
also ‘be done in Corollary 5 of [A-L] which deals with a group that has as normal
subgroups a family of nonabelian free groups such that the intersection of their
centralizers is trivial.

The paper is divided in four sections. In § 2 we introduce some notations,
we state the principal théorem and we show how the above described results can be
obtained from it. In §3 we prove some combinatorial results related to free
products, and in § & there is the proof of the principal theorem.

The whole proof relies on an estimate of the norm of "free" convolutors.
This was firstly obtained by Akemann and Ostrand ([A-OJ). In order to use this
estimate, one needs free families in a group. In [A-L], one encounters this problem
in a free nonabelian group, where the Nielsen-Schreier Subgroup Theorem (namely
that any subgroup of a free nonabelian group in free) stands in the background.
Since in a free product the Kurosh Subgroup Theorem is not useful enough, we are

obliged to give long arguments in order to prove that some families are free.

2. Notations and the principal results

We begin with some general notations. All groups are discrete.

In the following, let H be an arbitrary group. Then:

- By e we always denote the identity element of H. H* := H\{e} and
ord h stands for the order of the element h & H;

- C[H] stands for the group algebra of H. We identify the elements of H




and their image in the group algebra;

- For any X = Z ¢, h € C[H] (the sum has finite support), denote

heH
supp X ::{h G:chh ¢ O};

h

= Ct(H) denotes the reduced C*—algebras of H, that is the closure of C[H]
in the norm we obtain regarding its elements as left convolutors on the Hilbert
space IZ(H). This norm will be denoted by Il -UH. (Therefore there is an inclusion
C[H]C—*CT_(H) with dense range). Note that the elements h&€ H become unitary
elements of Ct(H);

- 'CT,(H)WC is the canonical trace, i.e. the continuous extension of
¢ :CHl— C, ?:O(hEHch h=c

- If hyk € H, their commutator will be denoted by

[h,k] = hikh™ Lk !

and Adh€ Int(H)C Aut(H) is given by
Adh(K) = hkh™! ;
- Given a nonvoid set MC H, the subgroup it generates is denoted by <M>
and its centralizer is
ZH(M) = {h € HI [h,x] = e, for all x§ M} :
- In order to simplify the notations, we shall write h instead of Ad h, for
all h€ H. Therefore there is a surjective morphism
Tt H—® Int(H).
It is easy to check that its restriction to a subgroup K< H is one-to-one if and only
Bz =l el
- Given a subgroup K& H, by an averaging process (of C’;(H)) with

elements of K we shall mean a C-linear map&: Ca;(H) "*Ct(kl) given by:



[ =
(1) G-(h):ar,kihki , h€ H

1=l
where {ki") Kicn© Kisa fixed set. (As a matter of fact, one defines by (1)¢ only
on C[H], but since |

6 0l < X1l for all X¢& C[H],

£y o
£ can be extended by continuity to CT(H).)

It is easy to see that: .

- if ©,0' are averaging processes of C’::(H) with elements of the subgroup
K € H, then:

a) n@(x)(\H <Xl » for all Xe& c*;(H);

b) 09 'is also an averaging process with elements of Kj

- if H,, H, are groups and ch H2, then there is an isometric embedding

2
CY(H|)cp CL(H,).
"We shall use the function sign : R ——«?’{—1,0, 12], given by
=1 if %<0
sign) =40, if x=90
Lesifge >,
We can now fix the setting. Let A and B be nontrivial groups, oenen
their free product, G=Aut(l'), the group of automorphisms of [, -and

T :A*B —» AXB the canonical morphisms, with components | 1 and 772. Denote

Ker T = F. It is known ([S], I, 1.3, Prop. 4) that F is a free group with basis
L la,b]]| a€a*, beB*].

Therefore, if A* B £ Z,* Zoy then F is nonabelian.

For a nonvoid set M< [ , we shall denote

Meas A e w-l.
wef

Since ZP (1) = L e}, the map:



xel +— Xe Int(l")
is an isomorphism.

The principal result, the proof of which will be given in § 4, is the
following :

Theorem l. Let A and B be nontrivial groups such that A * B ;éZZ* ZZ‘
Then for any finite nonvoid set M€ G* = Aut(A ¥ B)\{idA*BS and any value
& >0, there'is an averaging process © of, C’;(G) with elements of Int(A * B) such
that

1@l <€ forallgé M.

In the sequel, we shall prove the results announced in § L

We need the following lemma, the proof of which is standard ([H],
Proposition 3):

Lemma 2. Let H be a group with the property that for any finite nonvoid
set M€ H* and any value &€ > 0, there is an averaging process ¥ with elements of
H such that:

10 M . <t Aorall he M.

Then CT(H) is simple with unique trace. i

Corollary 3. Let A and B be nontrivial groups such that A * B ,«1:22* 22' If
a (discret) group H contains A * B as a normal subgroup will trivial centralizer,
then Ct(H) is simple with unique trace.

Proof. Since 7 = A * B is normal in H, there is an inclusion:

(2) Int(C) € H c Aut(l)
where: Hi= { Ad h“., | he H}. Moreover H and H' are isomorphic because

ZH(F) = { e}. Therefore, the problem reduces to prove that C’;(H') is simple  with

unique trace for a group H' satisfying (2). But this follows easily by Theorem I, due



to Lemma 2. 4]

Remark. It is not hard to see that the groups H that satisfy the hypothesis
of Corollary 3 are in one-to-one correspondence with the subgroups of
Out(A * B) := Aut(A * B)/ Int(A * B).

Corollary & Denote by F the family of groups that are proper free
products and are not equal to Z,* Z... Let H be a groﬁp having as normal subgroups

E (>
a family i r isiél of groups (I any nonvoid set), such that B ié & foralli€land
ﬂ ZH((‘I) = {e’].
1€1
Then C";(H) is simple with unique trace.
Proof. We shall prove that H satisfies the hypothesis of Lemma 2.
Note first the following
for any i€ I, given a nonvoid finite set M € H\ ZH(P i)
(3) and a value € >0, there is an averaging process € with elements
of [, such that
(I <& forall hé M.

To-see this, denote M!= { Adh,. |he& Mj . Then M'c Aut(Pi) because I ;

I
is normal in H,' and idﬁ¢ M' because M ﬂZH(Pi) =¢ . By Theorem 1 we obtain an
averaging process '

n

: l o — =1
with {gkl) kel o€ Pi such that
16 'l . < &, forall e M',

i

where Gi = Aut(pi).
Define the averaging process © of C):(H) with elements of [! ; by

n
G(h):%kzlgkhg;l, he 1.

Since, for all h€ H,



oadnllg, =13 'Eg (ran| g e,

n
| hl—%‘ Adh(g; )] (Adh]p )UG - r11 z“_; g, Adh gkI)”G :
n : "
"t! i hgk h” irff\(;l;'g;l g h g, lt —“n,_,/gkhgk H =

‘we see that (3) holds.

Consider now a finite nonvoid set M< H* and a value £ > 0. There is a

'EREE NT\«WIsuchthdt

finite famuy{ i
N .
Mmm e N=0.

e

Denote M_ = M\ﬂ Z (Fl Y for n=1,2....N and M “%/3 (hence M
k=l k
Deleting some indices lk’ we may assume that

K= = M).

Mo M4 @, for 0 <n<N.

We shall prove by induction on n, for n = 1,2,...,N that:

n
g there is an averaging process @n with elements of < { \’11 >
K=tk
(li)n such that
{ 16 _mll <& , forai hem
This is true for n=1 due to (3). Assume (é,l)n is true for somen, 1 <n < N
Since
n
(%) Mn+l\ Mn(_ (0 ZH(Y1 "’H(r' )
k=1 n+l
we obtain from (3) an averaging process p i) with elements of Pi such that
o n+l
He(ml)(h)"H <&, forall he M +‘1\ Mn'

n+l
Define 'BM :9(n+1)°9 , an averaging process with elements of <{ j P >.

Since

10 . Wy =10, (.00 U6 Ol <&, forall hem
and

6 =6 (e forallhEM  NM



(by (5),© . is an averaging process with elemehts that commute with M_ \M

hence© = id
n\Mml\Mn Mn+1\Mn

Therefore (4)N is true and the corollary follows.

), we see that (l!)n+1 holds.

3. Combinatorial lemmas

Let ("= A * B be as above a free product of nontrivial groups. Each g& " *
can be uniquely written in the reduced form as g = 1oy where for 1 < j<m, gj :
is an element of A* or B* andtwo adjacent g’js are not both in ‘ A* or both in
B*. In this case, define the length of g to be [ gl = m. (We set |e]=0). We also
define the beginnings of g to be

Lig):= { €18118 18181898 ]
and the ends of g to be

Rig) ::{e,gm, gn‘x—lgm""’gng'"gm} 4
For | <k <m, we consider the k-beginning of g to be lk(g) 1= g«+8) and the k-end
of g to be rk(g) =g k1 B The 1-beginning and the l-end will be also denoted
by I(g), respectively r(g).

Ze

none of the factorsis e and, for all i = 1,...,k-1, the l-end of vi and the 1-beginning

For vl,vz,...,vk& ok > 2, we say that the product V VgV is reduced if

of Vi, are in different groups. We.say that the product ViV Yy is reduced

i+]
modivjlje 3}, where J¢ {1,...,}15, it some v}s, j€ J, may equal e and after
deleting those equal to e, we obtain a reduced product. By a statement like "the
product (vlvz)v3 is reduced" we mean "the product WV is reduced, where
— 1"
W=V v

Let Wiy W, be two words inT* ¥, We say that in the product W W, there is

a consolidation if r(wl) and l(wz) are both in the same group (A or B) and

r(w!)l(wz) # @ . We say that there is a cancellation it r(wl)l(wz) = e,



Let X be a subset of a group H. Then X is a free family if and only if

Xn X—1:¢ and no product W= X XomeeX is. equal -to e, wihere n> 1,

: i o > “
ixl,...,xnic XVUX" " and x; X1 te forall1<idn- 1. (X 1 ::Lx ll x€X]).
The following remark will be useful in §4. It is exercise 12 in [M-K-S],
Section l.4.

Remark. If {a,b} is a free subset in a group H, then 1( anb—n5 -~ is also

free.

Let Hc ™ be a nontrivial subgroup. We say that g& ' * begins (ends) with
an element of H if H¥N L(g) # ¢ (respectively H* N R(g) # ¢ ). Denote

M H) = {ge n* | g neither begins nor ends with an element of H}.

We define a function q P\H —#H in the following may: for any

gé "\ H, there are unique elements we ' (H) and hl,hze H such that hl is: of

maximal length and g = hlwh2 is reduced mod{hl,h,zﬁ; then qH(g) 2= h) ho.

Lemma 5. Let A and B be nontrivial groups such that A * B #ZZ* Z ., and

2

i I AR

Proof. By Proposition 3 (the case n = 2) of [N-T], the conclusion holds if

let A € Aut(A * B). Then & \F = id. implies % = id
one of the groups A or B has an element of infinite order.

The only case that cannot be dealt with the above result is when A and B
are indecomposable and both A and B differ from Z. (If A=A * A_ is a proper

1 2

decomposition, then ord(alaz) is infinite for any a, € AT, a2€: A;.) But in this case

1
the conclusion can be obtained by a straightforward checking using the set of
generators of Aut(A * B) given by Fuchs-Rabinowich ([F-R]). A cleaner proof of

this last case can be found in ([Co], Proposition 1.4). '

Lemma 6. Let a& A* and we '\ A be elements of infinite. order. Assume



10

s€N¥ is such that

qA(w)¢ {ans lne Z).
Then {as,wss is a free family in I .
Proof. If wé& B*, the conclusion is clear. Therefore we assume from now
on that [w} > 2. Then:
(6) D)= I(w), r(w") = r(w), for all n& N,
as will be checked at the end of the proof.

Write w = aw,a, reduced mod '{_al,azﬁ with a,,a e IP(A). By

1 &€ A, w

2 1

(6), one obtains that
a|w a, w o€ M) ifndl

(7) e

el s .
a, woa, WH@P () ifng=1

Let z be any word in a° and w®, Conjugating it by a high power of WS, we

can put it in the form:

snj sm2 sny smp SMp.] sn
w : 2

Z=W v A w. P

where p > 2, Ny, mj(:’ Z% for | Li<p,i<j<p-1. Using (7), we obtain that

(8) A B R Y N
1n12n2 p-1 npp

where Clé{al,a;’], Cpe {az,ail’J and C;s i=2,...,p-1 are elements of A of the

sm -1 1 sm 1 sm 1

form a.a° a,, a.a>"a 8 - =
: 2 128 2.9 G e T

i =2,..,p~1, therefore in (8) z is reduced mod{cl,cpi, hence z £ e.

. By the hypothesis, ¢ # e for

It remains to prove (6).

If [wl] is even, then w begins and ends with letters from different groups,
hence in the product w w..w= w" there appears neither consolidation nor
cancellation. Therefore (6) holds.

If [w]is odd, then w begins and ends with letters from the same group. If

in ww there is only a consolidation, since | w] >2, one sees also easily that (6) holds.
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Otherwise, one can show by induction that w has a reduced form w = vw v-l with

w, V& , such that ordw is infinite and in w w there is only a consolidation. If

|Wl>2, we have seen above that IG = 1®), @M =r@). Therefore
n

wh=v (W) vl is reduced for neéN®, and this holds even if [W]= 1. Hence

1(w") = 1(v), r(wn) =r(v 1_) and then (6) holds too.

Lemma 7. Let w,v el Assﬁme that v w-1 is reduced, and that v W—l
begine with e (isevid lé L(v w—l)). Then in the reduced form of wvw_1 there
appear all the letters (possibly their.inverses) which appear in w and in v.

Broof. ‘Sigee: w € L(vw-l), there is an element h€U* such that

vw—1 = w"1 h, both products being reduced. There are two cases:

Casel. v >w;thenw 1é‘ L(v) and w~ le R(h), therefore

v:wnlu,h:uw"1

for somé u &7, where both w'1 u and u w-1 are reduced mod"‘\u}g Since
e h, the conclusion is fulfiled.

CaseIl. v < w;thenvé L(w™ 1) and h& R(w~ 1), therefore

e vu, Wae
for some uel'™, where both vu and uh are reduced. Hence v—l—e R(w). Note that
the product v v is reduced (I(u) = I(v) due to the above relations, and we known that
the product vu is reduced). Let n> 1 be maximal such that v " R(w). Then

w=xv " reduced mod {x%, Bapce vw Vs L e i i completely

B (vn+1 x—l) we see that x must be

cancelled in the product w(vw"l):(xv
cancelled in the product x(vx'l) e %" le L(vx'l)). Note that vx_l is reduced
mod{x}. I£{x> |v[, then v = R0 e, =y v! reduced mod)\y‘%, contradicting

thus the choice of n. Therefore |x| < |v|, hence x—lé L(v), i.e. v= x"! 2 reduced

mod%x,z‘; . From all these, we obtain that



2

-1 ~-n -1 \n -1 -1
Viex i Zaw=iv eaalz X s, WW D =X

all products being reduced mod{x,z’ , hence the conclusion holds in this case too.&

Lemma 8. Let a €A%, b&€B* and «& Aut(A * B) be such that X(a),
¢ (b) &R and «([a,b)) €& F. Then& (ab)?f' <abb.

Proof. Let & (a) = Walw- l, X (b) = vazvul, where al,azé A¥. Replacing, |
possibly, a; and a, by their conjugate; with elements of A, we may assume that
Wal\v"l and vazv"I are in reduced form mod[\ w,v'(.

One has six cases:

Casel. w = e or (and) v = e. There are the following subcases :

a)o( (a) = ap, o((b) = a,, e (ab) = a2y
b) x (a) = walw'l, wel *, ob) = a,, o (ab) = walw"laz;

v_l, vel™, o (ab) = ava T

C)M(a)=81, x(b) = va 5

2
Subcase a) is trivial.

For subcase b), there are three situations, depending on the fact that the

product w~1 a, has a consolidation, a cancellation or it is reduced. If there appears

a consolidation, than (% (ab)), r( (ab))€ A, hence X (ab) <2 <ab>. If there appears a

cancellation, then w = aszf is in reduced form for some We&l(A), so that

o (ab) = azf\ﬁ a w " is reduced. The assumption & (ab)< <ab> will then imply that
£ 2RSS N -

the only letters appearing in & (a) and < (b) are a”, b~ , hence ¢ ([a,b)« F,

contradiction. Finally, it w-la is reduced, then ¢¢ (ab) = W;—,\IW“Ia2 is reduced,

2
hence the same argument as above shows that ¢ (ab)¢t<ab>. .
Subcase c) is similar to subcase b).

Case: Il.. The product w-lv is - in - rediced dform. - Since

X (ab) = walw_lv azv—l is in reduced form, the assumption (x (ab)& <ab> will again
+ +
imply that the only letters appearing in X (a) and tX (b) are a'"l, b 1, hence
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I ([a,b])é F, contradiction.
Case Ill. v=w#e. Then (X(ab) = walazw'l. Since a,a, # e (otherwise
D((ab):ve), the above expression of & (ab) is reduced, therefore M(ab)qé‘ <ab>

because it beings and ends with letters from the same group.

Case IV. In the product w'1 v there are cancellations and consolidations, -

but neither w™ ! nor v are completely cancelled (i.e. wé L(v) and v~l¢: R(w™ ).

Then % (ab) beings and ends with letters from the same group (because
& (ab) = wal(w— lv)azv~1 is reduced), hence & (ab) & <ab>.

Case V. In the product w_lv, Wi completely cancelled (i.e. w€ L(v)),

but vi#w#e. Then v=wv
1

I is reduced for some vlé\—”%, and

1 1
¥ (ab) = wa,via,v, Tw 135V

then™( (ab) begins and ends with letters from the same group, hence ¢ (ab)st <ab>.

, where the product v Wit is reduced: If l(vl) # a'l,

Otherwise, v, can be written in the reduced form v, = a~1 Vo vzéé s v

1 ] 1 2 =€

then Vi€ A*. But this is impossible because r(vl) =r(v)€B.) Then
: -1 -1 o5 -1 -1 :

o (ab) = WYL,V AW, with the product VadlVo aw reduced. It w is not

completely cancelled (i.e. w—l§é L(vzazv;lalwul)), then o( (ab) begins and ends

with letters from the same group, hence & (ab) & <ab>. Otherwise we can use

Lemma 7. Hence, if X (ab)&€ <ab>, then the letters which appeat in vzazvéla1 and
ol |

inw canonly bea ", b . ThereforeX ([a,b])& F, contradiction.

Case Ml In the « preduct w—lv, v is -completely cancelled (i.e.

1

vV & R(w—l)), but e £ v £ w. This case is similar with Case V. ]

Lemma 9. Let ac A*, be B” and W E ["(<ab>) be such that ord (wo(ab)k)
is infinite for some k& Z. Then for any <, 86{—1,1 K:
A ¢
(@) w_(ab)*?) = (ab)

rz((ab)3<°~wo(ab)35) el
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Particularly, if r(wo) e.B, and either one of the conditions below are satisfied:
(i) a” 4 e
(ii) o e, and w_ £b 1,
then 1((ab)wo(ab)) & A and r((ab)wo(ab)) € B.
Proof. One can assume that r(wo) € B. Indeed, if r(wo) €A, let's denote

-1 -1
b

At=B, Bi=i o gl b'=a *. Then [ '=A"*B'=D1, <abD =<ab>,

W € M (<a'lb>), ord(wo(a'b')“k) = ord(wo(ab)k) and r(wo)e B'.
Therefore from now on we assume that r(wo) € B. There are four
possibilities to choose € and d.
Goents gy
If one of the conditions (i) or (ii) holds, then:
l((ab)wo(ab))€ A
r((ab)w (ab))& B.
We list the subcases and give some hints:
D w22 Shee r(w )€ B, wab is reduced, and (ab)" ¢ L(w ab)
because w € (" (<ab>).
2) ]wol = l.. Then W= bl’ where bl & B*, and all follows from conditions
(i) and (ii).
If a2 =e and W= b'l, then (ab)wo(ab) =b. As ord(wo(ab)k) # 2, one
obtains that b2 # e. Then:
I((ab)?w_(ab)) € A
Vr((ab)zwo(ab)z) € B.
Casell.g=1,d=-1.
In this case one has that
l((ab)wo(ab)_ 1) €A

r((ab)wo(ab)— l) €A,
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To see this, we make an analysis based on [wo’. The appearing subcases
can be dealt in a straightforward manner.
If |w | >4, all is clear because w_& I'(<ab>) (hence (ab)—l¢ L(w ) and
ol= : o o
abé R(wo)).
If jwol = 3,then W, = blalb.z’ where a e bl,bze B*. One has the
following subcases:
-1
v l)bl,éb andbz;éb,
S b1 o (hence a; # a because w_¢ ' (<ab>)) and b, £ b
3) b, £ b™! and b, =b (hence a, ¢ a because W€ " (<ab>));
| .

and b2 =ibe

If [WO[ = 2, then W, = albl’ where a,€ B blG: B*. Since WOQP (<ab>)

4)by =b

the only subcases are:
Db =bs
2) bl = b, hen?:e a £ a.
If lwo\: 1, then W= bl’ blé B* and the assertion holds.
Canedlii e, 0
Since r(wo)é B, one has that
lab)'w_(@b)) € B
r((ab)” lwo(ab)) e n.
as can. be easily seen both if (wol > 2andif lwol =l
CaselV. £ = -1, d-z—l
If none of the conditions (iii) - (v) below is satisfied
(iii) W = b and a2 =e;
(iv) W= azb and a2 ;é'e s

(v) W = ab? and b2 + e,
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then we shall prove that
; { I{(ab)” lwo(ab)— hes.

7 r((ab)” 1'WO(ab)" e,

If lWO‘Z 4, the assertion holds because woc{: * (<ab>) (hence abéf: L(wo)

and abé R(wo)). '

&A% b B EIR Since

Ve

Hofw =3 ‘then w =b.ab where a
o |

65 21217

W € [’ (<ab>), the only subcases are:

1) b2 #bs

2) b, =b, hence a ¢ ay
and both give (9).

If [wo\: 2, then W= albl’ where ae BE b1 & B*. The following (not
disjoint) possibilities can appear:

l)aliaandblf_b;

2) b, =bhence a 4 a? (because (iv) doesn't hold)

3) a,=a hence b1 # bz (becasue (v) doesn't hold),
and all give (9) .

If{wolz 1, then W= bl’ blé B*, and we use the fact that we are not in
situation (iii).

1

If we are in situations (iii), then (ab)” lwo(ab)—1 =b. . As ord(wo(ab)k) £ 2,

one obtains that b2 # e, hence
I((ab)™%w_(anb) %) B
r((ab)” 2wo(ab)*Z) €A.
The same is true if we are in situation (iv) or (v). For example, if (iv)

holds, then
bl el i plde .
(ab)_zwo(ab)"2 =

B2 i e
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For the next lemma, we need the following definitions:

Definitions. Let aGA*, b& B*, vmg;?g and k€Z. We say that w begins
(ends) with (ab)k if (ab)ke L(w) and (ab)k+%§é L(w) (respectively (ab)k% R(w) and
(ab)k+£$ R(w)) where & = sign(k), if k # Opjand £&{-1;1% if k = 0.
For an arbitrary word v¢f1*, we say that w begins (ends) with v if
vE L(w) (reépectively vER(w)). .
(The ambiguity of the above definitions will not be misleading).
Lemma 10. Let a€A*, beBR¥, w & [T<ab>) and k&N be such that
ord(wo(ab)k)'is infinite and r(wo)é B for k > 0. Then, for any né N*:
15 if k>0, then [Wo(ab)k]n begins with W and ends with (ab)t, where
t€ i Kyk-133
2) if k=0, then Wg begins with (ab) and ends with (ab) ; where
d e€l-1,0,1].
Proof. Denote w = wo(ab)k.
Case Tl > 700 a’feora’=e and Wo;é b™! the second part of Lemma 9 shows
thats |
l((ab)wo(ab))e A
r((ab)wo(ab))é B
Then

n

w o= wo(ab)k— l(abwoab)(ab)k— 2...(abw0ab)(al?)k— L

;e

is reduced modz(ab)k" 2}, hence w" begins with W Since r[*(abwoab) L (ab)2 for any

Woé P((ab>), wh ends with (ab)k_1 or (ab)k.

1, then b2 # e, because ord(wo(ab)k) £ 2, and it is easy

Ifa’=eandw_=b"
to see that, forn > 2, w begins with Wi and ends with (ab)k" 1. (One has w = (ab)_1

b(ab)k“l. The only difficulty appears when k = 2, but then ord b is infinite and the



18

statement is also true.)
Casell. k =-1. Since woé ["(<ab>), one has that l(abwo)é A.

If {WO\Z 2, then r(abwo)éi B, because r(wo)eB and woé r‘(<ab>). Hence
w' = wo(abwo)...(abwc)ab is reduced for n > 1. So that w' begins with w_. Now
again rq(abwoab) # (al?)z, hence w" ends with ab.

If{wof, = 1, then either r(abwo)é B, and we use the above argument, or

-1 1

w_=b"", w=b""ab and orda is infinite. Hence w'"" ends with (ab) for n =1 and

0
with (ab)° for n > 2, and it always begins with W .
Case 1. k = 0. If[wol is even, since the product w' = W \VQ"°W0 is reduced, the
conclusion holds with § = € = 0. The same happens if| woi = 1. It remains to study
the case | w {> 3,;[wO§ odd. Then w_ begins and ends with letters from the same
group. If in the product vy W, there is only a consolidation, we obtain again the
conclusion with & = & =0. If in WM there appear cancellations, then, like in
Lemma 6, w_ has a reduced form w_ = vw v—l, where W _,ve{", ordw_ is infinite
o o o o o
and in WOVJO appears only a consolidation.
~ ~ N ~ n ~ :
If {wojz2, then I(WO) = L(wo), r WO) = r(wo) as in Lemma 6. Hence
n AT n n
W=V (/\Z'/O)v is reduced and lu(wo) = lu(wo) ; ru(wo) = ru(wo), where
u=/v]+1>2, therefore wg &l(<ab>).
If |w =1, as ordW _ is infinite, w" = v(wn)v_l, neN”™, is reduced and
, 0 o o )
ny ny B i
1 (Wo) = livt(wo)’ r vl(wo) = r:v{(wo)° Hence w_ c.f'((a‘b>) for {v| > 2. While for

vl =1, ]wg |=3, for any n > 1, hence wg cannot begin or end with (ab)s,[ s[> 2.m

ivi

Lemma l1l. Let a&A™, beB%, wc—‘r‘{fqb;,and choose kl,kzé Z . such that
k k ; k k
w = (ab) : W (ab) 2, the product is reduced mod’l(ab) 1, (ab) 2&, fkl\ is maximal

and WOGF(<ab>). Then there exist w'oé(‘(<ab>) and k'e{ k1+k2’

-k 1 .
ky+ky - sign(k1 + kz)} such that Ad ((ab) I)(w) = W (ab)k and the last product is
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reduced mod {(ab)k' 3 .

Proof. If sign(k1 + kz) = sign k2 or k1 + k2 = 0, then the assertion is trivial
with w! =w_and K =k, + k.. ‘
00 1 2

If sign(kl + kz) = -sign kz, there are two cases:

(i) k2 >0, k1 +.k2 <0

(i) k2 <0, kl + k2 >0

Their proofs are similar, so we only prove case (i). Since k, >0, F(WO)G B.

Then r(wob— la— l)é A because w & ["(<ab>). Therefore the product

AR ki+ko+l
(Wob la ]')(ab) 1 +K2

1 -1

ki+ko+l -
1 25 a - and

is reduced mod)\(ab) . Now the conclusion holds with w'o = wob"

k' = k1 + k2 + 1 (since l<1 <0 l(wo) & B, hence w‘o ¢ M(<ab>). B

Lemma 12, Let aQA*, b@B* and we M\<ab> be such that ord w is infinite
1
and q<ab>(w):(ab)5, s&Z. Then {WN, (ab)r\} is a free family in [" for any
N > 2|s] + 8.

k k
Proof. Let k kzé Z be such that w = (ab) 1wo(ab) 2, where the product is

17
BE 2 , : .
reduced mod%(ab) , (ab) f, lkl{ is maximal and woezé (<ab>). Then s = kl + Ky

To prove that %\VN, (ab)Ng is a free family, it is enough to prove that
-k \
bpa(@b) " YT, @b) §is a free family.
-k
By Lemma 11, one has w' = [Ad(ab) 1](W) = w'o(ab)k, where w'oé:‘ " (<ab),

ke{s,s— sign(s)k. Moreover, we can assume that k > 0. Indeed, if k <0, then

denoting B'=A, A'=b, a'= b ! and b' = a"l, one has a'b' = (ab)” 1,\ w’oer'(<a'b‘>),

w'el'\<a'b'>, ord w' is infinite and w' = w'o(a'b‘)"k.
Therefore we can assume that w = wo(ab)k is reduced with woe M(<ab>)
and k € {sl,|s1- 1§QON.

Now, Lemnma 10 implies that for all n > 1

c d ( e d
wN M lah) i (ab) " reduced mod \(ab) n, (ab) " 2, where w € I (<ab>)

10
e dne{k,ku,k-1j,cne{-1,o,1}.
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Take a word x in w'\ and (ab)N. Conjugating it by a high power of (ab)N, it

can be put in the form:

Ns; Nt€ Nso> Niof Nt.€ N,
x = (ab) 1w 11(ab) 2w 22...w P P(ab) p+l

where teN*, &, € { -1,1}, 1 <i<p, sjez"‘, Eeiin il

Using (10) we can write

Nsy+f+ € Nso+fo+ & & Ns Pk +
) Jesty gow l(ab) 252 glw 2".W P(ab) p+1*ip+1+8p
t ‘tz ‘tp

x:(ab

rc, for<.=1

£ - j j
sdi,fort .= =]
‘ j j

- ((dj’ for(:'jzl

J » 1 <j<p
{«C., o &, =
) J

Denote st + fj + gj-l = n}., 8}_ = sign(nj), for 1 <jd<p+l. 1 fnj ! > 6 for
all 1 <j<p+1, then x can be written as
ni-36,. 35 & 3¢
x = (ab) = ]'[‘(ab) 1 tl

2 1 <
38, ¢ 38 gy |- 39
[(ab)” Pw,P (ab) Pl ol pel

-5 38,5 & 38
@) Zab) 2 Aab) Zw,ab) ] (ab)
2

n3-65 3

: r ni-68;:,
Due to Lemma 6, this product is reduced modjl(ab) J J;zgjg PE’ hience it is
distinct from e.

By (10), max  [f. + g._l[ <2k +2<2|s]+ 2. Therefore, if N> 2s| + 8 >
Igp+l 1

l
> max lf. + g._ll + 6, then x £ e. This shows that jWN, (ab)l\i is a free family in
Ggper 1) , L

I" for N > 2Js| + 8. =
4. Proof of the main result
We define, for ne N* and v &l the following averaging process:
0 iy Ik Tonk
e e Y ste Al
; k=1

Theorem 1 will be proved using Lemmas 13 and 14 and the Theorem of

Akemann and Lee (which can be deduced too from these two lemmas). All these
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results rely on the following consequence of a theorem of Akemann and Ostrand

([A-O): if { hikl<i< is a free family in a (discrete) group H, then

UZ‘hH = 2\n-

=1 1
Lemma 13. Assume a_eA‘ and ol € Aut(A * B) are such that a is an
element of infinite order and o((a)g,é/\ or o I(OL).(I#A. If ne N* is such that
@ o @A) A fa e 2 S
then |\ B RIS = 2\n"i/n.

Proof. Denote X (a) = W, o{l(a) = W.. Since

/’S V:mﬂ), for/ﬁGAut(r‘), vl

we obtain:
18, ol =l [-};E‘*la”k o™ 1l =
Ll s ke k]
‘ :”Egan i HG"“EEamwin I
respectively:
; [} e m————
- !
”@na M =l [gg @i

Pl e ok
By Lemma 6 applied to W oor W and by the Remark from 5,3,
nk -nk nk _-nk ; = : ;
l‘a W (kZl or %wz a %kZI s« a - dree. family -in I" (hote th;t

ordwlzordwzzorda), therefore the conclusion follows from the result of

Akemann and Ostrand.

Lemma 14 Assume a€ A%, be B* and €A ut(A * B) are such that one of
the following situations holds: '

(i) x(a), ()€ A and o (a,b)&F ;

(i) o ‘@), o b)€R and x l(a,b)éF.
If néN*,n > 8 is such that

Geaps! §@d), o @b\ cabs) € {@b)™ fimi < (n-s)/2 §
then || en,ab((x) HG =2Yn-1/n.
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Proof. Denote o(ab) = w,, o4~ 1(ab) = w... As above, we obtain

12 )
n n
10,0500l =T 23767 e 2t .

Also, ord Wy = ord W, = ord(ab) is infinite. If (i) (respectively (ii)) holds,

then, by Lemma 8, & (ab)¢ <ab> (respectively o<-1(ab)¢<ab>) therefore the

restriction on n shows that we fit the situation of Lemma 12, hence the family
nk -nk ; .k -nk} . 5 _

!‘(ab) Wy }k}_l (respectively \WZ (ab) 51(21) is free in [ due to the Remark

from %3. The conclusion follows again applying the result of Akemann and

Ostrand. 4]

Lemma 15. Assume™ & Aut(A * B) is such that one of the situations below

holds: (
() ®(A)e A and x(B)< B

(i) ¢ (A)e B and o¢(B) < A.
Then «(F) < F.

Proof. We shall verify only the case (i), the other being similar.

Let acA*, beBR*. According to (i), there are a'eA”, b'e B* and v,we "
such that

X(a) = va'v’ 1, X(b) = wh'w~ L

Then:
T (@) = T @, "W)™ = (T,wa T e
T (K (b)) = (e, T Tyfw)™ )

hence
T((a,bD) = [T (@), T (xG)] = e,

that is

« ([a,p)e KerT = F.

But {[a,b]la ent hie B*igenerate F, therefore we get that « (F)<F.
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Proof of The;)rem 1
For x,y € 1, denote
G, = d de Aut(A * B)| x(F) = F \s
G,() = dec e Aut(A * B) |t €A OB or o ) @A U Y
G,(x,y) = {ae Aut(A *B)) et (x), X(y)E€A and o ([x,yD¢ F,
or, o 1), oLy and c{'l([X,y])eyéF};
Gl0y) = {t € Aut(A * B)| Ax), & ()€ and o ([x,y) ¢,
or, o(-l(x), of 1(y) &P and o{l[(x,y])q‘?F}.
We begin. by infering some consequences of the preceding lemmas.
'Gl is a subgroup of G, having F = 2,-f“: Adf]féF‘K as normal subgroup
(because xFa~ ! = X(f)). Since
ToA*B-—=Aut(A * B)
is one-to-one, F is isomorphic to F. Moreover, since
o\'eZGI(-I::) > 1K 5 B for all f&F
&=>&(f) = for all f€ F
&) = £ ofor all feF,
we get by Lemma 5 that ZGI(Y:‘) = 5 e&. Consequenﬂy, Gl has as normal subgroup
with trivial centralizer the free nonabelian group —F—, hence the proof of the

theorem of Akemann and Lee shows that:

for any finite nonvoid set M€ G* and any £ > 0, there is an '
1 )

(11) averaging process @+ with elements of F, such that

I Q(K)HG' <&, for all xe M.
1
Since for all vel™ and ote Aut(T) one has:

Vv e = e a6 v ) DL for all xer,
and since F is a normal subgroup of {",we see that for any x,yer:

1

{ X E Gz(x)w ey le Gz(x), for all ve;
(12)

x€ G (x,y)-—-‘yVOc;/“ 16 G, (x,y), for all ve ", where k = 3,4,
k » k



Lemma 15 implies

13 GGl L¥J LG U L_g G060 UG, ()]
XEATU B (x,y)sA™% B

Denote by % the family of all nonvoid sets of the type Gz(x), G3(x,y),
Gq(x,y) that appear in the union above.

Note that Gz(x) ;4525 implies that ordx is infinite, because a consequence
of Kurosh's Subgroup Theorem ([K]) is that ‘any finite subgroup of A*B is
conjugated to a subgroup of A or B (hence if orde((x) = ordx is finite, then
o (VEA U B),

By Lemmas 13 and 14 we infer that

for any£ > 0 and GoE (g, given a finite nonvoid set MCJGO, there is
(14) an averaging process & with elements of Fsuch that
P(e) Il <&, for all xe .

After this preparations, we are ready to prove the theorem. Let M G*

be a finite nonvoid set and € > 0. By (13), M can be written as a disjoint union
N
M=) Mi; (N>1)
i=]
‘where M1 =M ﬂGchT, and for I = 2,...,N there are groups Gié g such that

¢a‘~.Mi<”— Gy.

We shall prove by induction on n, for n = 1,2,...,N, the statement:

——

there is an averaging process ﬂn with elements of I such that
(15) n
n
1{ gn(lX)”G <& . forall o(éi(tJlMi.
For n =1, this holds due to (11) (if Ml :ﬁS , we take 91 = id). Assume
(15)n holds for some n,' 1 < n < N. Denote
i o
M(n+l) = {suppﬁn(ﬂ( )I e Mn+l ? .
g o ; =
Then M(n+l) is a finite nonvoid set and M(n+l) Gn+l due to (12), therefore (14) .

gives an averaging process ﬂ(ml) with elements of [ such that
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(e -l 9(n+1)(a<)llG <€, forall XEM . i
% ‘9(n+ e 9n. Then for € & 181 Mi’ one has

18, el =10, B (<Nl <ho (Ol <e

We define 9
n+

1 1

and for ¥€M_ ., one has
n+1

(18,0 =18 @ ;<&

n+l (n+1
by (16), because §n\m) is a convex combination of elements of M(n+1)'

Therefore (15)n implies (15) hence (15)N holds, and the theorem is

n+!’

proved. ‘
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