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FA\éfass of holomorphic vector bqnd!es

on two-dimensignal tori

Let X be a nonalgebraic compact complex surface, It is an
open problem to decide which topological vector bundles on X ad-
mit holohorphic structures, It has been established which topolo-
gical vector bundles admit filtrable holoméorphic structures
Ls - L]. (Recall that a holomorphic vector bundle E is filtrable

{ff there exists a chain of coherent subsheaves of E
Oc;Fic veoe €F = EFE on X such that

rank Fi=i)‘ But there exist holomorphic vector bundles wﬁich are
not filtrable, or even not reducible [E-E],YB - L] }A holomorphic
vector bundle E is called reducible if it admlits a coherent subsheaf
F such that O0<rank F {rank E),

tn all the examples appearing in {F—F],(}—i],[él these bundles
also admit filtrable hotemorphic structures on their underlying topological
types.

Thus, it wouldbe interesting to exhibit larger classes of
nonfiltrable or of irreducible bundles,

The purpose of this paper is to prove the following

\Pfdposftioh. Every (complex) topological vector bundle E on

a two-dimensional complex torus X having ¢, (E) & NS(X) and /\(E)=0

admits some holomorphic structure,



We denoted

i1 el
DE) = 2(ey(E) -T2l ¢ (£)?)
r
Zr
where ¢ = rank E, .
Using the proposition one finds examples of topological
vector bundles admitting holomorphic structures but no filtrable

(Corollary 1) or even no reducible structures (Corollarv 2),

1.3 Pféof\of\the Proposition

- First a

Lemﬁa
Let X a two dimensional complex torus aéNS(X) and p a prime
number with p]% az. Then there exists an unramifled covering

q:X'—>X of degree p and a’'€ NS(X') such that
pa’ = q*(a)o

“Rroof
Let [ be a lattice generated by BQ""'XL in ¢? with Xécz/r.
By Appell-Humbert’s theorem (see (M]) it follows that through the

natural isomorphism
H2(x,2) 2 A1e2(T, 2)

NS(X) is isomorphic with H(Cz,r‘):={H ‘H hefmitian form on €2
with tm H(TxT) e 7}, |

Here H(CZ,T1) is seen as a subgroup in-Alt%(P,Z) associating
to each hermitian form H in H(Cz;r1) its Imaginary part Im H g

€ Alt%(P,Z) which completgly determines H, -



~ Thus we have
Ns(X)Z{a [ A hermitian 2x2-matrix

with In(*M AT € n,(2) ]
where rT::(X],.;..XQ) is the perfod»matrix ( Xi are column vectors),

We associate to each hermitian 2x2-matrix A in NS(X)them'atricesA1

AZ’A3 MZ(Z) giving the decomposition

(1) = m(*maf)

Since Im(tTWAiﬁ) is skew~symmetric we get the above form and

A].A3 skew-§ymmetric.

0 ) & fb 0 T
Let A, = y A= S /s A= "
-8 0 X - w B 0

The intersection form on NS(X) corresponds to the exterior
product of alternating forms (see [M] )s Computing we find that

If a€NS(X) is represented bv A as above, then
2 .
a =2W§-Ff-9@

(cf. [8F], 32).

The hypothesis of the Lemma becomes:

p |é-pg-07).

We shall consider tori X°® appearing by factorizing Cz’through

lattices obtained by multiplying by p one of T"'s generators X}



S

and presefving the~other§; The proJectfon qiX'—>X will be an
¥ ~S
unramified covering of deqree p, If [ is the period matrix thus

obtalned for X' we will need to get:

m(*af)en, ¢ 2,

=

The-elemenf>%AéENS(X’) would be the Iookéd for a';

We dehote

o~ ~
51 Ay

= MNtﬁA%)
SO :
~A, 3

Notltce that If. Fﬁ is.obtained from Il multiplying b§ p column 1
or 2 (resp,3 or 4) then/x1€ Mz(pZ) (resp{KBé:Mz(pZ)) ana line
(resp.column) 1 or 2 of XZ Wil Eaks valoes 9 pZ,

In order to reach our ﬁurpose (Foey that Kié.Mz(oZ) for all

Ié{l,2,3}) we will make a suitable base change for " . Another

base Ofiqg (X;)f=f—h , is related to the previous one by a matrix

? s
MEM, (Z) with det M=%1:

x;=j‘3mﬁ XJ"

gtvfng the corresponding beriod matrix

r1ho=TkH
hence-
! Al A} : I
3 = (DA )=
] “tA' A'



=tm(*MET A FAM) =M M,

; '-a b
Writing M= ( )with a.b,cgiéMz(Z) we get
c d

gt e g t t
A1 aAla : \Aza + aA2e+ cA3c

il A t t
A2 aA1b HFmAzb + aA2d+ cA3d

st et t 1
A3— bA,b~"d A, b+ bA2d+ dA,d

1 3
From now on. we reduce all computations modulo p,all equali-
tles taking place in Zp.

By assumption det A,-30= 0,

2

We distinguish two cases:

1) det A,#0

11) det A,=0

2

i) det A, #0
Then 8#0, 7 #0,
: - ~
It will be enough, cansidered the form of A, to find M giving

one null line (say the first) of AJ and A3=0,

2 3
Choose c=0, a=d=lf= (‘ 0> + Then
0 1
(2) Aé=A1b + A2
et - % t
(3) A3="bA b="A b+ "bA,+A,

. b, by,
A b=8 |
=by. =by

From (2) and the requirement that the flirst line of A2

2 should

be null we find:



(4) by=-0"& ,b4=-e"[a

3

B g? _
If Al ﬁ( )i €3), (4) and the hypothesls imply
¢' 0
o - - - ' =
z'=8(b b, -byb,)-xb, th+Pb]+§b3+Z = 0
Hence b,,b, can be arbitrarily chosen,

i) det A,=0
Then 8=0 or = 0,
Assume 8=0 (the case & = 0 is similar)
Choose b=c=0, a=lI,
$=A = !=
Then A;=A,=0 and A A,d.

It is enough to find d such that Ai has a-null column, the

flrst for instance, |f

dy  dy)
d = this comes to
d3 dh
xd1 +13d3 = 0
Y‘d1 + §d3 = 0

Since det A,=0 this system admits nontrivial sélutions (dy,
d3). Moreover, one can find a solution with one coordinate  equal

to 1, say d1=l. Then we choose d,=0 and d4=1 and qget

10
d=( °
‘ d ]

3

Returning to integer values we can choose in both cases
(1 and ii) representants M EMQ(Z) with det M=t1 for the classes in
Mu(Zp) found above, One can take, for example all inteqer represen-

tants from £0,1....,p-l§. The Lemma Is proved.



Now we prove the proposition using Ihductlonvon the number n

of prime factors of r=rang E:

For n=0 we have r=1 and the statement is tfue since
¢, (E) ENS(X) by assumption,
Assume now the proposition is true for n, We shall prove it

for n+l, Let p be a prime factor of ¥,

0= AE)= =(e, () - Sl e (E)%)  implles

~n

41 5

pI? cI(E)L (the intersection form on NS(X) is even), By
the Lemma there exists some unramified covering of dearee p
q:X*=>X and a’e NS(X*) such that Da'xq*(c](E)). X* is aqain a to-

rus, Consider on X’ the topoloaical vector bundle F havina rank(F)=
; A *L
=£ = ’ = D~ * ’2 =KD‘ 2
7 p ’ CI(F) a 9 CZ(F) zr a —7’?— C](E) eZ.
o]

(q*:Hh(X,Z)gl*Hh(X’,Z):‘:’Z is the multinlication by p)..

Then A(F)=0 and F admits holomornhic structures bv the induc-
tton hypothesis,

Let G= ;l, Z,...,ZD-I} be the deck-transformation gqroup of
X*/X (these are translations of X') and E’=F @ z*(F) @...@(50-1)*0#.
Then c1(E’)=pc1(F)=pa’=q*(c1(E)) (ci(E*(F))=ci(F) since %is ho-
motopous to 1), cz(E’)=\3£%;il c1(F)2+pc2(F)=pz\£%l a‘iZX(E’)=O.
One has canonical isomornhisms E* — (Z™)*(E*) compatible with the
action of & on X*® hence E® induces a holomornhic vector bundle E"
on X such that o E"=E*, It follows that A(E")=0 and ¢1(E“)=

=c,(E), hence the underlying topoloaical vector bundle of E'" is E,

which closes the proof of the proposition,
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2, -Corollaries and Remarks

Let X be a compact complex surface, a €ENS(X) and r a positive
: I;Eééer.'We make the following notations:

> 2
NN TICE N
L

bl a)e= inf{ Ll s(r,ka)‘ k=l,r—lf}
When X is nonalgebraic these numbers are non-negative,

Remavyk~1, For.X nonalgebraic and E a flltrable bundle of

rank r on it A(E)> s(r,cl(E)) (see [B—L} § 2 for the proof),

Remark 2, For X nonalgebraic and E a reducible bundle of

rank r on it

AE) Y tr e, (E)).

~ Proof,
Let 0*?E1—+ E~—> EZ_’ 0 be an exact sequence with Ei coherent
sheaves without torsion of ranks r. and havina c](Ei)=ai

{1=1,2)5 Let a=c1(E). Then a,+a,=a, r,+r,=r and bv Riemann-Roch’s

‘

formula for E, E, and E2 we find
N AT 2

Since A(E,)70 (see [B-L]) we have

1 [ a2 \a% 9% I A 5 2
A(E)zw<?—-—?-—;)=-7}1rz(r 'az)

2 BT s(r,rpalyt(ricy(E))



Coroldary- 1

Let X be a.non~algebraic 2-torus, roa posftive inteqger,
a€ENS(X) such that r l %- 52 and rz/*/-lz az. Then there exists a
topological vector bundle E on X haviﬁq rank r, °1(E)=a and

A (E)=0 admitting holomorphic structures but not filtrable holo-

morphic structures,

Proof,

We choose the topological vector bundle E havina c](E)=a,

cz(E)=\£%% az. Hence A(E)=0 andAE admits holomorphic structures

by the proposition, Using Remark 1 it will be enbugh‘to prove

that
s(r,a)>0, If this were not so we’d have
s(r,a) =0 i,e.
e T a 2
sup (= - u)° =0, hence {2 - p)° =10
pens(x) " / e

for some p in NS{(X), This implies a=rp+c with c€éNS(X) and c2=0,
Then ¢ is orthogonal on NS(X) since X is nonalgebraic (examine
(nc+x)2 for neZ!) , It follows that az=r2f2 and 2r2]a2, a

contradiction !

Corbllarv\z

If X is a complex 2-torus and r a positive inteager such that
NS(X) is cyclic generated by a with'a2=-2r, then the topoloagical
vector bundle E on X of rank r having cl(E)=a and A(E)=0 admits

holomorphic structures but not reducible structures,’

Proof, In this case t(r,a)>0,
The -hypotheses of the Corollaries can be actually fulfilled

as Is shown by



~Remark-3
RTINS
For every positive integer n there exist nonalgebraic

2«tori X having NS(X) cyclic generated by a wlth a’e-2n,

-Rroof
' ' 1
et J1=(M,,TT,) with T1.€ M, (¢) t=1,2, 1 =( ),,
S - . 1. 01
~ hE P a ;
ﬂZ—IP, PeMZ(R)’det P= = P= (r ; and rankq(p,q,r,s)=h.

If X is the 2-torus having the period matrix Fl o, NS X)) wild
be generated by an element a having the associated hermitian ma-

trix

0 in ~
A’( > (see [E-F| Appendix).

- in 0
Herice azﬁZ det P,det A = =2n
(see [B«F) Lenma 2,1),
Moreover a(X)=0 since otherwise we would have nonzero ele-

ments BENS(X) with b% 0,

~Remark-4, The vector bundles E constructed in the proof of
B ) D
the proposition are of the form E= X*L where 7LiX'—s>X is an un-
tamifled covering of degree r and L EPic(X?),

In these terms we get the following criterion of reducibility:
<Remark 5, Lét X be a complex 2~torus with a(X)=0 X L x
R - )

& covering of degree r, § the covering transformation group,
LEPTc(X?), G'E;QEG \Q*L‘§L} and E=T L, Then E is reducible if

®16°\

and only if G*# ¥d , In this case E=F with F irreducible,

In pafticular if r is prime:

E reducible & E filtrable



«Proof

If G° #{ld] one considers n':X’—?X'/C',-n“:X'/n'——>x and

one gets

L . 1
7E*L & L’(a}ﬂ , where L% Pic(X*/A’) is such that nf*(L’)=L.

) @ 6

1" ’ 1"
o= o = ] ° o
‘Hence X L =% 7t L CI*L is reducn?le.

Conversely, let G'=;id} and assume E is reducible, Then take

a quotlént C of E such that 0 {rank C {r and the exact seauences

Bkl o5 B i~ 10

0y K =oe E = 70C — 1

'7{,*E= D _q*L. Let i :.g*L —?n*E
gen g
denote the canonical inclusion,
Then71*p o ig are simultaneously (for géf) zero or nonzero,
[f they are zero they induce nontrivial morphisms in ﬂ?K. In either
case, there exists a coherent sheaf without torsion A with

0 {rank A {r and nontrivial morphisms

ug; g*L~—> A, for all gé&tG,

Since a(X)=0, u, are monomorphisms, Hence g*L may be seen as

L |

subsheaves of A, Take Hi= D q*L, vi= 2 u_:H—>A
g€h atid ?
g#id

ui= X u_: RE —?-A)ui L —>A

g#id g \ 4

B:=Ker u Ca.xsE, and p{:?t*E —L, By p Sl A the projections,

Since rank BY0 one can assume that p1(8)#0. We have jn A the
inclusion of subsheaves. »Auido B,(B)c vo B,(B) inducing a nontrivial
morphism L=>H hence a nontrivial morphism L—»g*L for some g#id. This

te a contradiction.
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