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SUBORDEMATIONS IN EXCESIVE STRUCTURES., COMPRESS1ONS [N

H-CONES

N. BOBOC and G,BUCUR

We give an analytic proof of the following result from
the Fheory of Markov processes: If Y, Y’ are two standard
processe such tha&?he hitting distributions of Y are domina-
ted by the hitting distributions of v then Y? is obtained
from a random time change in a subprocess of Y (see flh]).
'f27;(ual*,0 is a proper resolvent on a measurable space
(X:;ﬁ) éi_is the set of all Qﬂiexcessive functions on X which
are finite z};aﬁ,and if P is a proper kernel on (X, $) such
that f’fé-%g, for anv posltive measurable function f with Pféce then (see

o

Lij) the convex cone

i se%%” ijéé%r s 2

coincides with the set of all excesive functions with respect

P o
to a new resolvent Ur whose initial kernel Vb is given by

(¢
. "r>"‘\, — o
n=90o

The same result may be obtained if P is only a man
: N
B> D
P%U' o)
which is additive;Ps€:%¥f if Ps <« ‘U[qs,

sstpPs2 Pt 1f pt<coe 1T - as.
g
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where %%y s the set of all i%:excesive functions on- X,
In the first part of the present paper we develop a similar
construction starting with an abstract H-cone f; instead of %L7

and with a map (called compression operator on §)
P:D(P) —> s

where D(P) is a solid convex subcone of § and such that P is addi-

tive,

s&t3Ps L Pt .

S

and
L~
Then we prove that the convex cone
5% séD(P)‘ Ps 2. s }
o \S

Is also an H-cone such that

Fe S = 1; FE 5

FcsS’=y A Fes?

S

and for any upper directed and deminated family Fc S® we have

\/ F & S

S
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Also if, B is a balayage on § then the map B*:S%.5 52 defij-

ned by

ol =/\{tes’( t2Bs §
s a balayage on S’ and we have

Bf $B’f selsaoge)

S

A sub H-cone §°* ;#V?ir which this last relation is fullfiled
is termed a compression of S, In the second part of this paper
we give some supplimentary conditions such that any compression §°*
of S may be-obtarned with'the aid of a comoressibh operator P on
S as above, A

More precisely we start with two standard H-cones of func-
tions S and S’ on a set X such thats sl Sreiss Bl gbe natural topo-
logy on X associated with §°* is greater than the natural topoloqgy
on X associated with S ¢) there exists a strictly positive noten-
tial on X with respect to S°, d) Any absorbant point of X with res-
pect to S is also absorbent with respect to S’, We denote for any
balayage B on S, bY-BY the corresponding balayage on S* (j.e.
B’8=/\{t €S’ t 2Bs} for any ses’).

In this frame we prove that there exists a compression onera-

tor P on S such that
Sr=Lse—D(P), Ps 4s s }
'f for any balayage B on S and any fe(S’-S’%_ we have

Bf<B*f
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It is known ‘that In the previous conditions we may construct
tWC)strong'Ray processes Y ard Y? on X such that S (resp.S')Jbecomes the set. .
U PEEE ) of -all excesélve functions on X with respect to Y. (resp,Y*) (see [7]

The condition
. 4
BRC BEE (W) welsees)

is equivalent with the fact that hitting distributions with respect
to Y are dominated by the hitting distributions with respect to Y°*.

The relation

s =$ sen(p)| P s
§seaip)| el
is equivalent with the fapt that Y is obtained from a subprocess
of Y’ using a random time change ,

In this way we give an analytic treatment of a well known nro=
blem considered by gur(}jS] ,ijGJ), Shih ( {147)) and others (27,
Bl gy

We mention also a particular analytic approach ([9], [10],
fl]) considered for the case when S and S° satisfy the suplimenta-
ry condition of natural sheaf property (or equivalent when the
processes Y and Y’ are continuous),

Thréughout this paper S will be a general H-cone (Eh]). We
use & for the natural order in S and A, VvV for the lattice ope-
rations with respect to this order relation, Also we denote by <
(or more precisely :ﬁ;) the specific order relatién in S and by
A ,7Y the lattice operations with respect to this crder rela-
tion, The order relations £, 2 are extended naturally in the 1i-
nfar vector space S-S generated by S.

If f&S-S we remember that RF=RSF means the reduite of f with

respect to-S.l.e,



RF =Afses | wrnl
and if f=s-t, s, te S then we have

Rf 4s,

1., Compression operators on an H-cone
ar PG

0 el . Bar

Definition. A map P defined on a convex subconre D(P) of

S, which is solid with respect to the natural order on: S s cals

led a compression operator in S if we have

a) P(sl+sz)=Psl+Ps2 (V)sl,szé:D(P)
b) SyésyimiPsed Psy  (w) S115,€D(P) .
c) (Psi)LT*Ps for any seD(P) and and tncreasina seaquence

(si{ in D(P) such that (si%‘Ts 3

Definition, Let P:D{P)=> S be a compression operator in §

An element seD(P) s termed-P-excessive if Ps4ds, The set of all

P-excessive elements of D(P) will be denoted by S(P).

Proposition 1.1. For any compression operator P in S the
L e !

set S(P) Is a convex subcone of S such that

al/A\ Fes(P) (W) Fes(p)
S

b) V Fe s(P) for any upper directed and dominated family

; S
F in S(P),
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Proof, a) If FCS(P) then Fc D(P) and therefore A FED(P).

S
We have

P(AF)fPs4s (¥) seF
S

and therefore

PCAEANSAF, A FeSP)
S S S

b) Suppose that Fe S(P) is upper directed and dominated by

soeS(P). We have )

Corollary 1.2, Let P be a compression onerator in S and let

<! be an order relation on- S such - that (S, <) s an H-core and
— = ’ Sy

such that

Y i
sgt:@sgt A bansid by
for any s,t&S, Then we have

a) N rFes(P) (¥ Fes(p)
(s, )

b) N Fes(P) for any upper directed and dominated fami-
(Syc?) :

ly F in (S(P),¢).
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Corollary 1,3, Let p be a compression operator in S. Then

we have

a) i JAFes(p) () Fes(p)
e by EYFe S(P) for any upper directed and dominated family
Foant(s(R), 2 9

Proposition 1;&_._ Lf for any £ 0é5-5 we put

flg=:g-R(g-f), foy g=f+R (g-f)

then we have

ia) fA g:-SF, f/\g 59,

fA,g=V{hes-S/h5§, hdg }
(Frh)A(g+h)=(fLg)+h  (¥) hes-s

UeS-S, ujf, wgHu B g
b) fVgyf, fYgyq,
f¥g=A{ hes-s| hf, hag}
(f+h)Y (g+h)=(fYq)+h
uES-S, ugf, Uzg=> u % fVg.
c) fhg+fV¥g=f+gq

d) f,0€S=> fAg and fYg ¢S.

Proof, The assertion c¢) is obvious, The assertion d) follows

from the deffinitions of fA.g and fVq using the fact that



i

f,9€5 = R(g-f)4g
a) Since R(g-f)&S we have fA-g3$9. Since g-f< R(g-f) it
follows that fAgsf, ‘
Let now h&S-S be such that h&f h4g.

We have g-h&¢S, g-h3g-f and therefore

g-h 2 R(g~f),

fAg = g-R(g-f)2h.
The relation
(f+h)A(g+h)=(fag)+h

follows just form the definition of the element (f+h)A> (g+h).

Let now uéS-S be such that uﬁf,u#g and let s,téS be such
f=u+s, g=u+t
We have
fAg =(u+t)-R(t-s) & u,
b) The relations
Y934, fYqyf
follows from the relatlions

R(g-f)2g-f, R(g-f)eS.

that



&g
Let h&S-S be such that hpq, h¢f. We have
h-feS, h-fzq-f

7

and therefore

h-f2R(g-f)

h2f+R(g=f)=fvyg
The relation
(h+£)¥(h+g)=h+(fy g)

follows Jjust from the definition of (h+f)V (h+gq).

Let now ugS-S be such that
ugf,u p A
and let s,t&S be such that
u=f+s, u=q+t,
We have g-f=s-t,
R(g—f)=R(s-t)$s

and therefore

f7g=f+R(g-f)=(u-s)+R(s-t)ju.
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Lemma 1,5, If P is a compression operator In S then any

s€S(P), teS such that

we have t&S(p),
Pooof, We have

Pedbsdn, téS(P).‘

Lemma 1,6, If P is a. compression operator in § then for

~any s,teS(P) we have

sh(Ps + t-Pt) e S(P).

Proof, Since Pt 4t we deduce, using Proposition 1,4, d{)that

the element
u:=sq(Ps + t-pt)

belong to S. On the other hand since Ps#s;hm get,using Proposi=-

ttonllk, a)
Psdugs
The assertion follows now form the previous lemma

Theorem 1,7, If P is a compression operator in S then for

any s, t€S(P) we have



S
'?j ‘(s-t)=\/sn

-

where (sn)n s the sequence from D(P) inductively defined by
s1=(Ps-Pt)Y (s-t), S e1=PSY S,
Moreover, we have
RSP (s-t)e s(p),

Proof, Obviously we may suppose that t<£s, With the above

notatlons we show inductively that we have, for n2l

s €b(P), 8., % By
Ps + S, 3 stPs_,

sneS.

Indeed, if we put
s =s5=~t
we have

sqott=s, soﬁ S,

sotPt ;Sso+t=s.
Since PsO:=Ps-Pt €S we deduce that

‘sl:=Pso+R(s°-Pso)éS.
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On the other hand we have, using Proposition L,

Ps+sl=Ps+Ps&Yso=(Ps+P507Y(Ps+so)

Ps+Psdqs+Ps1, Ps+so=Pso+Pt+56$P51+s

Hence from Propositionih, b) we get
Ps+s1$P51+s, $135.

We suppose now that for néN, nz21 we have
S <45, Ps+sn<sPsn+s

n-s

Obviously the element sn+1:=Ps;Y s, belongs to S, 5 ,<s

n+1
and therefore
Ps+sn+]=(Ps+Psn)\f(Ps+sn)5s+Psn+1
On the other hand since S, 95 we get Psnﬁs and therefore, using

agatn Proposition 14,b), we get

Sn+l:55

Since the sequence (sn)n from D(P) is increasing and domina-

ted by séD(P) we deduce that the element r:\/sn
n

belongs to D(P) and
we have

Pr=\/Psn.—§\n/ She1e TES(P), rds,

n

Now from the relations



P& + &=t + Ps (¢) neN
we get

Pstr4s + Pr

P(s-r)4s-r, s-res(P).

Obviously rys, and therefore

S T

rz R

Let now veS(P) be such that v2s =s-t. By induction one

can verlify that
vys_ (%) neN

n

and therefore v2r, Henrce
r=RS(P)(s-t).

Theorem 1.8, Let P:D(P)~> S be a compression operator in S,

Then S(P) is an H-cone with respect to the order relation on S(P)

induced by the natural order of S,

Proof, The assertion follows frem Proposition 1,1 and Theorem



Sl

‘Corcllary 1.9, Let P:b(P)->S be a compression operator in S

Then S(P) is an H-cone with respectVany order relation on s(p)

duced by an order relation .ﬁi on S for which

/
sd4t=>s<'t 5 88 t=posst (Met e S

and such that (S, £’ ) is an H-cone.

Particularly S(P) is an H-cone with respect to the order re-

lation on S(P) induced by the specific order on S,

Theoren. 4 10 Lax

A

EaD(P)—> §

Q:0(0)—> s

be two compression operators in S. We dencte by QD the map
0 :D —> S (P
I (Qp) ()

deflned by

: ' n=0

ine::



and by P+Q the map -

P+Q:D(P)~\ D(Q) —> §

defined by

(?E‘+ Q)s = Ps + Qs

Then P+Q is a compression operator in S, Q is a compres-

B

'slon operator in S(P) and we have
s(P)(a )=s(P+q)
Proof, For any seD(P)NAD(Q) we have
(PO)is < s =5  Ps 25, s % s
and therefore
s(P+e)c s(P)~s(a),

Obviously P+Q is a compression eperator tn-S.

I f seD(Qp) then steD(P).

Qs + P(st) = st,
P(O_ps) :$st

and thefefore ste-S(P). On the other hand if s],szeD(OD), S1¢5,

then we have



S s

QPSZ-QPSIéQsz'Qsl'*'P (QPSZ—Q_PS])

and since Qsz-QsleS we get

O\ps?_-o\Ps1 &S

and

CR(aspm0sy) 3 Qpsy0 sy

0,59-0 5, € s(p).

P P

Hence Qp is a compression operator in S(P).

Let seS(P+Q), We have
sed(P)~D(Q), (P+Q)53.5,
and therefore
Pr 44

Q3 34

)

We deduce inductively

and therefore

We have



]-P = OS
( )st )
and therefore

(1-p) (1-0,) s=(1- (P+0)) s 3 0.

Hence

A -de € s(p),
seS(P)(Qp).

Conversely, if sGS(P)(Qp) then

ses(P), sed(q),

and from

0 4(1—P)(1-Qé)s=(j-(P+Q))s

we get

seS(P+Q),

Lemma 1,11, Let P be a compression operator in S and let J%

be a subset of S-S such that there exists s€S(P) with the property

f¢s=Ps for any f&y%. Then the set

Jll(})g{tes(l’)\fét-r’t ) feAt ]

has a smallest element ¢t and moreover we have



B

/\{t-Pt e M( )}=t - Pt
! ‘ 7 ﬂ R
Proof, With the above notations we put
t s=Alt\te (D
= Meleadloh 3
Since for any feu%‘ and any tg}lgﬂ) we have
fit-PtSt-PtJt g
we deduce that
fer -pr,  (Wfeuh
and therefore
E’%e‘/{’l(ﬂ).
£ tgﬂl&&) we put
v:=(t—Pt)A(tﬁ-P5q)+PtJ@
Obviously veS and moreover
t <t .
P,ﬁév Sty

Frecm Lemma 1,5, we deduce ve S(P), On the other hand for

any f e—a%- we have

fév=Pt, €v=Pv,
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Hence vcﬁlﬁi) and therefore vety  i.e,

ty ~Pty =v - Pt, $t-Pt (v) tedl (D
:‘t-' P‘S%=S/-\S{t-Pt| tc«ﬁ.(j}) %

Theorem 1.12, Let P:D(P)—> S_be a compression operator in

S« Then for any ueD(P) and any 8¢S(P) there exists t &S(P) such
that ,

uA(s=Ps) = t-pt

A

Proof. We put
B:={t€-S(P)‘ un(s-ps)¢t -pt |
From the previous lemma the element
to:=/\B
belongs to B, We want to show that
u/\(s-Ps)=to-Pto
Since s¢ B we have

L. &s,

ua(s=-Ps) ¢ tyoPt .

On the other hand we have

~



Ly

s-Ps + Bt &o(p)

Pt ;{ (u+Pto) A (s-Ps+Pto)/\to$to
and therefore, using Lemma 1,5, we get
Y:=(u+Pto)‘ﬂ(s-Ps+Pto)AtoérS(P).
From this relation we deduce

v $to,
uA(s-Ps)A(to—Pto)=v-Pto5;v-Pv

uA(s-Ps)=UA(s—Ps)A(to-Pto)5v-Pv,
Hence

(u+Pto)/\(s-Ps+Pto)3to,

UA(s-Ps);to-Pto,

uz\(s-Ps)=tO-Pt0

Corollarv 1,132, For any compression onerator P in S the set

{ s-Ps|seS(P) }

s a solid convex subcone of S, Particularly, it is an H-cone

with respecto to the natural ‘order induced by 5. .

Proposition 1.14, Let P be a compression operator in S, Then

for any pseudo balayage B on § the map

B*:5(P)—> s(p)



defined by ¥
B's= Aftes(p)] ¢ 285 }
Is a pseudobalayage on S(P) and verifies the relations

BB’s=Bs (¥) seS(p)

B*s-Bs=P(B’s)-BP(BS) (¥) ses(p)

Moreover if B is a balayage on S then B® is also a balayage

on S(P),
Proof, From the definition we have

Bs €£B’s< s

s<t = B’s <B'¢t,

-

4
B(s+t)¢B’s + B’t,

for any s,teS(P), Since B is a pseudo balavage on S then we get,

uéing the preceding relations,
BB’s=Bs B'B’s=B’s (&) seS(P),

Fér any s,t€5(P) let 5%, t%5(P) be such that
B> (s+t)=s’+t*, s?¢Bfs, tf¢p’t,

Since we have

B(s+t)=B(B’(s+t))=Bs’+Bt'$BB's+BB’t€Bs+Bt



afgmii,

we get Bsf=Bs, Bt’=Bt and thefefore

s/2B’s, 7 7t

sishits, uhaBry, B*(s+t)=B*s+B’¢,

Hence B’ s » pseudobalayage on S(p),

On the other hand, we have, for any seS(p),
B(s-Ps) ¢ s-Ps
Ps+B(s-Ps)es,
Ps3Ps+B(s-Ps) s
and therefore, from Lemmayh,

Ls:=Ps+B(s-Ps)eS(P),

Shnee, Tor any <@€8lr) we have Ls2Bs we deduce, from the defi-

nition of BY,
B?’s ¢Ls <5

and therefore
LB’s = B’s,

or equivalently
B’s-Bs=B’s-BB’s=PB’s-BPB’s.

Suppose now that B is j balayage on S.and let (sb).

'e[vbe an

fncreasing family from S(P) with



We have

\/B’siSB’s,

fel
\/B’si’Z \/ Bs,=Bs
ie! ie|

and therefore, using the definition of -B?

N/ B’S;Z Bls.
iel
\/B’si=B’s.
iel

Hence B* is also a balayage on s(p),

Corollary 1,15

. Let P be a compression operator inf;, B be

a pseudobalayage on S and let B® be the pseudo-balayage on S(P)

associated with B as in the preceding proposition, Then we have

fe(s(r)-s(p))=> B f-sres,,
‘ *

Proof, Wel have

#5e(s(P)-5(P)), , P (87 F)es

and therefore

B’f-Bf=PB’f-BPB’fe.SB.
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2, Compression of an H-cone

Definition, Let S be an H-cone, A convex subcone S?* of § s

called an H-subcone if $* is an H-cone with respect to the order
CRDTGIITEICLN - TRDEWEIITD

relation induced by the natural order of S and moreover

a)- /A F =AF for any non-empty subset F of §°

S? S
b) N/ F=\/F for any non empty upper directed and dominated
S? S subset F of S*,

If the sequel we mark by/ ,"v the lattice operations with respect to the spe-

cific order £ on S-S glven by S,

Theorem 2,1, Let S be an H-cone and let S* be an H-subcone

of S, Then for any psuedo~-balayage B on S the man
B?:S'syS?
defined by
Bs =/\{t €5’ t28s ki

I's a pseudobalayage on $'. In fact B* is the smallest pseudobalaya-

ge on S* such ‘that

B’s 3 Bs () s e5S°
or equivalently

BB*s=Bs (%) s&s°?

Moreover if B is a balayage on S then B® |s also a balayage

on S°?,



e onL

Proof, From the definition we have

s2B’s 2 Bs, BB's=Bs (¥)sc¢S*®
B*(B*s)=B’s  (¥)seS?
B”SliB’/gz (v)sl,,szes',)s'sﬁz

B*(5,+8,)<B°8,+B'8, (v)8,,5,e5",

Since S Is an H-cone it follows that for any sl,széS’

there exists Ug,u, €S’ with
/ /7 =
u]+u2=8(51+£2), ur< BBy, u,s B8,

From these relation we get

Bu]+Bu2=B(u1+u2)=BB’ (.81+/82)=B(,81+,82)=B,5]+B,82

Bu]S BB’81=851, Buzé BB&SZ = BS2
and therefore

u; 3 Bui=&6 5 i=1,2,

UIEB’ﬁi, i=1,2,

Hence

u;=B*%,, i=1,2

B* (8,48,)=B"8 +B°5,.

Let now T be a pseudobalayage on S® such that

Ts 2 Bs (v)seS?

Then, from the definition of B’ we qget
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Ts2B’s, (w) seS°,

Suppose now that B is a balayage on S and let (»Si)i | be an
3

Increasing and dominated family of S? and

We have obviously

B's2 V. BYs ..
iel

Since
B*S. 2 sti (v) iel

we get”

\V/B’Xi; N\“B5, = Bs
iel 7 S

and therefore

MBI bk,
el

Hence B?* is a balayage on §°,

Remark., 1. Whenever we will use the pseudo-balayage B® we
call it the pseudo-balayage on S’ associated to the pseudo-balavage
B,

2o 1B S=1s represented as an H-cone of functions on a set X
and A is a subbasic subset of X with respect to S then A is also

a subbasic subset of X with respect to S’ and the balayage on §°*



ke

A

assoclated with B (i.e. (B")*) coincides with the balayage on S°*

glven by
1A‘
(B )>S=/\{ térS"t >s on A } '

3. Generally, if fe(S?-s?)  and B is the balayage on S aiven
by ( [j4°J )

seS=y st.=/\{)t €-S‘ t2 s:'\Yv]Q () me N }

then the balayage on S’ associated wi'th B¢ (le.B;) coincides with

the balayage on S*® given by
' /
s€S? = B%s:=/\{ tes'| t2s Alnf) (¥ nen }

Definition., An H-subcone S* of S is called a compression of S

it for any balayage B on S the balayage B’ on S’ associated with

B is such that
B*f > Bf (V‘)fé(S’—Sf)+

Remark, If P is a compression operator on S then the H-cone
S(P) is a compression of S, Moreover for any pseudo-balayage B on

S we have
B*s~Bs=PB*s-BPB’s (¥)s¢S?

where B? is the pseudo-balayige on S® associated with B (see

‘onroo i.trmn, A4 }



Sion .

Proposition 2,2, Let $* be a compression of S. Then for any

balayage B on S and any s¢S® there exists t€S such that
.s-B’s = t-Bt
where B’ is the balayage on S* associated with B.

Proof, Let SB be the H-cone ((4]1) of all elements of the

form

We remarks that
s-B’s=(s-Bs)-(B*s=BB’s)
l.e, s-B’s is of the form
s-B?’s=y-v
where UyvgSpe To prove that u-vgSp is equivalently to show that
T(u-v)gu-v

for any balayage T on SB. Let now T be a balayage on § One can

B.
see that the map

s—»T(s-Bs) + Bs

is a balayage B, on S, B;s2Bs (V)seS, We have



TF = B, f  (¥)fesS

and thefeforé

T(s-B’s)=Tu-Tv=B]u-81v=81(u-v)=
=Bl(s~B’s)$B{(s-B’s)=

=B{s-B’s $s=B’s,

Theorem 2,3, Let S* be a sub H-cone of S TFhen the following

assertions are equivalent?
For any fe(S’~S’L_and any balayage B on S we have B*f > Bf,
2, For any fe(S’-S'L_and any balavage B on S we have B®f-
—Bf&SB.

3.For fE(S’—S’)+ » t€S’,f¢t and for any balayage B on § we have

B*f-Bf _-$ £,

- wrd : . : ,
k., For any finite family (f)i&' in (S S’)+ any family (Bi)i@l

of balayages on S and for any t¢S® with S B:figt we have
il

> (B1f,-B.F) ¢,

ieT !

Proof. The assertions 2)=b1), 4) =93) are obvious,
1)=2) Let f (S’-S’)+ and let B be a balavage on S. For any balayage
T on SB there exists a balayage BA| on S, B;2 B such that

T(u-Bu)=B1u-Bu (v )ues,

We have
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T(B’f—Bf)=T(B’f-BB’f)=B1B’f—BB’F 3

£ BJB’f-Bf = B’f-Bf

and therefore, T being arbitrary,
B'f-Bfe S

BO

2)=>3) From Proposition 2,2 it follows that there exists

U€S such that
t-B’t=u-Bu,
| On the other hand from 2) there exists veS such that
B’(t-f)-B(t-f)=v-Bv..
We have

t-(B’f—Bf)=(t-B't)+(B’(t-f)-B(t-f))+Bt=

=(u+v)-B(u+v)+Bt
Since
(u+v)-B(u+v)gt-pt
it follows that

u+v-B(u+v)+Bte s,

t-(B*f-Bf)e¢s, B’f—Bf.'g\t
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3)=>1) Let fe(S‘QS’)+, f=t-s where s,teS® and

We have
B's $B’'t
and therefére, from.3), we get
B's-Bs=B'(B's)-B(B’s):g”B’t
If it (S : the element of S such that
B*’s-Bs + u = B*t
-we deduce that
Bu = BB't =Bt
and therefore

B*t-Bt=B’s-Bs+u-Bu 2B’s-Bs,

B*f 2 Bf

3)=>L4) The assertion from 4) will be proved inductively
follewing the cardinal of I, If card I=1 the assertion from 4) is
Just the assertion 3)., Suppose that the assertion from 4) is true
for any | with card I=n and let | be such that card I=n+1,

For any i€l we denote
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et

Cugr=tt 2 {B.F,=BIF,)
i JeI~g g

and we put

fFimt+ D 6By £ <BAE,)
' lel

us= A Ujo
¢ ! fel

Obviously we have

f<u,
We want to show that f=RSf or equivalently

ARSFL2F (¥) oe(0,1).

Let L& (0,1) and let us denote

‘ S

g:=f - fA(k R”F) # 0,

We consider the balayage B on S defined by ( see[L])

Bs= N/ RS(:S/\ng)
né&N
We have (;ee £8))
B(RSF)=RF

On the other hand we have

B2B., () iel
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and therefore, since :E: B? fi<t we get
leJ

Bf= B(fil B f)+B(t-3 B2f )=

el i1
=T§fs fo+B(t-2 B F) S
ict iel
.5jzsfw(uth)-ZBf+Btiﬂf5f
i i 1
tel i1 jel e |
Bf & f,

From the preceding considerations we get

oA of [

«RPFLF (W) we (0,1),

Definition, Let S' be a compression of S. For any balayage

B on S we denote by Pg the map
Pg : S?e s
defined by

. PBs=B’s—(B’s)A.Bs;; B'g_'Bi’;/LB/)
S

where B’ is the balayage on S* associated with B,

-

Proposition 2,4, The map PB satisfies the following properties:

1) PB(s+t)=PBs+PBt (W) s,tes?
2) Pgs A Pot Lt (¥) s,tes?, cst f
3) PB(B’s)=P s (¥) ses?

L) N/ Pps, =P (Vs )
ie] &l



Ll

for any Increasing and dominated family (si)led In S,

Moreover for any compression operator P of S ‘such that S(P)=

=S° we have

~

Pt op(B2f) (0) Felstosy)
Proof, Let s,f&S’. We have

S -
B?*s-Bs PBs BPBs

. - t—9 L
B't-Bt PBt BPBt.

B’(s+t)-B(s+t)%PB(s+t)iBPB(s+t).‘-

and therefore

(PBs+PBt)-B(PBs+PBt)=PB(s+t)-BPB(5+F).

Since

Pgs A_Bu=P t A Bu=P,(s+t)A Bu=0
for any ug¢S we deduce
Bps #iPo & = Palamt),

B B

The relation

seS'=n P (B’s)=P s



S35
foilows immediately from the definition of PB’
Let' now s,t€S® be such that s<t. We have

_PBs-BPBs=B's—Bs

Pot-BP t=B't-Bt

B B
(PBf-PBs)-B(PBt-PBs)=B’(t~5)~B(t—s).

Since S* is a compression of S then
B*(t-s)-B(t-s)e&s

B

and therefore there exists ug$ such that

% u {\Bu = 0
and
~B’(t-s)-B(t-;)=u-Bu. :
Hence
PBt—BPBt=PBs-BPBs+u-Bu.
Stnce

PBt A Bv=Pss ABv;—u A_Bv=0
for any veS we deduce

PBt = PBs + “u,

PBS.1$ PBt. .
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On the other hand we have

t-Ppt=t-B’t+B’t A Bt=
=(t+8°t) Alfist)-pr¢,

To prove the relation
th _ét
Is equivalently. to show that

B2t StaBt,

This relation follows from the fact that $* jsg a compression

L of S ﬁsing Theorem 2,3,

Let (si)iel be an increasing and dominated family of §°,

We have
PBSi'BPBsi=B’Si'BSJ
Since

i=]>P 8. 4 p

S

and since
PB{SI+88;=B’,‘8i+BPBﬁi
we get

V Pp3.+B( VB =B (VA
el el el

BV Pus.)
iel
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B* (W &4, )-B(WV 2 )-\/PB;s -B(\/P

i
el el el el 81

@n the other hand we have

» (::Ipasi)/}-BV =0 (¥ ves

and therefore

P(vz) NPB.
iel iel

Let now P be a compression operator of S such thét S(p)=S>

and let fé(S’fS’)+. We have, using Proposition 1,15
Ppf-BP f=B’f-Bf=P(B*f)-BP(B*f),

Stnce
Paf ABY = 0 (¥) ves

we get
PBf 1$ ?(B’f).

In the secuel we sﬁpgpse that S* is a standard H-Cone~\s\énd'

NN

S’ are.- H-cones of functions on a set X, S¥ s a comnresswon of:

s Qar e

and X is semusaturated with resnect to S?, Moreover we sunnose that

L= =

any-element of S is lower semicontinuous with respects to the: fine
[em. = - o PER B GAVIgY AN TSP

}ggglogx generated by S’.

The specaf:c order re]at|on\|n S is denoted by 1% ands we: put

L L Bl ia o o TS st~ G TS O GG D SRR BV QTN W mrmy

Y A for the latt:ce operatlons with resoect to this: ordef rela-

Saan gl 8

tlon.
BTl MEIRER.
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Definition. If B is a balayage on S and Pg iIs the map

PB ¢ S?e>S

defined by
PBs=B’s¥B’s,kBs

we denote for any xeX, by Pg , the H-measure (with respect to §°*)
: ]

on X given by the relation
PB'X(S)=PBS(X), seS’?

For any positive Borel function fon X we denote by Ppf the

function on X defined by

PBf(x)=P CE) .

B,x

Proposition 2.5, If B 1s a balayage on S and £ 1s a positive

Borel function on X dominated by an element of S® we have P.f6S,

B
Moreover if (si)iel is a finite family of S®' and if s&S® are such
that

;Z: siés

iel

then

for any family, (Bi) of balayages on S

iel
~Proof, For any positive bounded lower semicontinuous function
AR EER e BRI

g on X thepeexists an increasing sequencel(qn)n from (S’-S‘)4such

+h ot



{a}
1}
12}
o
o
Q

Using Proposition 2,4 we get

PBgne S

and therefore

PBg"—‘szp PBgn €S,

On the cther hand if 91, 9, are lower semicontinuous positive

bounded functions on X such that 91 £9, we have

P91 Pp9y

Indeed let (gﬂn))n 3 (qén))n be two increasing seauences
| I y !
tn (S S’)+ with
n n
sup gf )=g, , sup gé )=92

n

Obviously we may suppose that
gf“)s gzn) (¥) neN.
Using Pronositiomh it follows that

- (n) no_
Pgay _?prg] %“Ypsqz = Pg9y.

Let now f be a positive bounded Borel

above considerations the family

function on X.

From the
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(PBg)gé‘g

where 9 is the set of all bounded lower semicontinuous functions
g on X such that gzf, Is a family in S, which is specificallé, lo-

wer directed and

Hence

PBf=|nf PBg = A PBg ¢S

Sc€ 9¢4.

Let f be a positive Borel function on X dominated by an element

of S*, We have

pr=:(PB(inf(f,n))€ S.

Let now (s )ieI be a finite family from $’, and let se§s be

such that

Z,siszs.

iel

If we consider a family (Bi)iel of balayages on S we deduce,

from Theorem? 3,

> (B15.-5.5.)3 5.
teT

From the definition of PB- we deduce that the relation
4

= Pgh % A

el

is equivalent with the following one



S
Z BB, 5,,5-»2 B/SAB/S ‘

iel il

On the other hand we have immediately

s+zB’£ABﬁ A (6+ZB’.5.+Z

el JeFr)  Jes P ) jer~g !

Erom: the: precedlng consideratlons we have for any JeF(L),

Z ',81-4,5+Z B,S

Jeiny jerN 4

or equivalently

> B S -</s+ZB',s i

icl jed J je]\JJ J

and therefore

i e (s+2_B’ﬁ 2 Bt

el e jed I jerng 10
=5+ 2B o8 KB B
i€l

Theorem 2,6, ket f be a positive flne lower semicontinuous

-

(with resp, to'S') function on X which ls domlnated by an element

of S'. If for any balayage B on S and any gé(S’-S’)+

we have
g

then fe S°?,

‘Preef, Let s,tES? be'such that, s, t bounded and 0¢s-t<f,
ARG

Obviously since PBfé.f then fe& S,

We want to show that

such that qgf



s e,

B*(s-t)&f,
‘Indeed we have

g s
Ppls-t) P (f) 4 f
“%;fgégz
and therefore there®ueS such that
Pgls=t)+u=Ff,

or equlivalently

B*(s-t)+u=f +(B’s ABs-B't ABt),

Slince
BB*(s-t)=B(s-t)
B(B*s ABs)=B's ABs,
B(B*t ABs)=B*t A Bt
we get

B’s ABs-B*t ABt + Bf = B(s-t)+Bu
and therefore
f+B(s~-t)+Bu=Bf+u+B? (s-t),
From this relatiov and from the obvious relations$s

Bugu, B(s-t) £ Bf



e

we get
B'(%ft).éfc
We show now that
RS’(s-t)sf
Indeed, for anyoie(ﬂ,l))we have ( see [8]))

R(s-t)=B§(RS'(s-t))s B, (s-t)

4
e}

where
q=((s—t)-°4RS’(S"t))+

and Bq is the balavage on S given by

s ANg),
Sthnce

B?(s~t) &F

q(s ) &
it follows that

f (V) o€(0,1),

The fact that f&€ S’ followfnow from the preceding considera-

tlonf using the fact that there exists an increasing family (3 )iGI



in (SB—S' such that

b)+

Pefinition, Let S and S*Yas above. We denote by P the map

from S* into S given by

Ps =’Y:’2*:'..PB,£E; I finite,(s;), ‘F.S’,Zﬁisz,(Bi)icé(S )}
el = el

where B(S) is the set of all balayages on S.

'2'0- - [

Propesd tion 2.7, Let seS' and u 'a fine lower semicontinuous

positive function on X such that
az:$ TR
Then ueS?

Proof, Let gé(S’~S’)+ be such that

g su

We have g¢s,
PBg -\QPBséPsgu
and therefore, using Theorem 2,6, it follows that ugS’,

~Theorem 2,8, We have

1) PseS?* (¥) seS°
2) s,teS?, s4t=> PsAPtLt

3) s,teS1 =3 P(s+t)=Ps+Pt



l&)\/P/Si = P(V B.) for any Increasing and dominated family
i . i
(Sl)iel from S%,

5) for any seS' and any balayage B on S we have
B’s-Bs=PB’s-BPB’s

6) Ps(a)=0 for any seS' and any absorbgnt point a with

respect to S°*,

Froof. The assertion 1) follows from Proposition 2.7. The

ST QT e, .
assertion 2) follows immediately from the definition and from Pro-
posftion,fz.A.

3) If s,teS' then, from the definition, we have
Ps + Pt 2P (s+t)

Let now (Si)iel be a finite family from S* such that

Z/s,s,s+t
L

Using Riesz decomposition property there exist two families

(Si)'elg (s?)iel on S® such that

siaﬁ;ﬁﬁ? (w) tetl,

Z Bk, 2 st
iel ieY

| f (Bi)iel is a family of balavages on S we have

2P E=P v o o Bl 4Pea e,

p
il i i i iel i

P(S+t) Ps+Pt

(‘)t’.
b)) Let (si)ié7V§% increasing and dominated family from S*,



Obviously we have

'YPA-{P(\//S ) :
et iel

Let now (‘tj)ie_J be a finite family from $* such that

From ([4], Proposition 2,2,3) for any jéJ there exists an

increasing family (sii)i@r in S* such that
2 Ss is s \J,Si i=ti () jed
AGT B "— 9
L (B.)'GJ is a family of balayaaes on S we have, using

Proposition 2, lf
?:PBt~2_(YP S gl R
J

Y jenel .] H iel jeJ a FR el

and therefore

PAL NP5,
el

5) Let s¢S°’, We have
PpF=PyB’5 4 PB4
and therefore
B’,S-B,g:_PBB’/S-BPBB’,S < PB’,S-BDB’,&

On the other hand we have
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PB*’S £ B'8
and therefore
PB°S-BPB*S <« B*'5-BjS

6) Let aeX be an absorb@nt point with respect to $* and let
B be a balayage on $§ and B*® be the ba]ayade on S’ associated with B,
Certalnly a is also an absorbgnt.péint with respect to S, Nbviously
to provezthat P5(a)=0 (v) seS* it will be sufficient to show that
PBB(a)=O (¢) seS’, Let now B be a balayace on S, If a does not
belong to the base of B* then we‘have B’%5(a)=0 and therefgre Pﬂg(a)=
=0, If a belongs to the base of B’ then a be]ongs also to the base.
of By If we denote by T (resp, Té) the balavage on fa% in 5 (rcsb°

$*) then we have for any s¢§®
S-TéﬁGS’ /S-Tafﬁés
and therefore

B =B? (O—T;s) + T8

Bs =B (4 —Tar':)+Taf5
BB EBBABAZTIANT A=T_x

Pg#(a)=B's(a)-(B%s A Bs)(a)=0,

Definition, Suppose that S and S’ are as above, For anv xeX

we denote by P_ the H-measure (with respect to S*) on X given bv

the relation

PA=Psr(x) (¢) ses?



1.

For any positive Borel function f on X we denote by Pf the function

on X defined by

PF(x) = p (f).

Proposition 2;9. The map

fsPF, fe F

s a bounded kernel on X such that for any feF for which %ﬁ% {8 i

dominated by an element of S we have
Pf & S

.. sProof, ' If g is a positive bounded lower semicontinuous func-

tion on X then there exists an increasinag sequence (qn)n from

(S'-S’)+ such that

g = sup (]n
n

From TheoremZ?we have P(S*)cC s*, PqnéSf\(S’-S’)+ and there-

fore

Pa=suo Pq_ & S~ T
n

On the other hand if 91,9, are lower semicontinuous positive
bounded functions on X such that a,4a, we have

Pay 4 Pa,

- . H i
Indeed,there exists twe increasing sequence (0; ))n’

from (S'—S')+ such that
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(n) (n)

(¥) neN, sup 91 "=94, sup q, =4,

n

0 of

We have, using Theorem aB

Pa .—:qu (n)_&V'qun)

1= =

Pa,

Let now f be a positive bounded Borel function on X. From the

above considerations the family

(Pq)ge%

where %; is the set of all bounded lower semicontinuous function
g on X, g2f, is a family in S which is specifically lower directed

and

PEo= ¥nf: Pg = Pg
9¢§ g

Since S is a standard H-cone we have
A Pg = APqg. = inf Pgq.
> n
9(% n n
for a suitable decreasing sequence (gn)n and therefore
PfesSA ¥

Hence P is a bcunded kernel on X such that

PfesS



e v _
for any bounded function f&gf”‘. If feF is such that there exists

seS, with Pf€A then we have
Pf = sup P(fan), P(fan)zs
n

and therefore Pfe S,

\Theorem\Z;Jd. The set

; s - Ps L;e S }
is a solid part (with respect to the r‘\atubral order) in S,
Proof, Let u@S and sg¢S’, We consider the element
visu (5= Pa),
We denote:
6’:=/\{tGS’\ t-Ptz\;}
_Obviouslvae have 45°¢ 4 and
R PN >,V°.
We have
)S’/\(P,A" + v) =Pa’+v,

s’ 4 AA(Ps' ) < 5¢
and the refore, using Proposition 2,7 we qet



On the other hand we have

W Pwzw - Ps® = v
.and therefore.
w2s?, w = s?,
Hence
v = g - Pg?,

‘Definition, We denote bv S; the set of all finite elements

of S' and for any seS? we put

5

Hs = inf Pns
ne&N

‘Pyoposition 2,31, We have

1) H(s+t)=Hs+Ht ' (’V)§,t€-5%

2) sat HsA Ht 4Pt Q¢ () s,teS?
3) H2s=Hs (v) ses?

L) pPHs=Hs (V)seS%

<Proof, The assertions 1), 4) are obvious, The assertion 3)

follows directly from b4), If S,teSe 55 &t we have

PPs 2Pt 2t («) neN
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s n Mt n
/NP SUKP sﬁjﬂP t =P t 4,

vu n 4] n

¥ ~ N - » 1 5 ~ AR VY SO
Frem now-on we suppose that S and S* are standards H-coness of

functions en~X, S’ is a compression of S, the natural: topoloqgy:en
Ly Rda £ g

LT

X with-respect~to S is smaller than the natural’t09040q7\6ﬂ~x_w4th

respect to~S* - and that there exists a stricggéosftive pontential

on X with\resﬁect\tn\SJ. S

Remark, If S and S’ are as ahp&e then any element of S is
lowet semicdntinuoﬁs with respect to the natural topology gene-
rated by S°? éhd moreover X is éemisaturated with respect to S* and
So. Therefore we have fullfiled the previous hypotheses which allo-

wed the construction of kernel P,

Proposition-2,12, There exists a balavage T on S* such that

Hs = Ts (%) SESte
Moreover we have

s&t =>Ts :&Tt 4 Tis

Sé is the set of all universally continuous elements of S?)

Prosf, Since for any seSé we have
Hs;ﬁfﬁ

‘and using the fact that the natural topology on X associated with
S Is smaller than the natural topology on X associated with S we
deduce that Hs is continuous on X with respect to the natural to-
pology associated with S?, From ([6] , Theorem 2,1) it follows

that Hs is nearly continuous,



For any x£X the map
’
S,a s=>T s = Hs(x)éR+

id additive and increasing, Therefore T; is the restriction at

Sé of an H-measure on S*, For any s&S® we put
Tskxg = T:s,

X

Since
séS(’)ﬁ Th=Hs 4 s
it follows that
s‘,té;-Sc’),j sét =D TsATt Lt
and thereéore
s,teS?t,s¢t = Ts 4 Ti4t
We shqw that
THs = Hs (&) seSé;

lndeed)from the above considerations there exists a sequen=-

4 9
ces (Sn)n in So such that

2.
From Has = Hs we deduce



1t

Hg = 8 (¢) ne Ny

and therefore
THs=) T8 =D HE, =25, = Hs,
e n n
We show now that TZﬂT' . Indeed we have
s&SéﬁbT(Ts) = T(Hs) = Hs = Ts,

“Proposition- 2\}43°'IF-T # 0 then there exists an absorbent

set A#J with respect to S such that any a¢A 1s an abhsorbent point

with respect to S and such that

Ts =/\§t€5'k t2s. on A}

Proof, Let (pn)n- be a sequence in Sé such that for anv seS?

we have

gise Vé:Pn\ Prnes }

We put

p =Ze(npn

‘where o 30, pné--]-- (%) neN and we denote

2"
n
A:=tTp = P_.‘

and for any x&X let T_ be the measure on X defined Lbj

b4



sz=Ts(x) (¥)s'eS?,

Since T#0 and»T2=T it follows that Tx s a measure carrled by
A and therefore A#f, Since p-TpéeS we deduce that A is absorbent
with respect to S. On the other hand for any a,beA, a#b there
exlsts s,tc¢S* such that s<¢t,; (t-s)(a)=0, (t-s)(b)>0, Since T(t-s)e®
and B’ (t-s)=t-s on A it follows that any polnt aeh .is absorbent

wlith respect to S, Obviously we have

Tsm/\{teS‘\t 2 s on A}.

\Theerem\z;Th, (shih), Suppose that any absorbent point of X

with respect to S ls an absorbent point of X with respect to S?,

Then the map
P:D(P)—>5S.
where
p(P)=3 fes| (3)sesr, Fes
s a compression operator on S and we’:have
S’=Zs&D(P) ‘ Psﬁs}

<Preoof., Using the hypothesis and Pronosltion)13 we have for

any sgS'!
Ts=/\§t&5’\t 2s on A }

where A is an absorbent set with respect to S such that any

point of A is an absorbent point



R T

with respect to S*, On the other hand we have

Ts

Hs =AP s (v) s¢S°,

From Theorem 2,8 we have

Ps = 0 on A

and therefore

Tg=0 (v) seSé
A Ps=0 (¥) s¢S?
Py
Hencé
A PE =0

for any positive Borel function f on X dominated by an element

sesg. We remark also that for any seSé the sequence ("Ens)n is spe-

ciflcally decreasing in S and therefore we have
AP"s =AP's = inf P"s,
n '

Hence for any positive Borel function f on X dominated by an

element SéSé we have

infp f<infp's = 0
n n

From the previous considerations we deduce that for anv

seSé we have

s ;:El(anYSH)
n
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where Sis =18 sn+1¥fsn () neN, From this fact and from Theorem 2.40

't It follows that the set

.{ 5~Y5‘se5’g

s a solide and increasingly dense subcone of S,
4~

Let how2/=(vd) o be a submarkovian resolvent on X such

Ay

that S* is a solid and increasingly dense subset of the cone ”22f
of alleh-excessive functions on X which are Finite'vt a.,s, Ve
may suppose also that the initial kennel ¥ OF'L%is such that V4
is a bounded continuous function on X for any positive bounded

Borel function f on X, We pit
Wf = \I'f - PVFf (&) fécgg
From Theoremi8 we get
e  (v) ﬁ;‘:\;h
and W is a kernel on X, Let now s,té&S’ and fe§ﬂ>‘ We have
Ps2 sa(Ps+t-preprf) s
and therefore from Proposition 2,7 we get
S/\(Ps%t~Pt+Pf)e g4
Now using .a well know result of Mokobodzky (see [137)
we deduce that there exists a submarkovian reso]vent:'):);(‘.»!gﬁdk?o
on X such that W is the_initial kernel ofW ,

From the above considerations it follows that § is a solid

and Increasingly dense subcone of the set Zn‘ of allw) -excessive



functions,

Let now ?; be the set of all posftive bounded Borel func-

tton f on X such that Vfe Sé. From the first part of the proof we

get
o
VE =2 P vf
n=0. -

Since V and W are kernels and»since‘?o Is sufficiently large

subset of ‘?\’ we get

D
VE =2 PMWE (v) f eg:;,
n=0 .

Hence for any féng we have
D
2 P ure s
n=0

and therefore, using Hunt theorem, we deduce that we have
o0 | :
Z Plues
P ues
n=0

for any ueS for which

n

6? W

M

[}

n

s dominated by an element of S‘.

be
Let now q&D(P&’such that

P& 573.

| f seSé we put

: 95 = g/\s.




Obviously gséD(P) and

g5 §s

Since g 45 we have infj?ngs = 0 and therefore if we put
: : n

we get, use~S and

(43

foxal
0,=2 2 u,.
n=0
From the previous remark it follows

g €8 g9 =N g €8,
5 seSc’)
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