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THE INVERSE PROBLEM FOR THE PHASE SHIFT AND RELATED MOMENT PROBLEMS

Mihai Putinar

Introduction

The paper deals with a Hilbert space interpretation of some classical
results of Ahiezer and Xrein [2] concerning the I~problem of moments on
the real axis.This geometric viewpoint allows an easy generalization
from scalar to operator valued measures,contained in the second part of
the paper,

The interest for the moments of a bounded measurable function on the
axis goes back to A.A.Markov,at the end of the last century.It was M.G,
Krein and his school who took again this problem in the early thirties7
with the new methods at that time of modern function theory and functio-
nal analysis,see [2] and [B]USince then up to nowadays their ideas have
influenced and continue to influence many branches of pure and applied
mathematics,

The original approach of Ahiezer and Krein to L-problems of moments
was based on the elementary theory of orthogonal polynomiais and on two-
integral representation formnlas (additive and multiplicative) for a
class of analytic functions in the unit disk.Later,more or less the same
tools have been used by M.G.Krein [9] in the perturbation theory of self-
adjoint operators.

On the other hand,a well founded trsdition at present consists in
treating moment problems by operator and Hilbert space methods,ctf. 113).,
[14]y[15],[16].80,it is not surprinsing at all to explain the former re-
sults concerning the L-problems of moments by the theory of pertﬁrbation
of self-adjoint operators.ilthough this interpretation is not finally very
far from the original approach,it has some certain advantages.Quite spe-
cifically,it offers an easy and natural way of generalizing the classical
results to operator valued measures or to the multidimensional setting,
The present paper contains some indication on the first possible generali-
zation.The second way of multidimensional moment problems was initiated
i1 3]s

ixcept the usual notions and results of perturbation theory,briefly



recalled in Section 1 below,the quilte involved concept of operator phase
shift due to R.W.Carey [5] will be a main technical tool in our study.
T would like to thenk my colleague Tiberiu Constantinescu for some

fruitful discussions on moment problems and related topics.

1. Preliminaries

A function which contains all relevant information on the modifica-
tion of self-adjoint spectra by trace-class perturbations was introduced
by M.G.Krein in [9].This object,called the phase shift,answered some
concrete desires of theoretical phisicists.later,an enormeus number of
studies were devoted to ramifications of its theorypcf.[?oz,[4l,[6].

To briefly recall the definition and the properties of the phase
shift we shall confine ourselves to treat,though not always necessary,
only the case of bounded operators acting on a sepsrable complex Hilbert
space H.

Tet A and B be bounded self-adjoint operators on H,with the property
that Tr|A-Bl<e«, in that case a well-known thecorem of Kato and Hosenblum
asserts that their absolutely continuous spectra coincide: UQC(A)ﬂ 5aC(B),
see for instance [14}.However,the singular spectra may differ.In order to
control the spectral displacement from A to B is very useful after M.G.

¥Frein to study the next perturbation determinant:

ZXB/A(Z) = th[(B~Z)(A~Z)"1] 6 ze €\ G (h).

The infinite determinant exists because

(Boz) (Aez)”" = (R-zaB-b)(@iz)™" = T+{B-a)(A-z)'e B

where C1 stands for the ideal of trace-class operators acting on H.One
of the main results of the landmarking paper [9] consists in representing

multiplicatively the analytic function A as follows:

B/A

A (z) = exp( ?(t)(t~z)*1dt) . z€ C\R ,

[

B/A



where ?e Llomp(m,dt),

The function ¢ 1is called the phase shift of the perturbation A —>» B
and it hes a series of remarkable invariance properties reflecting the
spectral behaviour of the pair of self-adjoint operators (A,B),sce [9],[10]
and (4],

' Next we consider only fhe simplest non-trivial perturbation BxA+§é9§ ’
denoting by g@g the rank one operator: (g@g )(/)z) :z(O;,%?'g ,'?76 Ha

In that case the determinant A can be easily computed:

B/A

App(z) = 1-2)"F, 8y, mecNs(n),

This explicit form yields a second integral represehtation formula for
ZXB/A:
A (2) = 1+ | (4=2)"tdp (1) ze €N (h)
:B/A 4 - = e ¥ ) /4. $ Li S 6
R

where fL‘ denotes the spectral measure of A,localized at the vector gé.H.
Under the preceding assumptions one easily computes the corresponding

phase shift as a bhoundary value:

(1) @(t) = 1lim yr“1argA
EN O

B/A(t+i€ ¥ telR,

But a direct computation shows that Imz.lﬁuAB/A(z)7 0 for zg €\ R.Accor~

dingly,one finds that the phase shift ? must satisfy the inequalities
0 Sff.é (e

The key point of the above two integral representations consists in
their natural parametrization with measures g or functions ¢ .More pre-
cisely the parameters f& and ? are completely free,as it comes out

from the next result,implicitly contained in the work of M.G.Krein,see

[10].

Theorem 1.(M.G.Krein) Let H be a separable complex Hilbert space.

There exists a bijection between the following classes:




S

i

{(A,g Y A:A#e]LUI) with the cyvelic vector §£ H}/ unitary eq.

{f&; ﬂ,mﬂorel measure on [R,positive and with compact suDDOTt} =

{?’ ;ﬁmf: I"lon-lp(fm’ 0L < 1} .

The bijection is established by the formulae:

(2) 1+<KA~Z)_1 ; ) = 14 (t~z)~1d L (t) = exp( (t)(t—z)w1dt), 7€ CA L,
/ i

R IR

The cyclicity hypothesis on A is natural because the perturbation de-

terminant AN does not distinguish between possible different ortho-

B/4
complements of the A-cyclic subspace- generated hY; .

I+ can be shown by purely function theoretic. arguments that the func-
tion @ above takes only the values 0 and 1 on an interval (a,b) if and
only if the measure p‘j(a,b) is singular with respect to the linear
Lebesgue measure,see [10] or [12].

The bhase shift of a general trace-class perturbation is far from
being a complete unitary invariant of the perturbation data,as turns
out to be in the particular situation contained in Theorem 1,However,
there exists an operator valued substitute of the phase shift which fills
this gap,but is less easier to be handled.lts existence and properties
were established by R.W.Carey [5] by means of some sharp methods of ope~

rator theorv,Summing up a part of Carey's resultg,one can state the next.
£ p } ?

Theorem 2.(R.W.Carey) Let H be a separable infinite dimensional

Hilbert spece.There exists a bijection between the following classes:
D =

fie

7]
{(A,K); ¥,A€L(1),K»0,A=t* and H=\/ AnI{anK}’ / unitary eq.
: Nn=0

ﬁf : & -positive L(H)-valued measure compactly supported on Ry /unit.eg. &

b

The equivalence is established by the relations :

-e

1
b Lcom

1

pﬂR,L(H)),O {RBRE I} / unitary eq.

LIRE e 0 il 0 g (t-z) Ta (1) = exp(g B(4)(4-2)" dt), =z€C\R.

R R



=

e ]

»

Moreover,in that case supp(@ )C supp(B) and these sets have the same

lower bound.

We have denoted as usual by L(H) the algebra of bounded operators on
1,by RanK the range of the oprtaocr X and by \/Ei the closed linear span
of the sets Eiaii.

Actually the above equivalences are obtained in [5) under the addi-
tional assumption : Tr(Kz)éoo,However,this restriction 1s fiot necessary
in Theorem 2,as 1%t is proved for instance in [12}Chapblxc

With the notations in Theorem 2,the measure 6 (.) turns out to be the
compression XE(.)X of the spectral measure I of the self-adjoint operator

A.In particulsar one gets:

(4) K = c;(m)z = B(Hdt)z.
R

It is worth remarking that,for a fixed closed subspace HOC.H,finite

or infinlte dimensional,RanB(t)C H. for all t€f if and only if Ran o' (R)

@

CTHOaThus the second isomorphisﬁ in Theorem 2 remaing valid on finite di-
mensional spaces.

Most of the properties of the phase shift function are preserved in
the latter oporatbr valued context,cf.[s] and [12].We shall use a part of

these results.without mentioning them separately in this section,
1 . .

2. Some operator L-problems of moments

The resemblance between Theorems 1 and 2 above will be reflected be-
low by & parallel between their applications to some moment problems.The
common treatment of scalar and operator valued moment problems will not
be technically more difficult than the classical approach of Ahiezer and
Krein 2) .

Besides the vector valued generalization, this section contains some
novel proofs of the main existence and uniqueness results of Ahlezer and
¥rein.The only additional difficulty in the operatorial case is related

to the possibility of translating the truncated lamburger moment problem



into positivity conditions.Fortunately this gquestion is completely inde-
pendent on the principal result below,and it was treated by Ando [3].

Fix a positive real number I and a separable complex Hilbert space H,
finite or infinite dimensional.We are seeking solvability conditions of

the L-problem of moments:

(5) & = StnF(t)dt, nyo,
i

mmreF€L1mhLm))amiOSFﬁ)SLELe“

In other terms,given the sequence of selfuaéjoint operators (An>$io’
one asks when there is a solution F of (5), possibly with the support
contained in a prescribed bounded or unbounded interval,

A related! question is to decide whether the function F with the
given moments.is unique or not,and to parametrize in the latter case all
solutions.

In order to resolve these ptoblems,two formai transformations of the

moments sequence are needed.We shall work in the formal series ring
ooy

L(H)[[X]],with X as indeterminate.To a sequence of operators (An)nwo

one associates the exponential transforms:

oo : o
: n+1 -1 n+1
(6) Z BnX = 1-exp(-L Z AnX Yo

n=0 n=0

and

e )
(6)" ZB'Xn+1 it ) k™l
=0 b n=0 5

Both right hand terms converge in the (X)-adic topology.We call (6)

and (6)' the L-exponential transform,respectively: the -L-exponential tran-
sform of the sequence (An).
It is worth remarking the dependence of the coefficients (Bn) of (An)e

Each B is & non-commutative polynomial in A ,A1,...,AnAand L-1,and con-

0
versely,each An is a polynomial in BO’B1""’Bn and L,for n? 0.3imilarly

! o
depends (Bn) on (An).



The exponential.transforms linecarize in certain sense the problem of

moments (5).Quite specifically,the next result-holds.

o2e)
Theorem 3. The sequence of self-adjoint operators (An)n~o represents

the moments of 2 function F62L1GR;L(H)),OS'F< L,if and only if the coef-

13 . 4 m
ficients (Bn>n=0

ments of a positive operator valued measure on [R.

of the I-exponential transform of (An)gio are the mo-

A similar statement holds for the -L-exponential transform.

e ]
Proof. Assume for the moment that (An)nmo are the moments of a function
¥e Llomp(m;L(H)),satisfying 0< Fg< I.According to Theorem 2,¥/L is the

phase operator of a measure ¢ with values in L(H)+.In view of relations

(3) and (6) one has,for |z| sufficiently large:
o0 o
ZE: an~n-1 1—exp(—L”1§£:Anz- n—1)
n=0 n=0
(o]

1-exp (- Z Stnz"n"1}i'(t)1,"1dt)

n=0 R

i

i

“Vaty

il

1-exp( S F(t)L’"1 (t-2)

H]

R
_g (t-2)"1d & (t)
R

il(gtnd & (t))z "0,

n=0 R

Notice that all of the above series converge absolutely for (zl7¥7 0.

Conversely,the same sequence of equalities shows that,if (angio are
the moments of a L(H)+-va1ued measure ¢~ withh compact support in R,then
there is a unique function }“éiblompGR;L(H)),satisfying the conditions of
the statement,

Let us remark that,for a fixed real number a,supp(F)C[&,W) if and only
1 supp(G’)Cfa,ﬁO> ,sée Theorem 2. ‘

A similar argument yields the conclusion of Theorem 3 in the case of
compact supports and for the -I-exponential transform (6)'.Specifically,

Carey's equivalences can also be derived from relations like:



g

I—K'(A'—z)~1K' = Ié§(t~z)"1d 6'(t) = exp(~ jB(t)(t~z)"1dt),

R : IR

see for instance f5].nowever,the objects (A,K) and ¢ associated to B by
relations (%) are in general different of (A',K') and @' above,

This second parametrization has the property that,for a fixed bhe R,
supp(B)C (~,b] if and only if supp( o ')C (-W,b].

More interesting is the case of unbounded supports.issume that the
- function Fé]ﬁ(ﬁ;L(H)) has the moments (An):1o ﬂﬁd satisfies 0€ < I,a,e..
Let :tr denote the characteristic function of the interval [-r,r)C JR,and
put Frzj{rF,with the corresponding moments (An(r));io.ln view of the pre-
ceding considerations there is a positive opel}ator valued measure 6},

compactly supported by R and with the property:

i) b g(t—z)—1d Gr(t) = exp(L’1 j (tmz)-“Fr(t)). z € C\R.
R R ;

In particular ]}6}(&)[]& [l F1]1L’1,by (4) .Moreover,the universal poly-
nomials which relate the moments of G’r to those of Fr show recufrently

that:

(8) . sup “ g £"a G'r(t) ” {09,
2> R

for any nY 0.Therefore ( Gr) is a family of functionals on the sepa-

rable locally convex space P 2; 2ontinuous functions on R,with polynomial

growth and with values in the trace clags ideal C1c:L(H).Since this family
is uniformly bounded with respect to a fundamental system of seminorms of

P,Alaoglu's Theorem provides the existence of a weak limit 6 of ( gr)r>vo°
In view of (8) one getss

so-11im g t"a 6. (t) = t"a o (t).
iR R

This suffices to conclude that the coefficients (Bn) are precisely

n=0



the moments of the measure € .

Conversely,let ¢: B (R) —> L(H)+ be a measure whose moments (Bn):;
extst.By performing a similar truncation device,one associates to every
measure GEFUXTG'_a phase shift operator Fr‘an with compact support.

By teking into account relation (7),one finds by the same recurrent
dependence between (Bn) and (An) that the moments of Fr are uniformly
bounded with respect to r?P 0.Whence arguing as before there exists a

weak limit & of the family (Fr) O,in the space of operator valued mea-

rY
sures on R.Since

b
[(f F a0y, m 7] € pe-a)liFuNg]

for any vectors ?,67511 and any interval (a,b)CR,we infer that % is an
absolutely continuous measure with respect to +the linear Lebesgue measure,
and its weight F=dv /dt satisfies O0&F(t)< L 8.0,

In conclusion the moments of Fr converge to those of I',and therefore
they are necessarily equal to (An):io

This completes the proof of Theorem 7,

At this point we have transformed the L-problem of moments (5) into a
Hamburger problem.This has certain advantages in translating the conclusion
of .Theorem 3 into positivity conditions,even with control on the support

of the indeterminate function F.,More precisely one has the next result.

Corollary 4. Let (a,b) be an _interval of the real axis.With the as-

sumptions and notation of Theorem 3,the following assertions are eguiva-

lent:

©
1) The L-problem of moments with dats (An)n~0 is solvables

) is non-negative definites

n+m’n ,m=0

%) The hlok-operatorial matrix (B! )%
n-+m’n,m=0

In that case the solution F65L1(H L(H)) safisfieb Qupp(P)C'fa b]]f

o= /0
-8 and (bB' B!
m+1 an+m)n,m=O End | Bn+m n+m+1 "1 ,m=0

2) The blok—operatorial matrix (B

S non- newatlve doflnlte.

and only if the matrices (Bn+

are non-negative definite.

00

repre-
n=0 b

Proof., Recall that the scquence of self-adjoint operators (Bn)



S10=

sents the moments of an operator valued measure 6 on the axis,which is

positive,if and only if the Hankel matrix (B )
n+m’n,m=0

"definite,This is the operalorial counterpart of the classical theorem of

is non-negative

Hamburger.The proof (in the scalar case) of this result contained in [14)
Chap.X extends with minor modifications to the operator valued setting,
see also [15] and [7]

In conclusion,Theorem % proves that assertions 1),2) and 3) are equi-
valent,

The statement concerning the support of the function F follows from

the observation that supp( 6‘)C{a o) if and only if a(B fn < (B fm
n+m’n,m=0 n+m+1'n,m=0"

This in turn is equivalent to supp(F)Cﬁfa,90>, as we have mentloned in

the proof of Theorem 3.Correspondingly,the matrix (BA m):>m o controlls

the uppér bound of supp(F).Thus the proof of Corollary 4 is complete,

Notice that the interval (a,b) may by unbounded in Corollary 4.

Some proofs of Theorem 3 and Corollary 4 are given in 2] and {11],in
the scalar case( dimH=1).These authors use some slightly different exponen-
tial transforms depending on a and b,in the case with prescribed support
into [a,b]. K

When one imposes conditions on supp(F) like:supp(F) C LJ [a bj],the
conditions: found by M.G.Krein and Nudelman f11] seem to be =L optimal.

More exactly,Corollary 4 can be completed as follows.

Corollary 5. Keeping the notation of Theorem 3 Lot = \vjfa., .]

a finite disjoint union of intervals,and let FéﬁL (fa‘,b} J= 1](H)) 0L FL L,

(o, g%
n+m’n ,m=0

negative definite,where the operators Cn are defined by the formal identity:

Then supp(F)C J if and only if the Hankel matrix is non-

(%) o0
! CanH.zz (a,-X)...(a -X) (I“Ej ann41
n=0 (b S5 S PR -~ ~%) n=0
Proof. Let [a,b] be a compact interval of the real axis.The starting
point is the obvious identity:
b

exp([(tuz)_1dt) = (b—z)(auz)-1, z € C\R.
a



P [, (e

The IL-exponential transform (Bn) of the moment sequence (An) of the
given function F defines the analytic function:

(f)(z) = I- Z I3nZ-.n—1z eX,p(L“1g(t_z)”11'«‘(t)dt), Imz ¥ 0.

n=0 R

Assume that supp(F)C J.Then the snalytic function defined in- the up-

per'half plane by the expression:

g R o ' f -1
o 2) - : [
) o, (2) exp(lR (F(t)L +an1,a2')( )4 +
<
+ X o o(8)) ($-2) at)
b, 23"
is of the form )
W(z) = 1+ ((m)”d‘c(t), Inz7 0,
IR

with a positive operator valued measure T.

Indeed,it suffices to remark that 0¢ F'L“1+)%B a;+...¥xrb alé 1
if and only if supp(F)C J.Then it remains to i =11k
apply Theorem 2. A

The same observation finishes the proof of the converse implication,

by using this time Corollary 4.

Notice that the . cases 8, =" or/and bk:cm are not excluded in Corol-
lary:5,

llenceforth we keep the notation of Theorem 7 but we impose‘restrictions
on dimH.First,the case dimH=1 is analized,The next result is classical [2},
but the proof below exploits the theory of the phase shift.

2N

Proposition 6. Let L0 and N€ W be fixed.Consider a sequence (an)n__O

of real numbers and its L-exponential transform (bn)igo .Then:

a) There exists a function fé]f(h),og f£ 1 with the first 211 moments




=12

. ot s N
’a'] peee s if and only if the matrix (b )n,mzo

o s T is non-negative defi-

%0
nite,

b) Problem a) has a solution fé'L1QR) satisfying 0L f« L 1f and only if

the matrix (b )N

is positive definite.
n+m’n ,m=0

: N . \ e
c) Assume that the metrix (b ) is non-negative definite and

It n+m’n,m=0 ¥
det(b_ ) =0,Then and only then there is a unigue solution f ofproblem
n+m’n,m=0 =

a).loreover,in that case f is piecewise constant and it assumes only the

values 0 and L.

Proof. A part of the assertions of Proposition 6 are simple applications of
Corollary 4.Hext we des#l.” only with the non-trivial implications.
First of all it should be recalled that any non-negative definite
- Hankel matrix (b )N
n+m’'n,m=0
definite Hankel matrix,This can be shown by a variety of methods,for in-

can be extended to an infinite non-negative

stance by constructing a finite rank self-adjoint operator A,with cyclic

vector g and with the property:
n
(9) v ={A§,E7,0 nsen,

The Hilbert space K on which A acts efectively is finite dimensional,but
its dimension exceeds N,

Then the phase shift ¢ of the perturbation A~—> A+ Y®@% has some

[=04]
n’n=0"
Since the operator A has only point spectrum,the phase shift ¢ is piece-

moments whose 1-exponential transform are,in virtue of Theorem 1, (b

wise constant and takes only the values 0 and 1 .Thus the function f:LT
is a solution of problem a), ‘

1t det(b )V

FUTT Y 0O,then the L'-problem a) has a solution f',provided

L'¢ L is sufficiently close to L.Indeed,it suffice to recall that bO""’b?N
;. .—1 T

. . ., ) P e ” A ¢ 4 gy
are polynomial functions in I, ,ao,...,aZN.hhence deu(bn+m(L 18y "’a2N))

is still positive for IL-L' small enough.lLet us remark also that in this case
there is an infinity of solutions of problem a),obtained for instance by
varying the constant L',

I§ det(bn+m)n,m=0 ,
s o) glAS are linearly dependent (in K).Since 3 was supposed to be a

=0,then relation (9) shows that the vectors §,A§ s

cyclic vector for A€ L(K),it follows that dimK«< N.lHence the pair‘(A,§ ),



and a fortiori the function f=L¢ ,are uniquely determined by the finite

[

O""’bZN"ThuS the only solution of problem a) is forced in

that case to be me? .As we have already remarked,the phase shift ¢ is

sequence b
piecewise constant and it assumes only the values 0 and I, Q.E.D.

The adaptétion of Proposition 6 to the IL-problem of moments with
prescribed supports is now a simple routine.

Actually some implications of Proposition 5 remain valid in the
operator valued case (i.e. when dim H»1),as direct consequences of Theo-
rem 3 and Corollary 4.Next a less trivial generalization of Proposition

6.b) is discussed.

Proposition 7. et H be a finite dimensional Hilbert space and let

L70,Ne N be fixed.Consider a seoucnce of 2N+1 self-adjoint operators

AO,A1,..,,A?m£ZL(N),and its exponential transform B
) A
. . N
If the block-matrix (B )
n+m’n,m=0
an_infinity of functions FETL (s (1)) with the first moments

A

By yevisBa e
0 ByreeesBoy
is positive definite,then there is

.and satisfying OLF(4)K T a.e..

h
c o e 3 QP
ot "2oN

Proof. It suffices to remark that,under the assumptions of the statement,

the llankel matrix (B )
n+m’n,m=0

trix,preserving the positivity,The extension can be obtained recurrently

can be extended to an infinite ilankel ma-

as follows,

; se for T a a itrary s [ & jod natrix and take B —
Choose To %2N+1 in arbitrary self-adjoint matrix and ke D142
diag(xq,...,xd) where XyaeeayXy BT real numbers and d=dimH.Then the

nunbers KyseeasX can be fixed succesively in order to get positive prin-

d
cipal minors in the extended Hankel matrix:

By B o ees By By
B By wrs B B
&
Fhy Buar v Bog Bopy
R } i ag\X e oo
bN.+1 BRK#-Z e 6 e B2¢:+1 C lq‘L)(yfl ® ’Xd) .

Whenever such an extension is possible,Corollary 4 insures the existence



e

of a solutiontFéﬁL1GR;L(H)) with the prescribed moments AO""’A2N and
satisfying 0L FL 1. '

By repeating the argu@enﬁ given in the proof of Proposition 6,the
condition dot(Bn+m);imx8ﬁoan be explépted in order to find solutions F
with the property 01 (%)< L.

The non-unigueness may be obtained for instance by small additive
perturbations,as follows.lLet g (t) be a measurable family of unit eigen-
vectors corresponding to the maximal eigenvalue of F(t).Take a measurable
set & C Il on which €< {F(t) %(t),'g(t)>'< L-£ for a suitable small con-
stant £%0 and t¢$ .To any scalar function ge'ﬁb(g ) ,8£0,0rthogonal in
LZ(S’) to the finite systom 1,t,,..,t2N,there corresponds the family of

operator valued functions:
F_(t) = F(t)+sg<t>‘g<t)®§<t), s€ (0, £/1el,) st
Finally one remarks that Og?FS<'L and

g t7P_(t)dt = ftnF(t)dt =4,
R R

for every n<£ 2N and s as above.

This concludes the proof of Proposition 7.

%, FFinsl remarks

1) Unlike in the scalar case,the reciprocal to Proposition 7 fails to
be true.This can be seen for instance on an example arising from a trivial
direct sum: I'g0 € L1(R;L(H®H)),where 0£I'¢ I, ,The moments of the function
I'¢0 are ‘(A a0) jo and their I-exponential transform is of course of the

B &o)°
o (“n@O ) n=0"°

2) Proposition 6.a) still has an analogue in the operator valued case.

! - s Ked o o 3 1 oo ~4 II
However,in that case the positivity assumption (Bn+m>n,mx0
ficient.To that condition it must be added a quite involved additional

7 0 is not suf-



property discovered by Ando [3] Theorem 1. -

3) It is important to notice that the proof of Theorem % above shows
that there exists a bijection between the set of solution of the L-pro-
blem of moments (5) and the Hamburger moment problem with data the T
exponential transform of the initial moments.

Some abstract parametrizations of the solutionggf the operator va-
lued Hamburger.moment problem exist.The reader can/gonsult [7].

4) A1l the operator valued moment problems discussed in the.present
paper on the real axis have a natural counterpart on the one-dimensional
torus.The corresponding solutions on the torus exist and they are in per-
fect analogy with the main results above.For L-problems of moments on the

torus,in the scalar case,see [2] and [9].
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