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Introduction

- The computation of K-theory groups of crossed product C*—algebras in
one of the central problems in operator algebras. Important steps have beén
made EB, I i 1o ZOJ but the Solution'ig not complete .

In E}E Connes has defined the cyclic cohomology groups Hé%(A) of an
algebra A over the complex numberé and a pairing KNKA)@QHC%kA) =>C. This
pairing was succesfully used by Connes and Moscovici to obtain important
geometric applications. |

The computation of cyclic cohomology groups of suitable "smooth"
crossed product algebras has shown that they behave very much like the
K-theory groups of thelcorresponding C%;algebras. This is true for Z [17,19]‘}
R [3, 7] , groups having a special manifold as classifying space'[)B, 18w1.

~It is the purpose of this paper to study the cyclic cohomology of
crossed products by Lie groups, tryiné to recover results known to be true
for their K-theory. An interesting feature is that there seems to be no
5\ -obstruction [:43}

Let G be a Lie group acting smoothly on a locally convex algebra A.
Then 5228, A) beibomes a locally convex algebra for the convolution product,
denoted here A><4 G. This will be the crossed product we shall be concerned
with. Note that as in [18t}we have choosen the most restrictive behaviour at
infinity, i.e. the vanishing in a neighborhood of infinity. This choice is
justified by technical reasons : the computation of the cohomology of G with
values in such modules is easier. |

A By a real algebraic group we shall mean the real form of a complex
algebraic group. Cf:V(G) denotes the ring of smooth class functions on a Lie

group G. Here is our main result.
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Theorem Let G be a real algebraic group, K a maximal compact subgroup and
q = dim G/K. The periodic cyclic  homology groups PHC#£A>dG) and PHQ*(A>QK)

<o i (&V) L o d
are modules over CinV(G) such that
PHC, (AXIB) | o PHC, gAY,

for any maximal ideal m of C;ﬁ;(G).

The proof is based on the study of L(G, G), a global form of the
construction we have used inf:IB} . There we have shown that for G discrete
the Connes' complex decomposes as a direct sum of subcomplexes indexed by the
conjugacy classes of G. For Lie groups such a result is no longer true and
is replaced by a C;ﬁ;(6)~module structure on the Connes' complex. Instead of
looking at a given conjugacy class we use localization at the corresponding
maximal ideal. That is why localisation enters the statement of the theorem.
Actually it also follows that PHQx(AbdG) and PHQ%'+q(A>§K) are isomorphic as
vector spaces, however we do not obtain this cannonically but simply by
counting dimensions. Typically the situation is that of the modules of sec-
tions in two vector bundles over a compact space having the same dimension
at éach point.

L(G, G) is a guasicyclic object, a class introduced in the first
section . Another feature of it is that it has a smooth G-action such that
L(G,G)@@GQJ%(A>ﬁG§2 . Then we use a dual form of the van Est's complex to

obtain a resolution of AXG by quasicyclic objects. PHCﬁ—groups are available

n+1

] = 1) which L(G,G) is

only for reduced quasicyclic objects (satisfying T
not. The Main Lemma contains the technique necessary to bridge this diffi-
culty. It uses a sort of "dual Dirac element", different to the usual cne
[}33 but ‘G-invariant , not only K-invariant, however it can be defined only

locally. The output of the Main Lemma is an exact sequence of reduced

quasicyclic objects the extreme terms of which are the ones we are interested




-
“q 53/ H
in (localisations of (AXG) an (AXK) ) and the middle terms have vanishing

PHC -groups.
% :

Here is briefly the contents of the sections. In the first section we
introduce the notion of a quasicyclic object and we discuss their properties.
It also contains the Main Lemma, the key point in proving the isomorphism of
PHC,.-groups. The second and the third section contain the construction of the

A
data needed for the use of the Main Lemma. The second section also contains
a theorem for the cyclic cochomology of coverings:"If Gl‘iﬁG is a finite

covering then 9 ¢ H .
HC (AG) =~ HC (A?ﬁGl)

where H is the covering group". The fourth section contains a Weyl theorem in
cyclic cohomology :"PHCKZA>QG>53.PHCkEAPﬁT)W if G is a compact connected Lie
group, < G a maximal torus and W the Weyl group". Needless to say, these
two last theorems are generalisafions of well-known results in the theory of
compact group representation.

The third section also contains some applications fo nonalgebraic

groups. If G is the universal covering group of SLZ(R) then
PHC%_(A.}QG) a PI—I(;% +3(A)
The Appendix collects some results on Lie groups. The reader should
'keep in mind the algebraic case for which these results are mainly intended.
I would like to express my gratitude to Professor A. Buium for

usefull discussions about algebraic groups.
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1. Quasicyclic objects

In this section we introduce the class of guasicyclic objects, a
class with properties close to those of cyclic objects and whose definition
is inspired by f@Bﬁ . We carefully study its properties and show how to

exploit certain exact sequences of quasicyclic objects.

PR Let us recall the definition of a cyclic object in an abelian cate-

gory M 55] . It is a simplicial object (X ) in M with an extra structure

n'nz0
given by an action of Zn+1 on Xn‘ The face and degeneracy operators
g, 5 o B =X i=0,..., n satisfy the usual simplicial
i n n-1 i n n+1

identities [15] :

(5 didj & dj~l d; s
(5,) 8,85 = S441 55 E o
| { Sl e
(5.3 d.s. = Lo i soranide gl
5 7=
Sj di—l o i
And if 5 tn+1(i Zn+l S 0} is the standard system of generators we also
have :
T de ired n
__" ) 5
(e dit e
1 10l dn =
= S. == 1 n
, X n+2 Ti-1 ? ?
B Silme =
s n+2 °n i
and
17l
(03) tn+l e )




fia et

'i@n+l)

The main example is 4| = ({, " where-@l is a unital algebra
s

over C and
g’aod@ i) aiai+16§>...69 8. i B aeg al
di(ao(z@' SN an) =

Ianao ® alu; sl a1 i=n
si(aOGQ F/Qan) = aOGS)‘ e BB ai!"z@ l@ai+l@> e RV

tn+l<80@ s ilR) an) = a_ (@ ag G a4

iy : N
If 4} is a locally convex algebra we understand to replace % by &

= the projective tensor product {10] as in C4] ;

"y ¢ ri
1.2. . We now define another class of objects containing objects like 2
- Ay - 2
even if 4l is nonunital, as well as the objects L(A, G, x) defined in | 18| (see
also 1.3 iii).

Definition. A quasicyclic object in an abelian category M is a graded

e & M) toqe git i : X i =
object <Xn>n30’ X ¢ 0b(M) together with morphisms d;: X G R

and T X e sati§fying (Sl), <Cl> and

p+l o m
(® delog « Il
1535 Examples of quasicyclic objects .

i):Cyclic-ehjects .

b il

ii) 2} for a not necessgfy unital algebra. Actualy we will be interested
in the following situation. Let A be a complete locally convex algebra, 1 & A,
G a Lie group acting smothly on A, in the sense that a morphism @A :6 ~=»Aut(A)

is given such that @ig is continuous and unital for each g & G and the map

G2 g-?0{g(a) & A is smoth for each a € A. Then AX G, the smoth crossed
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o0 : 0 :
product of A with G is defined as.CC(G, &) = 5(?650 (B A) supp ) Compactg

with the convolution product :
(}Oxi}!/(g) =fG(P (h).’-}(h(#"(h_lg)) dh

for ¢, € AYIG and dh a fixed left Haar measure on G.

-V
The explicit formulae in this case BFE‘%S = (Gn+l Aﬁbn+l) 2= %\WQCQ

(dqu)(go,...,gn_l) =vf; djO(léa...@§IQ§O{hQ9lQ§...QQl)(?KgO,...,gj_l,

sk ) dh

ja""gn_l
tore =0 oy 0=l

0P g9 ) = 800X BB OGP (e, 0,100,y 1)

and

7
n+l?7>(90"" - tn+l(97(gl,...,gn, go)), Pe (AR B) .
b ;
In these formulae the left hand dj is for (A G) while the right

b
hand dj is for A ; h appears on jth position in the first formula.
iii) Let A and G be as in ii) and suppose that there are given

f?: G~ Gl a morphism of Lie groups and UG G an open set.

Let L (U, 6) = C(Ux g 2Ly and detine

N e (1 RN D1 &) D (W ’
(dd%ag§’90""’9n> ”?[G doa(lg)¢5¢)1& ”.&wl)(gﬁ(J i QO,...,gn>) dgo
-4 :
7)(n = (1P X, @18...®L)¢ DN ST (3
<Tn+1%/)<5"90""’9n> (16 Cnyﬁl . 1) tn+l<7 (5‘/91, ,gn,JST)g )
for 5&€EU, 903""%16 Gy q Gk (U G )

et -5 N Explicitely

D T e e = M2/ (5 o
P GgreesByro8) = [ O4PU s G i) 08
Then (Ln<U, Gl>>n30 is a gquasicyclic object.

Also let d = TJ T TR R T

3

We stress that examples ii) and iii) will be effectively used in

computation.
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Ll Definition . A quasicyclic object (Xn, w0, dj’ Tn+l) will be called
: n+l _
reduced if Tn+l =1,
1T 66 is an arbitrary guasicyclic object then
Ficm 280
n+1 n+1 .
O A= S )Xn>n30 and (ker(T_ 7 :Xn*")Xn))n‘?~O are examples of reduced

guasicyclic objects.

Given a reduced guasicyclic object X = (Xn, nx0, dj’ T .) we can form

n+1
the Connes' complex C(X) as in the cyclic case [5, 14] . let us Tteeall its

definition.
; \;1“‘-]. . n
be defined by ' =/,  (-1)J dj,2)= 2+(-1)" d..

Letdid® X X
J=0

n-1

i g
MepleG £ =10 7 N =£EZ (-1)™ 1 J. . The Connes' complex associated
n+1 420 n+l

with X is the total complex associated with the periodic bicomplex

................................................

g4 -2’ lop
3 v N W g
B e
n+1 n+1 n+1
2 -3 0
K2 g
&
e
n n n
C\” i {)f c)
& A B
J ¥ & i d 7 i ‘7 :
XO (w.,ﬂ,. v re— XO - o XD Q— NS

Then HC%(X), the cyclic homology of X, is by definition , the homology
of C(X). The homoiogy of the infinite twosided periodic version of this
bicomplex defines PHC%§X), the periodic cyclic homology of X. -

; : : 5l
If X =21 we shall write HC (1) and PHC (1) instead of HENGéi ) and
; ¥ % R
i
PHC, G D

e

]
The above definitions are the same as in the cyclic case iS, 14j ;

e e o e e TSRS i 3 0 A TS
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1.5. We now briefly investigate thé extension of Connes' exact sequencel[aj :

Let X = (Xn’ nz0, dj ) be a quasicyclic object. Denote by & (X)

n+1
the bicomplex

: { i
2y b -3
e e )

’3 L : b;ai
K78

.

Ty

9¢ﬁ 03

Db : fop
CACEPET R
0 0

and by HH (X) its homology . Here ¢ and @' are as in 1.4. and € = 1-(-1)" T

If X is a reduced quasicyclic object then, as for cyclic objects [43 Z

there exists an exact sequence
. »1€>ch(x) e g HH 0 s e 00

HC&£X), PHC%(X) and S are related by the following exact sequence
3 l : s PRI ot ] 3
0 ?iif (HC 191001 (X0 8 = PHC_(X) 7>£;T(HC (x) 5
It shows that PHC AX) =0 thHIGVPr there exists a natural number m such that

g™, ()~ > HC_ (X) is the 0 morphism for any n > O.

1+2m

1.6. The following vanishing criterion for S is basically proved in LlB:l.

WV

0, d., T_..) be a guasicyclic object such that

R e .
Proposition. Let X <Xn’ n o Yoy

n+1 Dl T i = T n+1
1-T_,1 1is injective. Then S = 0 on HCﬁgxn/(l— Tn+l>xn>'

Proof. Consider the composition of

; 5 & oS ; n+1
€0 2T X/ A-TE0 X Dpng = O/ Q-TEX D,

The line filtration of the first and third bicomplex shows that the above map
induces an isomorphism on homology. This shows that I is onto and hence S
- vanishes in the Connes' exact sequence of the reduced quasicyclic object

(X /(1- 1”+l>x g



sl

. We are going now to introduce a sort of "dual Dirac element", an
important device in establishing isomorphisms of PHC*;groups.
Suppose the following data is given:

a) Two exact seguences of quasicyclic complete locally convex spaces

(ED 0 -ﬁ>36ﬁq>-§ie>i%§q“l>§£9 o gi; 20y <

(Ez) }C(O) e, (1) Eos E_{; %(Q)__? /'%:-{%»U

where Y is reduced.
b) A Cﬁlaction of R,fq : mexGL(:}§J>) for-any 52050 . Bosteii=that

/%l & 2+1 and if ¥/ denotes the derivative of ‘7t at t = 0 then ¥ =&o +c)8.

( we understand that 4;(5&50)> =CT(35(Q>) = ().

n

21 is injective on Eﬁ;gj> for any J = Useney @ and'any 20

Lot FO L2 ® ;g L0 FD D (7 AD oI for

Sl en i
Main lemma. 1)rd <J> is a reduced guasicyclic object for any.j = 0,...,0-1.

ii) The complex

e

. ¢ ‘&
f\/ o { } : {9 7 ot (‘} il C::z e
J;:ﬂ(q il >;-aw) R “? 3\{ (l) ki ,_,iw,<0>"'"7“‘ ;\f =)

0 —s L —>

is acyclic.
i11) PHC( 3 T R
B BHE ClaBHE. - (Z€).
iv) P Qﬁg Y RHE, o ()

Propf. Since a short exact sequence 0-—»X' -2 X—asX'ﬁmyﬂ.of reduced

quasicyclic objects gives rise to the six term exact sequence

e o ot e R SRR SO0 4. S 455 AP i
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PHC(X') — PHC,(X) —> PHCO(X'N')
[ |

PHC, (X' ')~ PHC, (X) < PHC, (X')

we immediately see that iv) is a consequence of i), ii) and iii). (PHQ%_iS a

5V;L—graded theory).
The relation 1 - Tn+l .Jﬁ WQ?? ¢ gt = \/E{ ﬂth dt) shows that

Ran(l - Tn+1 )C RanV' and hence QECJ) is reduced. We also obtain that W

is injective.
Let us observe that §7§7::§7f;. Since o is reduced and ;Zy”:§7?<fg-we
obtain that the complex in ii) is well defined. We now prove its exacteness.
At Y and §§<0> + this follows immediately from the exacteness of (El)‘
t j§<j), e and}% : observe first that SEE£j+%%cr}§j—l> =0
(J+l) (J 1)

then & x =0x = 0 and hence ¥x = 0. Since

V/ is injective we obtain x = 0. Let kya €;3¥<J> be such that & &3 =§ZS_1+CTGT

Indeed if x («q':v

- 9. (31 and v f%<3 -2).

for some ifj_li, s //

{”ﬂWe obtain &)(\fj —ET&}_l) = 0 as follows from the above discussion.

Then 1}5 :@”Ugml +§E}5+1 for some $Tj+]éff2?(3+l>. (The undefined terms are to

be replaced by 0).50 we have proved i) and ii).

P‘f{: .-’
For iii) let us note that ,ﬁiJ> /Cfﬁﬁgj 2

is a quasicyclic object
with R acting on it by quasicyclic endomorphisms. This follows since S/

J 5 7 . v e (] A G g s
comnutes with ¢~and with the structural morphisms of ;¥§J> (use W =00 +T0),

We show: that L = 71T g injective on jEﬁJ>/&*j&(J—l> fop el . a1y

n+1
uppose tr N+l oy L g ! r ey v e =1
Suppose that (1 - Tn+l )\/j "'Cﬁ‘yj~1 for some Vs & ,EJJ l(
Then gl Tgii ) \Vj = 0 and hence <ﬁ“ﬁd = @ sinse. 1 = fg+i is assumed to

J-2



e
be injective. The exactness of (E ) shows that there exists T' LEF (3-1)
such that \?3 :(Yaifg_l. The action of R on fKKJ)/cT;lSJ-l) factors to an
action of'the compact group ¥ = R/Z on (}f(j> Aﬁjzﬁ(j"l)) /

L = 2:%>< (3 o <J l>) whose set of fixed vectors is just ,{KJ>_ The

W
proof is completed using proposition 1.6. and the fact that F—» F  is an

exact functor.
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2. Preliminary computations

In this section welshall be concerned with specific properties of the
guasicyclic objects L(U, Gl) defined in 1.3. iii). We shall also establish
the technical details needed for the éroof of the exacteness of (El) appearing
in the Main Lemma .

2.1 Let A, G, G , & : G->Aut(A) and : 6 -»G) be as in 1.3. 1i) .
Also let 4 < G be an Adg-invariant open set. Define/?f: G -~ GL(L(U, Gl)) by

2 ey A - .' "y A -1
</~‘(‘5i(17><(61, goa"'ag ) ( <J/ g ]7),"§"{}'> QO,...,S(J/) Qn>

fOI‘ an \ s b “E: B, oo a é», G and (»\ (:‘ L (U G ). VB defl 1854 SmOOt“
Vi ! E 1 QO’ ’gl'] ] [ n ] 1 /

: b
In case G = G, » EF = id and &) = G we define p:L(G,G) - (A%G) by
(p(ﬁ’)(h il ] ) "[“z{(<7€))<g s 9ns Gy )) din
| 0 e /5%/ e e n J

e -1
1 = = = I '\-" = X )
if gy = hgy Gy = Bghyseees g = Nghyooh 7Y (gzgnw X 90% s ”vfgn—l)

P&
and G Q,Ln.
Let Cé% be the G-module having C as underlying space and the G-module
structure given by geA=/.(g)A for any g¢: G and any AC C. Here /\is the

modular function of G. Let L = L(G, G).

Proposition. i) flﬂ and p are morphisms of quasicyclic objects.
'} x Ipw
B R o (A}\G) ~mg> L establishes an isomorphism of (A%G)

onto Homs(C, , L ). (The action of G on L is<gf, > =<1, 9—%fd>')

Proof .- i) is a tedious but straight forward computation which we shall omitt.

- [9:4]

,

D X
et @ : L -»C (G, c (G”*l gLy o C,(6, (AAG) ) be given by

CRICRUNERUNES SR DICHE TR



e o
(here %? s Ggs-+ 9, have the same meaning as above). fb is obviously an

isomorphism which is also G-eqguivariant since

n

f\f“’c/, lp)(g s+ ++51) =W By 0,008 :«f><7-;><§':18"1',h0,..., h)
%0

The proof of the proposition will be accomplished once the following

lemma is proved.

2.2. Let G be as above, X a smooth principal G-bundle and B = G\X. Also let
E be a complete locally convex space. Then di(x, E) is a complete smooth
6-module. Let F = C, @ Cw(G e
Lemma. i) Homi(C, , C.(G, Y2 10, 7 )wc s, £y :
i1) WG, £9 = 0 for 3 > 0.
Here Hj(G, FO) s J 2 0 denote the cohomology groups of G
with vaiues in the continuous G-module FO‘ As in the case G discrete they

represent the derived functors of F (* H (b "U))f:9j .

. . G es) s oo P
Proof . It is proved in i9, Observation fii .1.3. } that HD(G, B (6 E 9k

and H‘(G, CC%B, %)) = 0 for 3 > 0. The formulae for the homotopies used in

o e e
the proof extend by continuity to prove that HO(G, CCj(GS E) ) = E and

Hj(G, CZKG E) ) = 0 for j > 0. The isomorphism ﬁ;ZG, Eﬁiﬂik&g 6:28, E) as
G-modules proves the theorem for X = G.‘Since é;kGfaB, E) 6266, éng, £))
the case X trivial reduces to the case X = G. The general case follows by a
partition of unity argument and the GY%B)~linearity of the homotopies for
X = GAB.

The isomorphism Home(C, , € (6, £5 ) v C(8, B o e i

AL/ - ke
pg £ C.(% E)->C.(8, B)

(pof)(x) :j f(Q_l y) dg
G
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where y is an arbitrary lifting of x.

/e Let U<G be an Ad-invariant open set. Define J:L(U ,Gl)éfﬂL(U ,$ef) by

393(5N) _[’nhl/)<) g 90""’ gn) dgg- .- dg,
Lemma. J is a morphism of gquasicyclic objects and HH (J) is an isomorphism.

Proof. The first part is obvious.

Let F = ker J. It is enough to show that HHn(F) = 0. Define F<_1) = 0,

-(J> = § NS \[ / It = i [ 2 3
E i [ é&F, G§+l<f7§) : go,...,gn) dggs« e s dgj 0 if %) E Ln( U, C1>
Then F( >(; F(J+l> L}F(J>

e i
<J) is invariant for both o and 8

d, F(J>{‘” r<J_11> foed el e

Let us obhserve that F

1 :(j)_ﬁ:., (.:J) e e .
d; fn e Fn~l hoEdoe ol o5 vallig

) (s S A
Choose AL €€ (6.) {( )Kj(g) dg = 1. We define.
Eheal! G.

<S(§‘9><ZE" 90>+++» Inar? = S5LP 0N 8gs-ees B, 934 2+ 50,1 X (G5,

H

Sj being the degeneracy of A . Using %)- (- l)]kl(o +(~l)n—3+ld»)

3+l JFZ n

on F(3) / FG-D we obtain s + sg= (-1)9* on F(3) / F<J"l) and similarily

il Al - ) o
d s+50 = (—l)Jfl on O / FOL) | Thie proves the lemma.

2l We now give a conseguence of the lemma above.

Proposition. Let KL G be a compact subgroup, then

HQﬁ(L(K, G>K)13'HCf(A 4 K)



e
Proof.  The above lemma shows that J induces an isomorphism
HH, (L(K G)K)ik'HHu(L(K { ezA)K) since K is compact. The Connes' exact sequence
shows that it also induces an 1aom?roh15m HC, (L(K, 6)%) o HC, (L(K, 4 eg)K).
1

Then we use the isomorphism (A3GK) =¥ L(K, K) (see proposition 2.1. ii).

: ; %)
s Let K be a compact Lie group. Consider C (K) with the convolution
product.

O e ;
Corollary. [16] HCLC (K)) = C (K60 HE (D).
% .
ok

Proct. Use the above proposition and observe that L(K,4fef) = C (K).

Hence L(K,te%)K is the space of smooth class-functions on K.

oo Let E and E' be two locally convex spaces wich are also continuous

G-modules in the sense that there are given morphisms G —=» GL(E) and

G-*GL(E') such that G3g->g% € E is continuous for each Eici;E(respectively

Lo

£ B ThenE @QF E' will denote the quotient of E GO E' by the closed
J
= et 4’:{ ik
subspace generated by g é;ag\ék— ‘ U¢L1£

If E is a complete smooth G-module and G is compact then E(kOG C.i5

NG

isomorphic to e°, For any G (E w) 0) o/ E

2:6. We now give a complex whose homology might be called the G-homology of
a given smooth G-module F. It is closely connected to van Est's theorem {8, 9}.
Let K € G be a maximal compact subgroup of G, t= Lie K& g = Lie G.
Define
€ :] 5 N €3 o < J'_l s N
S + (N/DR EXoy € -» (AT He/DG PGy ©
by ,
»-«. L5 "“t" J . - §
0 LG A ,\xﬁsifi A e R

},% ; ¢ & §
l/\ .o .Xi o e /‘\Xj(fy’ X](ff,) 55

ik 17 i ¢ A /:‘ : ) A :',(
2. G xk{@; Xl sy K P
i<k -



L
0L Xy, Xo € 0, ¥ € F and X denoting the class of X € g in g/t.
e8] ;
We shall be interested only in the case F = %xcggcc(s, E)for'E an
arbitrary locally convex space.

Proposition. Let G be a finite component Lie group, K, E and F be as above.

Let g = dim (G/K). Then the complex
BEe S0 (Q/t){‘gQF)fzﬁK B=2 =l (g/t)@F)@;sK C~3F@, C->0

is well defined and acyclic .

(AL, 65 € = (A4 i
Prood .. It is easy to verify that it is well definmed (this follows also from
3.7.). If we discard the augmentation <i\ (g/t)p F%; F@MKL m*FQaG C and
pass to the dual complex we obtain the complex computlng 13(8 ﬁwﬁ § 1. Since
HJ(B, F ) =0 for j > 0 and H (G, FQ) = = (FQQG C) by lemma 2.2 we obtain

'

the result. The last statement follows from proposition 2.1.

2ol Let H< G be a central compact subgroup, H acting trivially on A,

giz G méG = G/H the quotient morphism. There exists an action of H on

L(G, G) and L(G, Gl) given by

<h£€>(f 9 \y geecs gﬂ> :ii:‘{%h.jia goa"‘-’ er>
S

commuting with the action of G defined in 2.1.

Let JO:L(G, G)->L(G, Gl> be given by

JO?D<§" SR gn) :%J Hn+lﬁﬂgfk, hg9gs -+ > hngn> dng ... dh.

(gi is the class of g, in Gl).
Then JO is a morphism of guasicyclic objects commuting with the actions of G
and H. Lemma 2.3. shows HH, (JU) is an isomorphism. Since H is compact and

central it is contained in all maximaly compact subgroups of G.



T
This shows that the complex of lemma 2.6. for L(G, Gl) is exact. A spectral

sequence argument shows that

;

il : 2. C)=>HH ((C,-L(G, G.))®. C

HH%(JU“QG E) H@§<3593 L(G, G))QQG ) P%Aﬂ( s X 1)) G )
is an isomorphish and hence also

HC, (3 g )+ HE L(C, 0 1L(G, B))g C)=>HC ((CEL(G, 6,))@; ©)

is an isomorphism. Since ((C{§; L(G, G))Qﬁe C o’ (AWG) by 2.1. and 2.6. and

L(G, G )H ﬁiL(Gl, G]) we obtain

I

Theorem. Let H < G be a compact central subgroup, Gl = G/H , then

HC (A% 6D 2y HE, (A ) and

HE (A B2 HER (A %)

This theorem may be viewed as a generalisation of a well known
theorem in the theory of compact group representation :"if G is compact then

S RORG, ) (C e o T A
LQ‘:R(EJI),,(C t.ga;R(G))vl ‘Lli X
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3. Reduction to the maximal compact subgroup

In this section we shall show that PHC.(A}% G) and PHC (A;ﬁ K) are
isomorphic when localised at suitable maximal ideals of C (G) ~§ féc (b)
f() } 1) f(g) for any )\, g ¢ G' y HerepK is a maximal compact subgroup of
G and g = dim G/K. We shall accomplish thls quﬂg the Main Lemma, so most of
this section will be concerned with obtaining the data needed to put us in

position to use the Main Lemma.

I Let A, G, Gy, g G0y and A : G~=Aut(A) be as in 1.3. Also let
V«.G be an AdG—lﬂVBLISHL open set. Define a C;;v(8>— module structure on

ECV, Gl) by

DU (1t = (0 )Y OA Gy e e s
(/)11 )(&n, gaa 5 gﬂ> lg; );,/iﬁ'\sggl ’gﬂ>

W
)7

< \r‘;. (’ 3 1 a5 s Is
(G), V¥ & Ln(V, Cl). It is easy to see thqt dJ . and

for any () ¢-C;
Y ny

/
[%xﬂ (\L€~ G) are C;;;(G) ~ module endomorphisms.
g ¥
We shall need the following
Lemma.  Let m :} ?)f (G) ‘(x) = O/ Then m , X €. G exhaust the set
> oLy
of all closed maximal ideals of C”” €6),. It 1< EBV(G) is an ideal not

contained in any m, and Koc;.G is an arbitrary compact subset then there exists

) & g " vy e
? G I such that 7v 1 on KOO

Proof. - Letsl CWC?ZV(G) be an ideal not contained in any m . . Then for any

: e e i RO : ; - o P
x & G there exists 7”x€“'I such that 7ﬁx(x) # 0. Replacing 9p; by Iy)x\ it
necessary we may suppose that %QX %0 lek KU <. G be a compact subset. An
easy argument shows that there exists (/1LI such that 73; 1 on KO' Let

=1

oA .
g C (R), such that g(t) =t = for t > 1. Then‘Y/: (geﬂ??)?ﬁ belongs to I

AT s o
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and'gfrrl on Kg-
If T is also closed let G = &fK , N 2 1 with K compact for any n > 1,

Choose ?’n Q;I such that(i- > 0 on K . There exists }l > 0 such that 2 A 7 o

v % L‘G T e a T oA
is convergent in C (G). Then ‘EL,ATfT’ belongs to I and is invertible in rlnv(v>,

Sk Fix x & G. In order to study the localisations at m, we make SOme
assumptions on X.
DA L2050 = N\ ? | = |4 = 2] 1
Let G, ?%YQG,J‘X ><J.j,‘gx Lie Gxﬁ“ g = Lie 6. If U is an

Ad. - invariant neighborhood of 0 in g, we let G)iGGJ = (X 'U)/ GX for the

X X

G

ep]

b

:

following action of GX on GxU (/;1, X)ﬁ\u (y‘lgx, Ad§ﬁ(X)),Zf1(

wx expCoxn

0

X &U aﬁd Z\w»GX. We define c: G'“GXU'“fG by c(]x, X)= 0
c is obviously well defined.

We shall assume for x & G fixed that there exists U g, satisfying:
(AL) ¢ is a diffeomorphism onto an open set V < G.

Let RU :§}7~@; Cinv(b) Supp ; v g . W= x exp(U) is an open 581'1n

Bx provided (Al) is true. Let Ry :-§ V & ]HV(CX) suDD/ < W'4. Define

§>: Ry —> Rl’% <gy)<0> 0 if g¢E W fx(i )(g) -y (g) if g €-W. We shall a]qo

assume

(A2) Q is an isomorphjsm, and .

(A3) There exist ??,ﬁ' - Ry satisfying @(x) = 1 and v‘y ~—€u
Conditions for x, U and G to satisfy (Al)- (A3) will be given in the

Appendix.

T Conventions. Let H be a Lie group and M be a L (H) ~module. We shall
denote by My the localization of M at my for ¥y & H.
1f not otherwise stated we shall assume (A1)-(A3) for fixed x € G and

U &;gx. V and W will always have the meaning of 3.2.
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ol An immediate consequence of (A2) and (A3) is that L(V, G)Xm;» 1.(G, G))<

4 . : ; (&%) .
and L(W, GX)X -3 L(GX, GX)X are isomorphisms for the Cinv<_G) (respectively
¢S (6,)) -module structure. This justifies the study of LV, 6) and L(W, G).

n+1 n+1

Let us observe that V X G and WA G are G (respectively GX)

Fensd ; ' -1
srincipal bundles for the action (v e AR @I Ve RN
p p e e g, ﬁ 1)t % ,{}gn)

where gg,-++» 9 ¢ G, Xu‘;’;G, )-\ le; V (respectively )‘ &G, ‘mlé;. W). Morecver

n

die to (Al) the inclusion W X Gml'-n:;» V X Gml factors to give a diffeomorphism

St ol ] 5 e . €O o
GX\W KG e GN\V XG 7. Lemma 2.2. then gives (CA(@ LOV,; G))@G g o

(CZ,QQ LW, 6@y C, [_}j being the modular function of G . We obtain
A X

K ; ‘
i o O -~ 2) ) ol P > »1'::-; . AN (G &5 C
(AREL (0 @ L(6,6) B D (GRLILE@G O, (G, BLUSIg O,

*

be
ER Let O GX'\G .-...,fay.G)a locally bounded borelian section for
6 3 G6.\5 L?l 7Bkl

Lemma. i) There exists a measure)}g on 6, \G such that

. -
h(g) dg =/ hCwe(t)) d d (B).
e oy A
1) If we let Eq@(y\) = " Pno (1)) dp(t) btai
11 W e ({, /} j[});\’/G ;}x | IM hen we obtain a

ey (e
continuous linear map E:CC(G) veiy CC(GX) satisfying

)

.'?( )y = EQ(n) d
Jpw =, ep o

Prooyﬁ,- Let -—Ef/&'CC(GX\G). For any (}3c_.CC(GX) et I?((};) =
-*-j ((/'.‘).K“)/J )0f~l(g) dg where f(aﬂ, £) = o(t) defines a borelian isomorphism
G : |

GX;{ G*\G 3G, 1 “\/j defines a continuous linear functional C'C(GX) -3 C which

R
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is GX invariant. Hence there exists/pk: CC(G;\\G)-9>C such that

I_.() =p( /)j'~ @ () dpn for € C (G \\G) and ¢¢.C_(G )oAk 15 B
“/f/// /) 1/ [ L

‘continuous linear functional and hence there exists a measure th on Gg\ G

such that/;ﬁ(}b) :v[ yé(t)?/A(t).THisvproveé i), ii) follows from the
; o
i N %

definition of ifg and the locally bound | ness of ..
3.6, let (AXNB), = (C G LV, 6@ C

JAN ‘

“Define 5 = L(W, G) =» LW, GX> by

E D aTgs - - »0.) j PAG N ORI . € el (x DBl )
0 3 0 n i 0 n
e 5 (GX\G)FH{ = f f

Proposition. i) EO is a morphism of gquasicyclic objects commuting with the
action of Gx'
ii) If x &G satisfies (AL) then HC{(A;&G)V) o HC ((A;;GY)W).
A A :

iii) If also (A2) and (A3) are satisfied then

HC _(AXG) o HC%(A ';QVGX)X )

Proof. i) follows from the above lemma.
The above lemma and 1emma 2.3.show that HH,(E Y is an-dsemorphisn,

Then a standqrd reasoning (see the proof of theorem 2.7. ) shows thai

HC ((C@Eg) &g C):HC ((C foLMW,B)R C) = +HC ((c wm., >)WG C)
A A B X A X

is also an isomorphism. Since (E(XJL(V,G))QQG [IC:Z(Q;%L(W,G))@DG C we obtain
A LY X
11). iii) follows from ii) and 3.4.

Juls We are now continuing to define the data needed for the use of the

Main Lemma.
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A element y in a topological group is called a topologically torsion

element if (y), the closed group generated by y, is compact. If (y).is-not

compact then we shall say that y is topologically torsion free. Let KX be a

maximal compact subgroup of GX. Then x is topologically torsion precisely when
x & KX'

Let F = C GL(, 6) if x €Ky,
F=C,®L0, 6 / (1-0(C L0, 6,)) if x K,

Also let L = K>< X E&KX , otherwise let L be a maximal compact subgroup of
GX/(X). Define t = Lie L and j%ﬁj) = (/\j(g/t>Q© F)G C

The definitions of 3 and e as well as their properties are closely
connected with the complex computing the gx~homology i

Let C = /\ a, D Foand Q?O CJ }‘Cj~l be defined by a formula similar -

to,that of @ IR b

& JXq ...z\xj@é;;) S

¢ X, @X. (5)
£ X < =5
=] I{\Xl.lz\ J A Vs

1
= 1yt A | -
SV fx ki/\ Ko in Xy oo K s AR D E

As it is well known (Cj’E§0> computes Hﬁfgx, F) = the homology of the
gx-module k.

,ji(j) is isomorphic to Cj/C; C. being the closed submodule of C
51\ K &}(x) Observe that t(C ¥t

Recall that éﬁ (X/&u3> = X} = X/\g (¢3) for X €g and <O & C 1 this

generated by tf%C,‘l and (b\—l)c. for J

equation and the Gx—lnvarlance of 33 show that <} (C )<“ C é ,already

defined in 2.6, coincides with the quotient of Q)U' (This also completes the

proof of 2.6.)

et e AT AR SR e ™ T R T AR
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Let d,:C, —> G,

VAR 3 ‘:',) = 2 e 2 (é’_/’
dfoL.kawxw%).-MA.”/WM@AwdjS
i Xl""’ Xkéﬁ g,;\éi.qgh, %;QEF. Ck becomes a guasicyclic object if we
similarily define Tn+1 to act only on the factor F. Cgfis invariant for the
By

structural morphisms and we shall endow | 3 = Cj/85 with the quotient

quasicyclic structure.

P
3.0, Let Z& C (M, gx), Z(x exp(X)) = X. We define &, : C, —=C

G e

C?'O (e = L/AC:

Lemma. 1) og(Yaw) = Yo (w),

ii) Y(Cﬁﬁ(cu)) =€?6(YC&3)) for any Y’@;gx,ézﬁéiﬁj.

R OHE) S

Proof. i) follows from the definition. Z is Adg -invariant and hence YiZ) =0
Then thrb(aw)) = YO hed) = Y1HROI+ Z;\Y(Ud) :(DG(Y(QG)). This proves ii).
The last part follows from i), ii) and the GX~invariance of (36.

We define C{fﬁ}§jzwﬁ;§§j+l) as the quotient of O according to
iii) of the lemma.

Let
: s o
SR We now come to the definition ofo’@ QY : R o~ GL(L(W, GX)).

- ("Z/Jl,l}{))(x exp(X>, go,---: Qn> = (/"5exp<tx>7))(x GXD(X)s Qoa"', gﬂ>

for any 7>Q}Ln(w, GX),'tGZR. Also let R act on Cj by
- Ry, < / f;?
o I 3 L) { ,\G/ = f ( 3 A £
te QAL AXRARS ) = XA A AR L(E)

fiek Xl"‘

this action: at 0.

C X ¢ g, ?&éﬁCdk and 79€iL(w, GX) . Let i?b be the derivative of



~.26 -
Ry v (= = (»'*
Lemma. Vg =()0(Yb +6Tb(30

Proof. Let ()= A WP €Cy=C,@® L(W, G,). Choose a hasis W of of g

15
and let yl,..., ym be: the dual basis. Then. Z = 3~J lfJ Yo ud
£I(x exp(X)) = yJI(X).
2 3 ) :
= sx gl e k :
Let { Ve 0t \ / Y o ShED (D = —Z;k:l cii £<. Using the
relation d&\ = - troad we obtain for (vas above c> (dﬁ ((u))

=0 O<ZiTl @;\v%il ) = Z tr(ady )/\(Af p+ 3 l,\(g)Y (£t )(/‘+
+>, ,\oof iz ((i))
l..

Now 2 tr(ady )Ao@f p =\gs trad ) and 2 Yi(fi) -
l:

= iy ; W ey ‘ .
o c.l¢d = te(ad,) . Since V@)= oLy (e ierobtain
AJl,J:‘l 1J Z UI 2,;1__1 1 ,

the statement of the lemma on CO ;
Next we ﬁroceed by induction. Using lemma 3.8 we get @

(50@0 +Q‘050)(XA<;3) = —50<><A§‘0<¢,u>> + Op(X(@) - XAog(w)) =
bﬁu,u)
= -X(orp(w)) + X710 o g@) +Q (K(=s>)+ XA 0 B XAVl - \f(x;\z,&))

From this lemma or directly from the definition we obtain that 63 s
invariant for this action of R and hence, passing to quotients we obtain the

() Gy el
desired action of R on 2C 4 / R - GL(=Y’). M satisfies Ggl =T 3

since x acts trivially on F and ":(7‘=C?'<g+é:¥€,‘>” it Vis the derivative of ?‘(f T

at 0L

300 e = (CA;@L(W, GX))GSJGX Ge= (AB ), Also liat:

= LAWK, GX@KX C, it x &K, 2= LW M, GX)@M C if x ¢ K, and M is

the inverse image of L in ze
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3.11. We have defined all objects needed for the use of the Main Lemma. We
are now concentrating to prove that the conditions of the Main Lemma are

satistied. Let g = dim LG/L).

3 GX is a finite component Lie group the exactness of (El) was treated

in seebion 2 (2.1, 2.2. and mainly 2.6.). For th-KX we also use the
Serre-Hochschild spectral sequence for the normal subgroup (x)C GX ['9] .

lieip

e gl

s Ym be é basis of g such that Y vey Y. is @ basis ' of
t = Lie L. Also let yl,..., ym be the dual basis and fj(x exp(X))‘;‘yj(X).
Thenl(/\j(gx/t)Q§F, CYU) is the Koszul complex associated with the regular
sequence (fl,..., fq) and the éy%W)~module F. The ideal I generated by
(fl,..., 9 inC (W) is the ideal of KXIW Wit x €K, respectively the
ideal of MN W if x ¢K . iy

SOD

0 (1F) =D . Fi5y

o

(‘w(w>
" Tor: (I, F) = U:fer 5.2 0 apd Tor e
J ; C (W)

= LWNK , G, ) if x G'KX , respectively L(WNM, GX)/(lwx)L(WﬂM, G )-if

><6§I<X. (Note that we have omifted Céyéﬂ since it does not affect the
underlying locally convex space, it only changes the action of Gx' Since in
the above formulae such an action does not exist or is not important, our
procedure is‘justified.) The exactness of (EZ) foll@ws from the exactness
of G?L Gl siconpast )

N+l

512 We are going now to study conditions for the injectivity of 1~Tn+l :

it may fail to be injective and this happens for example if GX is compact or
G = SLQJ(R) and x = e. However it is injective .for G X R and any X.

: : b s : e X
Lemma. 1) Suppose x € K, . If(l-Tn+l)kp = 0 for a certain @ € Ln(w, GX)

then 3@(}*) g e+ gn) = 0 for any topologically torsion free aﬁ



so o

ii) If G2 HXR then 1 - Tn i is injective for any x.

Proof. The assumptlon af i) shows: that CU(& y Ggreees G e

(v’ & n+l m< (F\)/ m

Ogs -« +s 5\ gn)) for any m & Z.‘Since qﬁhas compact
support this may happen for topologically torsion_fraagsonly if

(f(sﬂ, Ogs+ - gn) = 0. This proves i). i1i) is proved similarily.

3.13. We are ready to draw some conclusions from the above discussion and
the Main Lemma. .

Let G be a fiﬁite component Lie group, K C G a maximal compact
subgroup. Also let x & G and U £ g, satisfying (Al) - (AB)' Ve St Kx1L and M
will have. the same meaning as before. Let g = dim G/K, q' = dim GX/KX,K being
chosen such that Kx K.

Proposition. i) PHC,(AX R)2 PHC, ,(A) .

: o+l
ii) PHQ%§A>GR)Of3£PHC%§A>é R),

PHC (A %ER)t = Dfor-any L &R, A0
i) If x & Kx’ GX is a finite component Lie group and

u' = c<K>~<KX(t nU)), then PHC ((A 3 B)y) « PHC, , (((A X K)yye) -

iv) If x €K, Wn K =®and G 2 Hx7" where H is a finite

CompOnent Lie group then
PHC%__‘((AN‘G)V) = 0
(Here K is a maximal compact subgroup of H.)
Proof. PHC, <<A 'f G) )22 PHC,((A X G )\) (1)

n+l

by proposition 3.6. . Suppose that 1 - T b is injective on each Jﬁ(3>.

Then the Main Lemma shows that

PHC ((A X1 B,))) 22 PHE, (D) (2)

b o o b A e TS R AT SRR B £ ST T G i
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TR G}KX lemma 2.3. shows that

PHC, (2) 22 PHC((A K wn K, (3)
Using once again proposition 3.6. we obtain

PHC ((A X KX)WHKX) 22 PHC_((A X K)yj0)

For G = R and x = e we may take U = R and we obtain 1) and ii). The proof of
X = . 5 i : ~J e} 1
i) for (A x4 G)» R shows that PHC_M_(A,,(G,J'RR)U}(‘R)n.w PH%%+1(<A)QG)U). This

shows that we may replace G by G X R. Since for ERAR I~ Tgii is injective

the above discussicn proves iii) since g and g' have the same parity.

iv) It is enough to prove that PHCKK(A>£ GX)W) =8
Suppose first that WA H = g. Then the statement follows from the vanishing
of the periodic cyclic homology of the inhomogeneous components of CDDSSGd'

24 Saronah s : 5
products by Z LlB} . If W< H then we show that PHCﬁﬁ(A,ﬁ.GX)WZn) = 0.

Let us observe that PHC ((AXG, ), ,n) = PHC(C(A R z'r‘)-}«sﬂ)w). Dencte
by L a maximal compact subgroup of H/(x) and by M its preimage in H. L has
the same homotopy type as H/(x) and hence has a finite number of connected
components. Let § be the center of t = Lie M. There exists a suitable power
of x such that x" = exp(X) for some X %é% . Then R s —»exp(sX) & M
identifies R with a closed central subgroup of M such that M/R is compact.
Then M~ M/R = R and this isomorphism is unique if we reguire
M/R —> M/R X R M —>M/R to be identity (use H /R, R) = HA(W/R, R) = 0).
We identify M/R to the corresponding subgroup of M. We still have (1) and
(2) for gq' = dim H/M .

However (3) has to be replaced with

PHC.A‘(Z) 2/ PHC ((AA M)M n W)

Since M N W M/R X R we obtain iv) from ii).




e
Corollary [7] Let G be a connected nilpotent Lie group, K € G a maximal

compact subgroup then PHCﬁ(Abé G) A PHC,Fq(Aﬁﬂ K
%

Proof. K is a central subgroup . Then use i) and induction.

3.14. We are going now to prove the thebrem in the introduction.

Proof of theorem ; . : -

P
Let m Cfo;V(G) be a maximal ideal. If m is not closed then

LG G)m = 0 by lemma 3.1. . Suppose now m = m, for some y €6, Let y = XX,

be the Jordan decomposition of y :x is semisimple, Xy unipotent and XX 7X X
ETZE . Chose e G —> GL(V) an injective morphism of algebraic groups [2} :
Then §}(x) and Adx are semisimple and hence x and U :Ua(fﬁ) for small £ >0

satisfy (A)-(A5) (see the Appendix). Here U (¢) = X &g (dp(x))c B(O,)f .

Moreover the function ﬁD appearing in <A3) satisfies ??(y) eelellE 3 .

‘Let us observe that GX, being an algebraic group, has a finite
number of components.

LE-% Q:K>< the statement of the theorem follows localising 3.15.
Hiatn .

y

Ifx & K, then &( %(x)) is not contained in I and the same will

be true of c(y, X) for any y.&.G, X&e 1 ?) for small &€ . Then since

]
PHqﬁaniG)yiz PHC%((A>GG) = 0 and PHCK(A>6K)y = 0 the proof is completed.

)
Viy

Sl We are going now to give some more examples. Their purpose is it to
show how to use the techniques we have developed also for some nonalgebraic
groups.

NG

i)6= SLZ(R) - the simply connected covering group of SLZ(R).

Let x be a generator of the center, U ={'X & 512(R), det(X) <7T2} :



S
The proposition 3.13. iii) shows that PHQﬁ((AZﬂ G)V)fﬁiPHg%+3(A) if
V = exp(U), and proposition 3.13. iv) show that PHC ((A XiG)V) =it
V = x'exp(U) and n # 0. Since every orbit is contained in a set x 'exp(U)
we obtain |

PHC, (A X1 B) = PHC, 4(A).

TONS

! ii) et 6 = SLQ(R)?iR/N where N = {(xn, n, né&-Z} , X being as
above. Let X E.le(R) be such that exp(X) = x then K =:Eexp(s(x, —l)j,séﬁR/Z:}
is a maximal compact subgroup of G. Let U be as above and let
V = exp(Ux (-1/2, 1/2)), V' = exp(UX(0, 1)). Using the same reasoning as

before we obtain that PHC%S(A>G!3} - ) = 0 (respectively PHng(AbiG)

)= 0
x V !

X
- ! . sl -
for.n # 0 and PHQKK(A>4 G>V>fﬁfPH3%+3<<A14 K)I) where I :{pxp s(X,-1),se(- i"7>}
i ; % {y =
and PHC_}é(A # 6)y) a2 PHC 5((A>d K)p,) where I =fexp s(X,-1), se(-1,0>}

This shows the local isomorphism of PHQ¥(A>G G) and PHC%+3(A>Q KD .
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4. More on the case G compact
Lie,
In this section G will denote a connected compact group,T a maximal
torus of G and W fhe Weyl group of tae waie (G, T).[:lji,v
Let L(B) = L(G, { ep)C .
LT Restriction defines a map L(G, ie&) — (T, { e}) and hence also a
map ¢ : L(G) — L(T). Since Hﬁ%kL(G))c&'Hg%(A>4(3) (by lemma 2.3.) we obtain

a morphism 2 e
L 'x. oy
. pHCN(A A T). > PHC (A B)

Qur aim is to prove the following .

Theorem. rﬁr gives an isomorphism
PHC (AXIG) 2 PHC (AXT)

The proof will be splitt in steps.

4.7, Lemma. Suppose.f : Gl'f> G is a finite covering of connected groups
and the theorem is true for Gl’ then it is true also for G.

Prenf. - tet H = ker' @ Tl = g—l(T), then H C T, and T, is a maximal torus

of Gl' Moreover the Weyl group of (Gl, Tl) naturaly identifies with W. Recall
(theorem 2.7.) that there exists a morphism I : L(Gl,g‘eg) ~%>L(G,.{e§)

defined by "integration along the fibers of GlaﬁﬁG”:

Ip(y) - 2 o)
~ heH

: : Saiok . . H Ko S
which defines an isomorphism PHC (A 4 Gl) s PHC (A G). The diagram

T.
L(Gl) = L(Tl)

L 1 t I

BBy o 1)
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is commutative. Since the actions of W and H on L(Ti)fédmmUte we obtain

7 % g , ; * '
PHC (AR B2 PHC (A>ﬂGl)H€ikPHC (AXiTl)w)Hﬁﬁ(PHé%(AxlTl)H)WﬂfPHC ATV

This lemma shows that we may suppose that GXHXZ with H simply-
connected. simisimple and Z abelian. Since A G2 (AX Z)x H we may suppose that

G itself is simply-connected and semisimple.

4.3, We define now a filtration. invariant for r on L(G) and L(T).

Let ch;T, Xj :é‘xé;T, dim ZG(X)'} j } (Here ZG(X) is the centralizer
of x in G). ‘
Let L(G)(j) ={9ﬁé§ L(G), all derivatives of ?ﬁvanish on Xj} and define

P . B . | ey CiH
L(T) similarily. It is immediate from the definition that r(L(G) el (1) :

s Lemma. L(G)(j+1> 7 L(G>(j)w—é?(L(T)(j+l> / L(T)<j>)w defines an

e
isomorphism for the PHC -groups.

Proof. Let T' be a torus contained in Xj but not in Xj+1' Consider the

cyclic modules A =A' /A" ,B=B"'/B" where

A :530€<L(T), all derivatives of q?vanish on T f\Xj+1} ,
L gf?é~L(T), all derivatives of ?7vani5h on T'%
B = LAY AR e A
Then A and B are direct sumands of the modules in the statement of

the lemma. It is enough to show that
% 3
PHC (A" —>PHC (B)

is an isomorphism. Let A(n> = % qDééA, the derivatives of 79 of order < nvanish
on T' } . () - ~Lealndy,




o

Let Wl

Tt coincides with the stabilizer in W of any X G:T'\\Xj+1[:1i1‘ let h = Lie H

and h' =¥:hh’1 h' is the fiber of the normal bundle of Ad (T'\X. ) at any

point of T'\X. (with respect to the metric defined by the Kllllng form) . Then

V , b
(n) / A(ml)m & (T &)’ ) QQ Hom (t'("’" ”+l,} A )
: W o bz =
(n> (FH']_), g l 2 ,®n+l t .
BB X (T Xj+l) & Hom H’(h A )

m 1
Here CU(T \‘Xj+l

e ; ; : i =
derlvat1vesfg;ﬂ;5+£\¥32iiya W, is the normalizer of T' in W. H' is the

) is the space of smooth functions on Tt gl e glinse

commutant of H, of course h' = Lie H'. t' = thh' is the Lie algebra of a
maximal torus of H', it is not equal to Lie T' !

The rest of the proof is contained in the following three lemmata.

o Lemma. Let K be a connected compact Lie group acting on A. Suppose
that this action commutes with the action of G then
* e Ky
PHC (L(G)) =¢ PHC (L(G)- )
is an isomorphism for any closed subgroup Kl at-
Proof. The statement follows from the homotopy invariance of the periodic

cyclic cohomology [4] .

; % '
W WDy o™/ 51y 5 an 1somorphism.

Proof.. The above lemma shows that

W Wy W
COS(T‘\Xj+1) 2& (t'@ml) 1&; . And A(n+1) )

and
W

A :
BT ) Do Ot T () g BB

be the Weyl group of H = ZG(T’), Wy is the stabilizer of T'im

®
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;}f_

: ' W W
induce isomorphisms for the PHC -groups. Since C[h‘]H o C[{“} A [lZ:}the

lemma is proved.

G N - ON
4.7. Lemma, A2lim Gr L h Y send BT Lin(B B
- e

Proof. Any distribution on a Compabt manifold has finite order.

5. Appendix

In this section we give some more manageable conditions on x & G and
U ensuring (A;) - (Ag) to hold true.

Fivee 6267

g If ﬁs: G-»GL(V) is a linear representation let
o) = dnies . oilde - 554 : £) =% &l
Ué;(S ) iX &, ur(di,(x>)C. B(0,&)f. Here B(0,&) =7|z| <€ fand o

referes to the spectrum in V& C.

Do Suppose AdX is semisimple and U C.U& (Ad) is AdG -invariant. Then for
; X

small. & > e GxGlJ -G is a local diffeomorphism.
%

Proof. We first identify T G with g = TeG by means of left translations and
S ) ;
TX U with 9, for X € Y.

" o5 e ! 5 . o - : } 1 «!‘\ £ ﬂ,.
If (5, X) € G U then r%ﬁ’ X>(stxu) g g, /10D YEG [

X

We shall show that dc

is injective, since dim r(gﬁ,X)(GKGXU)

<E’X>

= dim TC( X) G we shall obtain that c is a local diffeomorphism.
9

Now ¢ is G-eguivariant so we may Suppose that y = 6. We compute
¢

=5 -1
dC(e,X)<Y’ X0> o exp(X)(Y> L f<adx>(xo>



e
where £(t) = (1 - &) g7 : f(adx) is defined by analytic functional calcu-
lus and is the differential of exp at X [ 11] .

i dc< X)(Y X ) = 0 then, for small & , it follows that Y& g, and

-1

f(adx)(xo) = (1 - Ad>< i

>)(Y) f(ad )(ad ()

and hence XO = ;XYE again for £ small enough.

Dy We are looking now for conditions ensuring the other conditions on x.

Lemma. Suppose there exists jﬁ: G > GL(V) a complex representation with d¢

injective, o (x) semisimple and U< U_ (p). If U is Ad. -invariant and
) € ;

X
£ > 0 is small enough then c is injective and (AZ) is satisfied. If

moreover U = U (q) th =n also (A ) is satisfied.

,,,,,

Pioot .- Let £3 < C be a disjoint union of open balls each centered at a
point of C( (x)). We choose £ > 0, & <# so small that CV(EJCX explX)) ) € CL
for any X &.U~(§'). We split the proof into several steps.

Step 1. c is injective. Let 0(31, X) = wle, XO) , then

*/

@ <\,-a.><};;1> xp( ¢ ()0p (0 IR RN OCRCIIENE

/
i
U

Sty

)

Let }60 . $1.> C be the unigue locally constant function such that
}{.O ECT<§ G id C(S*(x)) : jﬁ'o being an analytic function
A (fV(>)exp(D (X ))) may be defined by anmalytic functional calculus and is

equal to @ (x). Hence \ (yxyp ) e g(x) and exp(Q(v)dg(,)y(«\ )) -exp(dg(X T
g - ‘

(i o

T

We obtain that d%,(AdXE(X)) dg (X ) and hence Ad,, (X) = Xg since dﬁw is

O 1)
injective. This shows that =y x Xfl = x and hence (¢, X) = (e, XO) in
i d 4]
G‘AG U.
X

Step 2. @ lxg) Fpx gl AR GD% is closed in Gy. Here we have
0 0

1) 5
0J i

§

denoted G = cG), Xg ® o (%)
3 9]

R T e



SRl

O?G (xo) is a submanifold of GL(V). (We do not assume it to be closed).
. :

©1

Uy (xg) is closed since it is equal to {};’aéGL(V) POy = 0f if P is,

the minimal polinomial of x,. Let y & ("G’(V)(X ) ) } G5. Then

T, Ogranto) = Gdt = D@LV, TOy s GINT, 6 = (d+ - 1)) -
Ty( GO(y) since we may choose an Ady~1nvarlant complement of g in gl(V).

This shows that G}GO<Y> is open in (5%L(V)<XO>{¥GO . The latter being a union

of such orbits it follows that Q}G (XO> is closed in ijL(V)(XO)fEGO and herce

0

also in GO‘

7 . . ; : . .
Sircn IO (/C(x) is5:closed, ?ﬁrestrlcts to an obvious local diffeomorphism

Q?G(x)(m%sﬁﬁso(xo) . Since kergﬁ is discrete Q?G(x) is closed iff Q?GO(XO)

is closed.

Step 4. Suppose L< U is a closed Ad. -invariant subset of g, Then
) .\J . \.’w
——-‘/\/ ———

c(GX,. L) is closed in G. We assume first thatﬂg»is injective and identify

=X
Wit = “if‘ W/ = \f \A =1 —
G with GU. et C<} g X )=y € 6. Then ’“O(C(éﬁn’ X)) = ) nxf*n XyNeE
s 3 (} v = YA 1 /i i
e U (x) Since (x) is closed we may write 5ﬁn § né : with

’; - A 4 N ~Oe o IV f
Ea - Q“Gx’ @Xﬂ convergent to say g\ . Then ex p&) rxnﬂ . ) converges to
“l o] e
X “y+ “yy* and hence also yﬂ Xy " g convergent in g, - Let
{\ (:
i . :
X = lim y_ X % l, then X 6~L This shows that y = lim c(yt _, X ) =
Hﬁ n (} N

'1'
n

1 n

i H
= 1im el 5 R = c(\, X) & c(G;« e 2
ek UIW np n 5 x
For ker(gk) discrete # {53% observe that C(G?<G L) is closed in
X

S:‘l(g (c(Gxg L))}

i i s A e ey A NSUBSYT  £ NGOG =



L

Step 5. (A,) is satisfied.

Observe that Cb is well defined and injective if (A ) holds true(see 3.2)

1f &R, let @9(‘fx exp(X)/#; ) = f(x exp(X)). 991. smooth on V, step 4 implies
i 1 / 0 ;“

that %} is smooth also on G\V. Since %ﬁ(gﬁ) :‘ygﬁy is also onto.

Step 6. If U=Ug (p) then also (A ) is satisfied.
] s

Let g”o,‘l' e \C 1y yhere 1 = dim V be such that 5#0(0) =1,

(’;.)
I

, 6%ﬂ =) . Let @ (x exp(X)) -f’ (irg,(x) trA 5>(X) vy BT j;(%)) and 0 else

B 0 ]

define QF’ similarily.. Then %ﬁ and %ﬁ' have the required properties provided
$

{26 has small support.

T
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