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THE AUTOMORPHISM GROIJP OF A FREE PRODUCT OF GROUPS

AND SIMPI-E C* -ALGEBRAS

V. Ni{icd, A. Tiirtik

\ . 
l. Introduction

The airn of this paper is to introduce a new class of discrete groups G for

which the reduced cx-algenra c|(c) is simple with unique trace.

Powers (tPl) showed that the reduced cx-algebra c:(F2) of the free

nonabelian Sroup on two generators in simple with unique trace. His result was

generalized by Choi ([C]), for the free product Z?.n 23, and by paschke and Salinas

[P-S]) for a.free product G, * Gz, where G, has at least two elements and G, at

least three elements. De la Harpe ([H]) introduced the class of powers groups,

which contains al l  the previous examples. He showed that the Powers groups have

the reduced Cx-algebra simple with unique trace. In [B-N], the results of de la

Harpe are general ized for a larger class of groups, cal led weak Powers groups.

Another direction in looking for discrete groups for which the reduced

cx-algebras are simple with unique trace is given by Theorem 3 in tA-Ll.

Theorem (Akemann and Lee). Let G be a discrete group which contains a

normal free nonabelian subgroup with tr ivial central izer. Then the reduced

C*-algebra of G is simple with unique trace.

The natural question, asked by de la Harpe ([H]), is the fol lowing.

Question. Can one replace the free group in the previous theorem by a (weak)

Powers group?
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In [N-T], i t  is proved that the answer is posit ive for some'free products of

indecomposable groups. ( ln this paper, a grdup is cal led indecom.posable i f  i t  is not

a free product of nontrivial groups.) Here we prove that one can replace the free

group in the Theorem of Akemann and Lee by ariy proper free product ( i .e. of

nontrivial groups), which is not the inf inite dihedral Sroups (i .e. 7r* 7Z), This can

also be done in Corollary 5 of [A-L] which deals with a group that has as normal

subgroups a family of nonabelian free groups such that the intersection of their

central izers is tr ivial.

The paper is divided in f our sections. In {, Z we introduce some notations,

we state the principal theorem and we show how the above described results can be

obtained from it.  In Q 3 we prove some combinatorial results related to free

products, and in Q 4 there is the proof of the principal theorem.

The whole proof rel ies on an estimate of the norm of I ' free'r convolutors.

This was f irst ly obtained by Akemann and Ostrand (tA-Ol). In order to use this

estimate, one needs free famil ies in a group. In [A-L], one encounters this problem

in a free nonabelian group, where the Nielsen-Schreier Subgroup Theorem (namely

that any subgroup of a free nonabelian group in free) stands in the background.

Since in a free product the Kurosh Subgroup Theorem is not useful enough, we are

obliged to give long arguments in order to prove that some famil ies are free.

2. Notations and the principal reults

We begin with some general notations. All  groups are discrete.

In the fol lowing, let H be an arbitrary grouP. Then:

- By e we ei lways denote the identity element of H. H* := H\tel and

ord h stands for the,order of the element h € H;

- CtHl stands for the group algebra of H. We identify the elements of H
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and their image in the group algebra;
F

- For any X = ).-i ckh € C[H] (trre sum has finite support), denote
h € H  "

suppX r={r 'e n lcn l  oJ;

- CtHl denotes the reduced Cx -algebras of H, that is the closure of C[H]r -

in the norm we obtain regarding its elements as left convolutors on the Hilbert

space tz(H). This norm wil l  be denoted by l l  .  l I".  (t frerefore there is an inclusion

CtHlc-+CilHl with dense range). Note that the elements h€H become unitaryr '

elements ot Ci(H);

-Tz dtHl*?C is the canonical trace, i.e. the continuous extension ofr

6 o : c[HJ --e c, t o(r,l".h h) = ." i

- I f  h,k€ H, their commutator wil l  be denoted by

[h,k] = r,*n- lt- I

and Ad h€ In t (H)C Aut(H)  is  g iven by

Ad h(k) = hkh- I ;

Given a nonvoid set M C H, the subgroup it  generates is denoted by (M)

and its central izer is

ZH(M) = [ r ,  e  Hl [h ,x ]  =  e ,  for  a l l  *g  MJ ;

- In order to simplif  y the notations, we shall  write T instead of Ad h, for

al l  h€ H. Therefore there is a surjective morphism

- 
: H.-r Int(H)

It is easy to check that i ts restr ict ion to a subgroup Kc I- i  is one-to-one if  and only

i f z H ( K ) = [ " ] .

- Given a subgroup K c H, by an averaging process (of C|(U)) witfr

e lements of  K weshal l  mean aC- l inear  map$:  q(H)  *Cl ( t - t )g iven by:
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I  n  - l
( l) g (h) = *.r. ki h ki '  ,  h€ H

l = l

where tUrl ,S,SnC K is a fixed set. (As a matter of fact, one defines by (l)S only

on C[H], but since

t l€txl l lH s l lxltH , for al l  X@ c[H],

O can be extended by continuity to C;(HD

It is easy to see that:

- i f  O,0r are averaging processes of Ci(H) with elements of the subgroup

K C H, then:

a) l lgtx)l l" S l lxl ln , ror al l  x€ c;(H) i

b)  e.0 ' is  a lso an averaging process wi th  e lements of  K;

-  i f  H I ,HZare 
groups and HIC H2,  then there is  an isometr ic  embedding

c;(Hr).- c;(H2).
'we 

shal l  use the funct ion s ign :  R-- 'et- t ,o, lJ,  g iven bv

i f x = 0

i f x ) 0 .

We can now f ix the sett ing. Let A and B be nontrivial grorpr, [ t  = A * B

their free product, G = Aut(f ),  the group of automorphisms of la , and

T :  A*  B - -+AXB the canonica l  morphisms,  wi th  component tT i -  l  and '11r .  Denote

KerTf = F. It  is known (151, I,  1.3, Prop. 4) that F is a free group with basis

I tu,nl I a € Ax, ue e*]

Therefore, i f  A x B I Z2x ZZ, then F is nonabelian.

For a nonvoid set Mc Ia , we shall denote

f r t =  [ l  *M* -1 .
w€ r

Since 7 , ( f  )  =  t "  l ,  . the map,
n



x€ f  H  i e  In t (1 . )

is an isomorphism.

The principal result, the proof of which will be given in $ +, is the

fol lowing :

Theorem l .  Let  A and B be nontr iv ia l  groups such that  A*  B *Zr"Z,

Then for  any f in i te  nonvoid set  M c C* = Aut(A "  B) \ t idA*g]  and any va lue

f ) 0, there is an averaging process e ot, cf (G) with elements of Int(A x 3) such

that

l l 0 (g )  l l "  .  € .  f o r  a l l  s€  M.

In the sequel, we shall  prove the results announced in $ 1.

We need the fol lowing lemma, the proof of which is standard ([H],

Proposit ion 3):

Lemma L Le't H be a group with the property that for any f inite nonvoid

set M c Hx and any value f ) 0, there is an averaging process I with elements of

H such that:

[g  (h ) l l  
H  <  €  '  fo r  a l l  h€  M.

fhen Cf (H) is simple with unique trace.

Corollary 3. Let A and B be nontrivial groups such that A * B I Zzx ZZ,lf"

a (discret) group H contains A * B as a normal subgroup wil l  tr ivial central izer;

then C|(H) is simple with unique trace.

Proof. Since P = A * B is normal in H, there is an inclusion:

Q) In t ( [ ' )  c  H '  c  Aut( la  )

where  H '= [Adh l f  I  h€HJ.  Moreover  H and H '  a re  i somorph ic  because

ZH(lt) = [e]. Therefore, the problem reduces to prove that C;(H') is simple with

unique trace for a group H' satisfying (2). But this follows easily by Theorem l, due



to Lemma 2.

Remark. It is not hard to see that the groups H that satisfy the hypothesis

of Corollary 3 are in one-to-one correspondence with the subgroups of

out(R x B) := Aut(A * B)/ Int(A * B).

,Corollary 4. .Denote AV T the family of groups that are proper free

products and are not equal to Zr* 22. Let H be a group having as normal subgroups

a fami lyt f  r l ie l  of  groups ( l  any nonvoid set) ,  such trrat  l .e F for  a l l  i  € I  ancl

A _rn([ ' .)  = ["] .
i € t  . ,

Then Cf (H) is simple with unique trace.

Proof. We shall prove that H satisf ies the hypothesis of Lemma 2.

Note first the following

for  any i€  I ,  g iven a nonvoid f in i te  set  M C H\  ZH(f  i )

and a value [ ) 0, there is an averaging process S with elements

of I" .  such that
I

fieh)llH < t' for all h € N'1.

T o  s e e  t h i s ,  d e n o t e  M r = [ a o , . l a , l h €  M j .  T h e n  M ' c A u t ( [ t . )  b " . u u r . F  i
'  

i s  normal  in  H,  and to f ,$  Mtbecause M nZH(P. )  = f  .  By  Theorem I  we ob ta in  an

averaging processS'

-e , (o ( )  = * i .4  ^ ! - l t ,  deAu t (11 i ) ,
t ' k = l  n  r

with 
{8t1}.= 1,2, , . . ,n c l ,  such that

l l0 ' (h ' ) l lc .  (  t  ,  for  a l l  h '€ M"

where C. = Rut(  F 
i ) .

Define the averaging process S of C;(H) with elements of F , by

O ( h ) = * E s k h e k l  ,  h e H .

Since, for al l  h€ H'

tr
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ll e,tna h In,l11" = || * p, -u (na ntr,)?l'll"i =

.  r  n #  r  n=|lt*-- *r,rg[r)1 (aorrlr,){1", =il * # r- *t,t|li",=

=ll*Eer. h ekr n-t{lr, =ll (* 
E *u'n s[rlr,-til n = ll*F,sr. h ekt{i" =

=il 0 tnrlln,
we see that (3) holds.

Consider now a f inite nonvoid set Mc: H* and a

f - ?
f in i te  fami ly t  i t ,  .  . , iNJ  c  I  such tha t

N
r i , l f l ( n  z * t - l , ) ) = $ .

k = l  ; ,  
, k

Denote f ' , I -  = u\  f l  zrr{ f  ,  )  for  n = 1,2, . . . ,N and M-n k = l t - ' k o

Deleting some indices iO, we may assume that

M n * t \ M n t / , f o r o ( n ( N .

value € > 0, There is a

=# (hence MN = M).

r .  >' l k

(4)n

n ,  l ( n ( N .

Since

(i) Mn*r\ Mn. ,ff. znf f,. l\ z"tl l .)t  
k = l  

t '  t k  r r  t n + l

we obtain from (3) an averaging process I (n*t) with elements of lrn*, such that

l i g ( n * l ) ( h ) l l n . € ,  f o r  a l l  h .  M n * l \  M n .

Def ine 0 n*t  
=g (n*1)"0nr do averaging process with elements of  af l t  [ r , - r .

k= l  ' k

Since

l l0 n.r(h)tH = i l 01n*,,tt lntt.. ' l l [{H !{J 0n(h)t{H <t , ror all h€Mn

0 n*r{n) = o,n*rr{rr), for all h. Mn*rr Ir4n,

We shal l  prove by induct ion on n,  for  f i  = l t2r . . .sN that:

f there is an averaging procer, 0^ with elem"nt, of < |
\  "  n  k = t

J such that

{  lgntr . , l { i "  .e ,  ror al l ,  he Mn.

This is true for n=l due to (3). Assume (4)n is true for some

and
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n is an averaging process with elements that commute

henceo nlMn*l \Mn 
= totn* l t  Mn) '  we see that (4)n*,  holds'

Therefore (4)* is true and the corollary follows.

with M .\M
n+I  n '

3. Combinatorial lemmas

Let fl = A * B be as above a free product of nontrivial groups. Each g€ f 
o

can be uniquely writ ten in the reduced form as I = 81...8r, where for I S j  ( m, Bj

is an element of A* or B* and'two adjacent gls are not both in 4" 9t both in

Bx.  In  th is  case,  def ine the length of  g  to  b"  lS l  =  m.  (We set  le l= 0) .  We a lso

define the beginnings of g to be

L (g )  :=  [  e ,81 ,8182 , . . . :B1Bz . . . g *  J

and the ends of g to be

R(g)  :=  {  " ,grn,  Bp-  1B*, . . . ,8182. . .8*1J .

For I S k S m, we consider the k-beginning of g to be lU(g) := Bl.. .Bk, and the k-end

of  gto be rU(g) := gm_knl . . .gm. The l -beginning and the l -end wi l l  be a lso denoted

by l(g), respectively r(gl

For  vr rvr r . . . ,uk€ F ,  k  )  2 ,  we say that  the product  vrvr . . .vU is  reduced i f

none of  the factors is  e  and,  for  a l l  i  =  1, . . . ,k -  1 ,  the l -end of  v .  and the I -beginning

of ui*l  are in different groups. We say that the product vlv2...vk is reduced

m o d l v j l j G  J J ,  w h e r e  : .  t t , . . . , n 1 ,  i t  s o m e  v l s ,  j € J ,  m a y  e q u a l  e  a n d  a f t e r

deleting those equal to e, we obtain a reduced product. By a statement l ike I ' the

product (v 
,v r)v, 

is reduced" we mean "the product *u3 is reduced, where

W = Vrvrr t .

Let  wrr  w,  be two words inF x.  We say that  in  the product  * l  *2  there is

a consolidation i f  r(wr) and l(wr) are both in the same Sroup (n or B) and

r(wr)l(wr) I  0 . IYe say that there is a cancellat ion i t  r(wt)l(wt) = e.

@



Let X be a subset of a group H. Then X is a free family if and only if

X n X - l = Q  a n d  n o  p r o d u c t  w = x l x 2 . . . x n  i s  e q u a l  t o  e ,  w h e r e  n ) 1 ,

I x r , . . . , x n l c  x U X - l  a n d  * i  * i *  r l e ,  f o r  a l l  I  S i S n  -  l .  ( x - l  , = [ * - t l  x e x j ) .

The following remark wil l be useful in 6 +. It is exercise l2 in [M-K-S],

-  Sect ion 1.4.

Remark.  I f  {a,b} is a f ree subset in a group H, then'{ .unb-nln '  is  a lso

t  free.

Let I- lC f] be a nontrivial subgroup. We say that g€P" begins (ends) with

an  e lemen to f  H  i f  H*n  LG) * f  { r " rp " . t i ve l yH*n  R(g )  lF ) .  Deno te

;:::j:j:;j:::T:: ;;*;"" ilTl;*:;l ,", any
g( f  \H,  there are unique e lements w€ i1(H)  and h l ,hZGFI such that  h ,  is  o f

maximal  length and g = hrrvh,  is  reduced modlhr ,hrJ ;  then en(g) := h,  hr .

Lemma 5, Let A and B be nontrivial groups such that A * B I Lrx 7r, and

let  4€ Aut(A x B) .  Then *  
ln  

= ido impl ies u(  = id6xB.

Proof. By Proposit ion 3 (the case n = 2) of [N-T], the conclusion holds i f

one of the groups A or B has an element of inf inite order.

Ihe only case that cannot be dealt with the above result is when A and B

are indecomposable and both A and B d i f fer  f . rom Z.  ( l f  A = Aio A2 is  a proper

decomposi t ion,  then ord(arar)  is  in f in i te  for  any ar€ n l  ,  uZ& n) . )  eut  in  th is  case

the conclusion can be obtained by a straightforward checking using the set of

generators of Aut(A * B) given by Fuchs-Rabinorvich (tF-R]). A cleaner proof of

this last case can be found in ([Co], Proposit ion 1.4). E

Lemma 6.  Let  a€ A* and w6l \ \  A be e lements of  in f in i te .order .  Assume



10

seN* is such that

e5(w) 6 [unt In e z).

Then {ut,rt} is a free family in [t  .

Proof. I f  w€ B*, the conclusion is clear. Therefore we assume from now

on that lwl ) 2. Then:

(5) l(wn) = l(w), r(wn) = r(w), for al l  n6 N*,

as wil l  be checked at.the end of the proof.

'Wr i te  w = d lwra,  reduced mod i . " r ,ur l  wi th  a 
f?Ze A,  wr€ I "  (n) .  gy

(6), one obtains that

l "  
uirn"2, wn€ I1(A) i f  n > I

(7) *nt = {

|  - l ' - l  ^ . -
L  a r - w n a 1 - ,  w n € 1 ,  ( A )  i f  n  (  _ 1 .

Let z be any word in as and ws. conjugating it  by a high power of ws, rve

can put  i t  in  the form:

z =  * r n l  u r . 2  * t n 2  u r * 2 . . .  u r * p _ 1 * 1 1 p

w h e r e  p ) 2 ,  n i ,  * j €  Z *  f o r  I  ! i S p ,  i  (  j S p - 1 .  U s i n g  ( 7 ) , , " o b t a i n  t h a t

(8 )  ' =  t r *n r t2 tn r " ' cP - l *nocP

w h e r e  c , e { a r , " l t } ,  . p €  1 u 2 a l l }  a n d  c i ,  i = 2 , . . . , p - l  a r e  e l e m e n t s  o f  A  o f  t h e

f o r m  a ^ a s t u . .  u ^ " t * ^ - l  ' - l " s m  -  - l  q m  - l
z  t ,  _ tu aZ- ,aI -  a-  " '  a l  or  u l '  u"" '  ^Z ' ,  By the hypothesis ,  c ,  I  e  for

i  =  2r , . , ,p-1,  therefore in  (8)  z  is  reduced mod[ . t , .p ] ,  hence z {  e .

It  remains to prove (6).

If  l  wl is even, then w begins and ends with Ietters from different groups,

hence in the product w w...w = wD there appears neither consolidation nor

cancellat ion. Therefore (6) holds.

If  twlis odd, then w begins and ends with letters from the same group. If

in ww there is only a consolidation, since l* l)2, one sees also easily that (6) holds.
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Otherwise, one can slrow by induction that w has

fi,  ve["*, such that ordfr is inf inite and in ?i l

a reduced form w = ufr v-l with

there is onlv a consolidation. If

[ff] > z, we have seen above that t6n) = t(il), .(fin) = r(fi1. Therefore

wD = v (f i^) v-l  is reduced for nGN*, and this holds even it  lVl= t.  Hence

l(wn) = l(v), r(wn) = r(v- 
l) und then (6) holds too. m

Lernma 7. Let w,v €f *. Assu*e that v t- l  i ,  reduced, and that u *- l

@,tns wi th  * - l  ( i . " .  * - le  L(vw- l ) ) .  Tr , " , ,  in  the reduced form of  wvw- l  ,h" . "

appear al l  the letters (possibly their inverses) which aPpear in w and in v.

Proof. Since r- l€ L(v*- 
l ; ,  there is an element h e I"x such that

u*- I = *- I  h, both products being reduced. There are two cases:

Case I. 
I  l : ;  then w-le l(v) and w-le n(r,),  therefore

- l  - l
V = W  U r n = U W

for sorne u 6l- ,  where botlr *- I  u and u *- I  are reduced moallu]. Since

w v w I = lr,  the conclusion is fulf  i lecl.

Case II.  v ( rv ; then v< L(w- 
l) und he R(w- l),  therefore

- l  - l  r
W  = V U r W  = U n

for  some ue[ ' * ,  where both vu and uh are reduced.  Hence u-k n(* ) .  Note that

the product v v is reduced (l(u) = l(v) due to the above relations, and we known that

.th" product vu is reduced). Let n ) I  be maximal such that v-ne R(w). Then

w = x v-D reduced toa {* } ,  hence u * - l  =  un* lx-1.  S ince w is  complete ly

cancel led in  the product  w (vw- l ;  =  1*u-n)  1un+l  * - l ;  we see that  x  must  be

cancelled in the product x(vx l) ( i .".  *- le L(u*-l)).  no*" that vx-l is reduced

moOlx] .  I f  lx l>  lv{ ,  then v- leR(x) ,  i .e .  x  = y  v  I  
reduced toa l i ,  contradic t ing

thus the choice of n. Therefore l*t < lui,  hence *-k l(u), i .e. v = x-.I z reduced

modi*,rf .  F.o* al l  these, we obtain that
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I  - n  t  - l  \ n  - l  - l
v = x  z r w = X V  = X \ Z  X )  t  w v w  = z x  ,

al l  products being reduced mod{x,z{, hence the conclusion holds in this case too.m'  |  \ '

LemmaS.  Le t  a  €A* ,  bGB*  and  c (€Au t (Ax  B )  be  such  tha t  X (a ) ,

c( (b)€'X and x([a,b]) $ v. Then( iret}f'(ab).

Proof .  Let  X(a)  = warw-1,  X (b)  = varv-1,  *he."  a1ta2€A*.  Replac ing,

possibly, a, and uZby their conjugate with elements of A, we may assume that

walw t  uno vazv I  ur"  in  rec luced form modt  * ,u1.

One has six cases:

Case I. w = € or (and) v = e. There are the fol lowing subcases :

a) p4 (a) = a1, X15) = a2r u( (ab) = ara2i

b)o((a)  = wdrw l ,  w6[ .  * ,  o( (b)  = a2;  x(ab)  = v , rarw- lar i

c )X (a )  =  a r r  c ( (b )  =  v6 . rV  L ,  v  e [ t * ,  ( (ab )  =  u ruu ru -1 .

Subcase a) is tr ivial.

For subcase b), there are three situations, depending on the fact that the

- t
product r- '  uZ has a consolidation, a cancellat ion or i t  is reduced. If  there appears

a consol idat io l ,  than l (X(35)) ,  r (X(ab))e A,  hencex (ab)#<ab>.  I f  there appears a

cancellat ion, then w = arit  is in reducecJ form for some i i lgl-(n), so that

oC(ab)  = ar tu t f i - l  is  . "duced.  The assumpt ion c t (ab)e Gb) wi l l  then imply  that

the only letters appearing in x (a) and o( (b) are u*1, b 
t l ,  

hence o4 ([a,b])<;. F,

contradict ion. Finally, i t  t- tu, is reduced, then X (ab) = wd tw 
1", is reduced,

hence the same argument as above shows that c( (ab)f<ab>.

Subcase c) is similar to subcase b).

Case II.  The product *- I  u is in reducecl form. Since

- l  - 1 .
C( (ab) = warw 'v arv 

'  is in reduced form,

imply that the only letters appearing in

the assumptionq (ab)€ (ab) wil l  again

x  (a )  andX(b )  a re  aJ l ,  b t l ,  hence
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O( ([a,b])g F, contradiction.

Case I I I .  v = w f  e.  Then X(ab) = wararw-1. Since uI^Zte (otherwise

o((ab) = e), the above expression of o( (ab) is reduced, therefore o((ab)# <ub>

because it  beings and ends with letters from the same group.

Case IV. In the product w- I v there are cancellat ions and consolidations,

but  ne i ther  w.- .1  nor  v  are complete lv  cancel led ( i .e .  wd L(v)  and y- l f  R(ry- I ) ) .

Then ( (ab) beings and ends with letters from the same group (because

-  - l '  I  r
(  (ab)  -  war(w- 'v)aru-  t  is  reduced) ,  hence X (ab)  F <ub>.

Case V. In the product *- lu, r- l  i ,  completely cancelled ( i .e. we L(v)),

b u t  v l w l e .  T h e n  V = w v ,  i s  r e d u c e d  f o r  s o m e  u l € l - t ' ,  a n d

V(ab )  =  ru lu lu2u r t * -1 ,  where  the  p roduc t  v ra rv r l * - l  i ,  r educed .  I f  l ( v r )  *  ^ r I ,

thenc( (ab) begins and ends with letters from the same group, hence tX bb)$ (ab).

Otherwise,  v l  can be wr i t ten in  the reduced form v,  = u; l  uZ,  u2Gf * .  ( I f  v ,  =  e,

then vr€- Ax. But this is impossible because r(vr) = r(v) e B.) Then

- t  - t  - t  - l
o(  (ab)  =wv2a.v. 'a lw ^ ,  

wi th  the product  v2a2v. 'a lw 
'  

reduced.  I t  w is  not

complete ly  cancel led ( i .e .  * - '4  L(vrarvr t " r* - l ) ) ,  ,h"n o(  (ab)  begins and ends

with letters from the same group, hence ( (ab) f <ub>, Otherwise we can use

Lemma 7. Hence, i f  r{ (ab)€ (ab), then the letters which appear in vrarv)I", and

in w can only be utl ,  bi l .  Th"."foreX ([a,b])Gi F, contradict ion,

Case VI. In the product *- lu, v is completely cancelled ( i .e.

u:LG R(*- l ) ) ,  but  e  I  v  I  w.  This  case is  s imi lar  wi th  Case V.  @

Lemma 9.  Let  aeAx,  b€ Bx

is inf inite for some k€2. Then for any

tr((ab)3d *o{un)3t) = (ab)€

rr((au)3€wo{uu)35) = (un)i

be such that ord (wo(aU)k)and

- l

*o€ [t (<ab>)

Se { - r , r  I ,
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Pa.rticularly, if r(wo) € B, and either one of the conditions below are satisf ied:

( i) a2 I e;

$i1 uZ = €r ahd *o I b- l ,

then l((ab)wo(ab)) G A and r((ab)wo(ab)) e e.

Proof. One can assume that r(wo) €8. Indeed, i f  r(wo) eA, let 's denote

A ' = B r  B r = A r  a l  = b - 1 ,  b ' = a  l .  T l r e n  P ' = A ' * B ' =  1 1 ,  ( a ' b t ) = ( a b ) ,

wo€ f ((a'b')),  ord(wo(a'b')-k) = ord(wo(ab)k) ana r(wo)G B'.

Therefore from now on we assume that r(wo) 6 B. There are four

possibi l i t ies to choose 6 anO /.

'  
C a s e l . t = l r f , = 1 .

If one of the condit ions ( i) or ( i i)  holds, then:

l((ab)wo(ab)) e n

r((ab)wo(ab))€ B.

We l ist the subcases and give some hints:

l) |  wol ) 2. sinc) r(wo) € B, woab is rectuced, and (an)- 14 L(woab)

b e c a u s e * e  F ( < a b > ) .
o

-  2)  I ro l  =  l .  Then ro = b1r  where b le B*,  and a l l  fo l lows f rom condi t ions

(i) and (i i) .

I f  a2 = e and ro = b- l ,  then (ab)wo(ab) = b. As orcl(wo(ab)u) I Z, one

obtains that b2 f e. Then:

t((ab)zwo(an)2) e n
) )

r((ab)'wo(ab)') € B.

C a s e l I . 2 = l r d = - t .

In tlris case one has that

l((ab)wo(ab)- l) o n

r((ab)wo(ab)- 
l) e a.
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To see this, we make an analysis based on lwol. The appearing subcases

can be dealt in a straightforward manner,

If  lwol > 4, al l  is clear because *o€ F(<ab>) (hence (aU)-l{ L(wo) and

abd R(w )).o '

I t  lwol  = 3,  then wo = bra1b2 where a l  €  A*,  b l ,bz€ B*.  one has the

following subcases:

l )  b l  I  b - l  and  b r /b ;

-  
2)  b ,  = b- l  (h"n."  a ,  I  a- l  b" . "ur"  wo€ F (<ab>))  andbr{b;

3 ' )b I l  b- l  and br=b (hence a,  I  a  because wo€ F (<ab>)) ;

4 )  b l  =  b - l  and  b r=b .

I f  two l  =  2 ,  t hen  wo=arby  where  a r€  A* ,  b lG  Bx .  S ince  wo€ f  (<ab>)

the only subcases are:

l ) b ,  = b ;
I

2)  b,  = b,  hence a,  I  a .-  
L  t '

I f  lwo l=  l ,  t hen  *o=  b l ,  b l6  B t  and the  asse r t i on  ho lds .

C a s e I I I .  f  = - i , d = 1

Since r(wo)C B, one has that

l(ab)- lwo(ab)) g B

r((ab)- lwo(au)) € n.

as can be easily seen both i f  lwol ) 2 and if  lwo 1 = l .

C a s e  I V .  f  =  - 1 ,  d =  - l

I f  none of the condit ions ( i i i )  - (v) below is satisf ied

( i i i )  wo  =  b  and  a2  =  e ;

( iv) w^ = a2buno u2 I 
" 

;o

(v) wo = ab2 and b2 I e,
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then we shall prove that

f I((ab)- lw,,(ab)- t)e u.
(e) 

l. .((au)- ''otuol- l) e n.

tt l tol ) 4, the assertion holds becausewo€ F (<ab>) (lrence au { l(wo)

and abS n(wo)).

I f  lwol= 3,  then ro = b 
lu lbz,  where ar€ A*,  b i ,b2€ BJ( .  S ince

woe f ((ab)), the only subcases are:

t )  b r {  b ;

2 )  b r :  b ,  h e n c e  a r /  a ,

and both give (9).

t t  lwo l=  2 r  t hdn  to  =  u lb '  where  a r€A* ,  b l  €  Bx .  The  fo l l o r i v i ng  (no t

disjoint) possibi l i t ies can appear:

l )  a ,  l a a n d b l l b ;

2)bI=b hence ur{  ^2 (because ( iv)  doesn, t  l ro ld)

3)  a ,  = a,  hence b l /_bz (becasue (v)  doesn ' t  ho ld) ,

and a l l  g ive (9) .

I f  t *o l= l ,  then *o = b l ,  b l€B*,  and we use the fact  that  we are not  in

situation ( i i i ) .

I f  we are in situations (i i i ) ,  then (ab)- lwo(ab)- I  = b- l .  As ord(wo(ab)u) { , ,

one obtains that b2 { 
", 

hence

l((ab)-zwo(ann)-2)€ e

r((ab)-2wo(au)-2) e n.

or (v). For example, i f  ( iv)The same is true if  we are in situation ( iv)

holds, then

b- la- lb- 2u- t, i t b2 t 
"

, - l  - 2  . . . 2
D  a  r l I D  = e .

(ab)-2wo(ab)-2 = g
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For the next lemma, we need the fol lowing definit ions:

Def in i t ions.  Let  a€A*,  b€Bx,  wqf  and k€2.  We say that  w begins

(ends) rvith (ab)k i f  (ab)k € L(w) and (ab)k+e4 ,t* l  (respectively (ab)k € R(w) and

(au)k*g4.  n t * ) )where  t  =  s ign( t< )  i f  k  looand €€{ - t ; l }  i t  k  =  0 .

For an arbitrary word v €11.*, we say that w begins (ends) with v i f

v€ L(w) (respectively v € R(w)).

(The ambiguity of the above definit ions wil l  not be misleading).

Lemma 10. Let a€ A*, b€ B*, v;o€ ft(a[y) and keN be such that

ord(wo(ab)k) i ,  inf inite and r(wo)€ B for k ) 0. Then, for any n€N*:

l) i f  k ) 0, then [*o(an)kf begins with wo arrd ends with (ab)t, where

t e { t < , t < - t } ;

2) i f  k - 0, then *: begins with t"n)f, and ends wi*r (anf I where

4* ut- r,o,l1.
Pro,of. Denote w = wo(ab)K.

case I .  k>2.  i t  u2 *  
"  

o ,  u2 = e dnd wo I  b- l  the second par t  o f  Lemma 9 shows

that:

l((ab)wo(ab)) € n

p((ab)wo(an))€ s

Then

wn = wo(ab)k- l(ab*oabXab)k- 2... t"brouuXub)k- 1, n€ N*,

is reduced moo[ab)k-tJ, t"n." wn begins with wo. Since ro(abwoab) I (ab)2 for any

woe F ((ab>), wn ends with (ab)k- I or (ub)k.

lf. a2 = e and ro = b 1, 
th"n b2 { ., because ord(wo(ab)u) l r, and it is easy

to see that, for n ) 2, wn begins with wo and ends with (ab)k- l .  (Onu has w = (ab)- I

b(ab)k-1. Th" only diff iculty appears when k = 2t but then ord b is inf inite and the
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statement is also true.)

Case II.  k = l .  Since wo6 la((ab>), one has that l(abwo)eR.

I f  f  wol )  2 ,  then r (abwo)68,  because r (wo)68 and woe{4143b)) .  Hence

wn = wo(abwo)...(abwo)ab is reduced for n ) l .  so that wn begins with wo. Now

again rU(abwoab) { (ab.)z, hence wn ends with ab.

tf I  wJ = l ,  then either r(abwo) rc B, and we use the above argument, or
- t  - l

wo = b-' ,  w = b- rab and ord,a is inf inite. Hence wn' ends with (ab) for n = I and

with (ab)o for n ) 2, and it always begins with wo.

Case III .  k = 0. l t  Iwol is even, since the product wD = wo w ...wo is reduced, the

conclus ion holds wi th  f  =  6 = 0.  The same happens i f  lwol= l .  I t  remains to  s tudy

the casel*o{23, . f  rvo lodd.  Then wo begins and ends wi th  le t ters  f rom the same

group. If  in the product wowo there is only a consolidation, .we obtain again the

conclusion with f,  = {- = 0. I f  in wo wo there appear cancellat ions, then, l ike in

Lemma 5r rvo has a reduced form wo = ui lou-1, *h..e f io,v€lo-' ' ,  ordio is inf inite

ancl in f ioio appears only a consolidation.

If l ;ol2 2, then l&:) = t(fro), rdll = .(fro) as in Lemma 6. Hence

wD = v Glp- 
I 

i, reduced and ru(w!) = lu(wo) ; .r(*!) = rr(wo), where

u = jvJ + I  )  2,  therefore wne l t (<ab>).

f  lq l  =  l r  ds  o rd f io  i s  in f in i te ,  * l=  
"G; f - I ,  

neN* ,  i s  reduced and

t ,u , (w! )=1 ,u , (wo) ,  . ,u , ( r l )= . tu l ( ro ) .  Hence wf  e f (<ab>)  fo r  l v l  22 .  Whi le  fo r

iv f  =  l ,  1w! l=  Sr fo r  any  n  )  l ,  hence wh cannot  beg in  o r  end w i th  (ab)s , l t l2  z .g

Lemma lI. Let aCjA*, b€Bx, wcR{q1r7and choose klrk2? Z such that

w = (ab)kl  *o (ub)k2, the product is reduced mooi(uu)kl ,  (ub)k2t, lkr l is  maximal

and wo€ Ia(<ab>). Then there exist wo€ fl (<ab>) and k'. t k, + k2t

k, + k, - sign(kl * k2)] such that lta((ab) 
ut)(*) 

= w; (ab)k' and the last product is
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reduced modt(ab)k 'J.

Proof.  I f  s ign(k 
,+kr)  

= s ign kror k l*k2= 0,  then the assert ion is t r iv ia l

with wi = wo and kt = k, + kr,

If sign(k , + kr) = -sign k, t lrere are two cases:

(i) k2> oo l<l + k, ( o;

( i i ) k 2 < 0 ' k l + k r ) 0 .

Their proofs are similar, so we only prove case (i). Since kZ) 0, r(wo)€ B.
l l

Then r(wob- la- t)e n because woe f (<ab)). Therefore the product

(wob iu- tx"o)u Yk2+r

i s  reduced roo{ tuu)k1+k2+1,  .  Now the conclus ion holds wi th  wr  = o,ob- l

k '=  k l .  + l< r+  I  ( s i nce  k l  (  0 ,  l (wo )€8 ,  hence  w '  e  l t (<ab>) .  m

Lemrna 12. t-et a€ A* , b G B* and w e 11 kab> be such that ord w is

und 9<.b>(w) = (ab)s , s6.7. Then { wN, (au)N J is a free f amily in f

N  )  2 t s l +  8 .

Prcof. Let krrkr€Z be such that w = (au)klro{"b)kz, where t lre product is

.  k r  k r .
reduced  mod{ (ab )  

' ' ,  
( ab )  ' 1 , I k r {  i s  max ima l ' and  woe  P(<ab) ) .  Then  s  =  k ,  +  k r .

To prove that { 
**, (an)N 

I 
is a free fanri ly, i t  is enough to prove that

.  - k r  N r

f ha {tuu)-n\(*)lN, (ab)N ! is a free f amily.

By  Lemma l l ,  one  has  wr= [Ad(ab )  
' o t ] ( * )=  

w ' (ab )k ,  where  w 'e  f  ( (ab>) ,

ke ls ,s  -  s ign(s) | .  Moreover ,  we can assume that  k20.  Indeed,  i f  k  (  0 ,  then

deno t ing  B '=  A r  A '=  b ,  a '=  b - l  and  b r=  a -1 ,  o r , "  has  a 'b '=  (ab ) - l r ' t f  e f  (<a tb '> ) ,

w'€f \<a'b'),  ordw' is inf inite and *r - $/r (3r5r)-k.

Therefore we can assume that w - wo(ab)k is reduced with wo€ f (<ab>)

- t
a ano

in f in i te

for any

a n d k e { F l , t s l -  l t n N .

Now, Lemma l0 implies that for al l  n ) I

[  
** m = (ab)cn *n {ab)dn reduced .noo\{"u)tn

( 1 0 )  {  .\ r v l  

L  
o n .  { t , t <  

*  l ,  k  -  t } ,  c n e  l - 1 ,  0 ,  l }  .

O ^ r
,  (ab)-" 

l ,  
where wne F (<ab>)
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i tTake a word x in *N and (ab)N. Conjugating it  by a high power of (ab)N,

can be put in the fonn:

x = (ab)NslwNtlc t (uo)*trrNt2€2 .  .  .** 'oop1u5;Nsp+1

w h e r e t , e  N x , € i .  {  
- r , t } , t S i ! p ,  t j * t , l S  j S p +  t .

Using (10) we can wri te
Ns 1 r-f i +gorf I 

tuu)N 
r2+f 2+g 1*€t... 

do,uo)N 
rp* I +f p+ I +Bp

x = (ab) 
- l  .z .p

where go = 0, fp* I 
= 0,

4. Proof of the main result

We define, for nc N* and v e=.F the fol lowing averaging process:
/ \  t  h  - - r -  -  - r -
U^ ..(.(, ) = *E un*X u-n* , .>(6. Aut(f ).hrV n 

[=.
Theorem I wil l  be proved using Lemmas 13 and 14 and the Theor.em of

Akemann and Lee (which can be deduced too from these two lemmas). Al l  these

[ . j ' f o r 4 - = I
f . = {

t- -0,, for c. = - i

I  
o j , f o r c ,  = t

8 i =  i  ,  l S j s p .
l- -t j ,  for €' = - I

D e n o t e  N s ,  + f j  * g j _ l = n j , $ . = s i g n ( n . ) ,  f o r  i 5  j S p +  l .  I f  I n ,  1 2 6 f o r

al l  I  (  j  (  p *  l ,  then xcan be wri t ten as
.  . " t - l 6 r - .  a 3 ,  f . ,  a 6 ^  .  . . 1 1 2 - 6 6  ? - .  . , Z E z  € 2 , . . 3 5 i -  .  . r y - 6 E  3x = (ab)"r  

-  t [ (uul  t  r* t  1ab;-  
' ] (uu) '  ' [ (uu)-- ' * - r t t^o)-  * ' ]  

(uu) '
F  -  

t l

[(uu)3d o*lo (uo)'bp* I ] (ab)np* 1* 3d p+ I .

Due to 1"f irnu 6, this product is reduced rooi(*n)n. i-6sj1z S jS p ! ,  hence i t  is

distinct from e.

B y ( i 0 ) ,  m a x  I f ,  *  g , _ , 1  l Z k + 2 (  2 l s f  +  2 .  T h e r e f o r e ,  i f  N ) a s l  +  8  )
l ( j ( p + l  '

2*qx l f ,  *  g , - ,1  *  5 ,  then x I  e .  This  shows r r ,u ,  { ruN,  (ub)NJ i ,  u  f ree fami ly  in
l ( j ( p + l ' J  

' ' J - r t  
L  J

[ ' f o r N ) 2 f s l  + 8 .  g
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results rely on the following consequence of a theorem of Akemann and Ostrand

(A-Ol) :  i f  l f r ,1r5,5n is a f ree fami ly in a (discrete) group H, then

rl-
l l  Ehi i lH = 2{n-r .

Lemma 13. Assume a€A* and o(€Aut(6* g;  are such that a is an

element of  inf in i te order and X(a)dA or c4- l to l t 'A.  I f  ne Nx is such that

qnfi(a), o(- ltullt a) fl {unklr. e z*1 = d
then lt %,"(a; flc = z,liri/n.

Proof. Denote { (a) =
- t .

w,r  o(  
^(a)  = w^.  S ince

r . - l

f T= 1ltulrt, br /!eAut(r), ve la,
we obtain:

ll gn,urx)llc =l{ rf *iilAqrr N tl" =
n  -  A - l

-ll *Hunu*;n''/1" =il *n" *;nk llr
respectively:

l l on,ur<)ll" =l|,< r**Fr"S" *rll"

=tl*** znt'u-nolln .
K = l

By Lemma 6 appl ied to  r l

1 ^ n k .  - n k )  |  n k  - n k )

iu 
*l 

lrqr or 
1*r 

u lr.2r
ordw,  = ordw2 = orda) ,  . therefore the

Akemann and Ostrand.

Lemma 14-  Assume a€A*,  beB* and 4dAut(A *  B)  are such

the fol lowing situations holds:

(i) o((a), x (b)el and or (a,bl)4 n" ;

( i i )  n  
t , u r ,  

< l (n )e I  and  * - l ( [ u ,u ] )dp .

I f  n€S[*,n ) 8 is such that

ecuu>( {x(au), o- lt"ult\(ab)) c {tun)' lt*, 5 (n-s)/2 } ,

or *Z and by the Remark from Q l,

is a free family in la (note that

conclusion f ol lows f rom the result of

g

that one of

then f[ 0n,"o(n) llc = z{i-i7n.
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- l
Proof. Dettote X(ab) = *1, d,- l("U) = *2, As above, we obtain

l l0n,ou({ )llc = il * *,"0)no',nu lln=[ * E*!k 
{"u)-nu ll," .

Also, ordw, = ordw, = ord(ab) is inf inite. I f  ( i)  (respectively ( i i)) holds,

then, by Lemma 8, ( (ab) f <ub> (respectively O- 
l("U) 

/ <ab>) therefore the

restr ict ion on n shows that we f i t  the situation of Lemma 12, hence the family

I tuulnk*rnulu2, 
(respectiv"rv 

{r lk 
tau)-nl ' }k2r) is free in I t  ou" to the Remark

from $ l.  The conclusion fol lows again applying the result of Akernann and

Ostrand.

holds:

( i) D((A)c

(i i)  o< (A) a

Then o<(F) c F.

Prtrcf. We

Le t  a€A*

such that

c((a) = ua'u- l ,  c((b) = wb'w- l .

Then:

r t  (q(a))  = 1T(v) (a, ,e)Tl(v)- l  = {T[r(v)a,  1[r{v)- i ,e)

T({(b)) = (e, ?Tr(w)u' ltr(,")- l)

hence

'lI(et([a,b]) = [f i (ot(a)), n (o<(b))] = e,

that is

1(spTf, = F.

ne e*l8enerate F1 therefore

B

Lemma 15. Assumec(€ Aut(A x B) is such that one of the situations below

R and o<(B)cE;
,\, fu

B and  o ( (B )  cA .

shall  verify only the case (i),  the other being similar.

,  bGB* .  Acco rd ing  to  ( i l  t he re  a re  a '€A* ,  b ' e  B*  and  v ,we  F

o< ([a,b])e

nu t { [a ,b ) laeA* , tswe get that o((F)c-F.
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Proof of Theorem I

For x,y e 11, denote

Gr  =  {  deAu t (A*  B ) l  e (F )  =  F  \ ;
cr(x) = {*eRut(A* n) luk)f i  uE o. oi l(*) ef uB t;
G ,(x,i = {cr e Aut(A * B)ld (x), o((y)eX and or ([x,y]d r.,

or, oal(*), o<-l(v)EI gnd o< l{t*,r1401.

co(x,l) = 
lo. Aut(A * g) I q(x), c( (y)et and o( ([x,y1;go,

or, 64- l1*;, oa l(v) eB ano o< l[(*,yi;d r ].
we begin by inferingsome consequences of the preceding Iemmas.

c,  is  a subgroup of  G, having F = 1r= Adf l ter .  \  as normar subgroup
_ t(because f i f q  ' =  o t ( f ) ) .  S ince

: A * 8 . . . - + ' A u t ( A * B )

is  one- to-one,Fis  isomorphic  to  F.  Moreover ,  s ince

qe7. (F) <-> c(Tc<-l = f for all fe F* r
+>ffi = f fo. alt f€F

G+ct(f) = f for all feF,

we get by Lemma 5 that z-  (F) =i" t .  consequent ly,  G, has as normal subgroup* l  t  t  '  l '  
I

with tr ivial central izer the free nonabelian group f hence the proof of the

theorem of Akemann ancl Lee shows that:

( l  i )
t 

for any finite nonvoid set Mc C-f and any € ) 0, there is an

I 
aue.aging process & with elements of F, such that

I  t t  0t411 .  (  €,  for au qe M.
L  " l

Since for all v€la and o(6 Aut(1") one has:

? r(7l(*)  = (v q(v)-  l )  o,(*)  (v o((v)-  l ; -  l ,  f  o.  a l l  x  €F,

and since F is a normal subgroup of {Trwe see that for any x,yef-:

I  
o  a  c r (x )  *>To.7 le  Gr (x ) ,  fo r  a l l  veF;

( t2)  {  
-

\r 4' '  
L o a Gu(x,v)=+ ?6.i le cu(x,y), for all ve F, where k = 3,4.
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Lemma l5 impl ies

(13 )  G \G,c . f  U  -Gr (x )JuI- x6 A-U B* '  (xry

(l 4)

)eA*x B*
[Gr(x,y) u Go(x,y)J.

Denote by $ t|^re f amily of al l  nonvoid sets of the type Gr(x), cr(x,y),

GO(x,V) that appear in the union above.

Note that Cr(x) { f i  implies that ordx is inf inite, because a consequence

of Kurosh's Subgroup Theorem (tKl) is that . any f inite subgroup of A * B is

conjugated to a subgroup of A or B (hence if  ord{(x) = ordx is f inite, then

o( (x)eT u E).

By Lemmas l3  and l4  we in fer  that

I  
for  anyC )  0  and 

"oa 
3,  g iven a f in i te  nonvoid set  M.Go,  there is

t -
' l on averaging process 0"witl't elements of F 5s66 16u1
I

I  
l lF(q)l l" <e , for al l  o(€ r,4.

After this preparations, we are ready to prove the theorem. Let M c. G*

be a.f inite nonvoid set arrd 6 > 0. By (13), [ .4 can be written as a disjoint union
N

M =  U  M ; i
i = l  

I
( N > l )

where  M,  =  I \ 4  f lG l .G f  ,  and  fo r  i  =

d I n,r,t 5..

TD
2, . . . ,N there are groups G.€ Y such that

We shal l  prove by induct ion on n,  for  n  = 1,2, , . . ,N,  the s tatement :

f 
there is an averaging procer. f  n with elements of Fsuch that

( 1 5 )  4  , , ^  . ,  " n
" - 'n  I  i l  Pn tx ) i l "  (€ ,  fo r  a l t  o re  U Mi .p \  - / . r G  - -  .  - f r . . . i -

For  n  =  l ,  th is  ho lds  due to  ( l l )  ( i f  M t= .F ,  we take  0 ,  =  iO) .  Assume

(15)n holds for  some n, '  I  (  n (  N. Denote

M(n* l )  ,=U lsuppdn(x  ) l o .€  Mn* r  1  .

Then M(n* l )  is  a  f in i te  nonvoid set  and M(n*t ) .Gn*,  due to  (12) ,  therefore (14)

gives an averaging process 0 
6*t)with 

elements of Ttsuch that
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(15 )  [  9 ,n * , , ( x ) i l " . €  ,  f o r  a l l  dGM(n* l ) .  
n

we  de f ine  Fo* t  =  0 (n* I ) ' gn .  Then  fo r  ( " ,Y r t '  one  has

-  
l l  9nnr(q) l lc = {  9(n*r)(  0ntx))  l lG l l l  9nt<) l l "  < e

and for  n*  *n*r r  one has

l{ Pn*, t r, ) l/c = ll P (n* ,,tP ntx )) /1" < s

by (16) ,  because Sn,q) is  a convex combinat ion of  e lementr  o f  M(n* l ) .

Therefore (15)n impl ies (15)n*1,  hence ( lJ)N holds,  and the

proved.

theorem is

EI
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