o | | INSTITUTUL NATIONAL
'NSTgéJ UL PENTRU CREATIE
ATBIRTICN - - STHNTIFICAS TEHNICA

ISEN 0250 3638

b
RS : LIRS ¥ R

VOR NEUMANN OPERATORS ARE REFLEXIVE
by
B. PRUNARU
PREPRINT SERIES IN MATHEMATICS
No. 15/1990

BUCURESTI



VON NEUMANN OPERATORS ARE REFLEXIVE

by

B. PRUNARU®)

March, 1990

% Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bucharest,

Romania.



Gt RSB e AL

VON NEUMANN OPERATORS ARE REFLEXIVE

by
B. PRUNARU

1. INTRODUCTION

Let H be a separable, infinite dimensional complex Hilbex;t space and let L(H)
denote the algebra of all bounded linear operators on H. A planar compact set K is said
to be a spectral set for TE€L(H) if K %7(T) and {{ {(T)|| < sup 11z) |5 z€K zS for
every rational funetion f with poles off K. If TTT) itself is a spectral set for T then T i3
called a von Neumann operator. One easily sees that every subnormal operator (i.e.
restriction of a normal operator to an invariant subspace) is a von Neumann operator. In
[14], R. Olin and J. Thompson proved, ‘using the Scott Brown's technique, a structure
theorem for the predual of the dual algebra generated by a subnormal operator.
Moreover, they showed that every such operator is reflexive. For basic faets about v
subnormal operators see [9].

The aim of this paper is to extend the above results to the class of von
Neumann operators. Our proof is based 0;1 recent results on the structure of

contractions with isometric functional calculus (see [2], [6] and [7]). o

2. PRELIMINARIES

We assume the reader is familiar with the basic definitions and results in the
theory of dual algebras (see [3]). However, recall that a dual algebra ACL(H) (i.e. a
weak* closed subalgebra containing lH) is said to have property (Al(r)) for somer > 0 if

for each element (‘ in the predual QA of A, and each s > r, there are vectors x and y in

{



H such that c{)(T) = (Tx,y), TE A and {{ xi{l{ vyl <s \\L{(\ . Let H*(G) denote the algebra
of all bounded analytic functions on the planar open set G. Recently, H. Bercovici [2]
and B. Chevreau [7], proved independently that every dual algebra A ¢.L(H) which is
isometrically isomorphic and weak* homeomorphic with H>YD), where D denote the
unit dise, has property (Al(r)) (Bercovici gets r=1), Moreover, S. Brown and B.
Chevreau proved (see [6]) that every such algebra is'reflexive, i.e. A = AlgLat A, where
AlgLat A =% T€ L(H);Lat AC.LatT§.

These results can be used to prove that the dual algebra generated by a von .
Neumann operator has both the above properties.

Before doing this, we need a decomposition theorem related to spectral sets.
For any compact set KC €, R(K) denotes the uniform closure in C(K) of rational
functions with pales off K. R(K) is said to be Dirichlet if ReR(K)laK is uniformly dense
in CR(BK). The following theorem is a particular case of stronger résult due to

Lautzenheiser [11] and Mlak [12].

THEOREM 2.1. Let T€L(H) and assume that K is a spectral set for T such that

R(K) is Dirichlet and U = IntK is nonvoid. Let § Uizs i>1 denote the components of U.

Then T = & T. corresponding to a decomposition H = @ | . where:
>0 g

- T is a normal operator with G(TO) C. 3K;

- for eachi > 1, there are weak* continuous contractive representations

¢ 51wy — Loy

such that {1) = IHi and @ i(2) =T, .

If moreover, 3(T)N\ Ui # @, then Ti is non trivial.

The above result was also used by J. Agler [1], where he showed that every von
Neumann operator has a nontrivial invariant subspace. Recall that a subset S< G, where

G C C is an open set, is said to be dominating in G if zség {f(z)\ =l f \lye for every
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Af(—.H""O(G). For the proof of the next result see [5, Theorem 3].

LEMMA 2.2. Let L< € be a compact set such that C(L) # R(L). Then there
exists a compact set K D L with IntK # @ such that:
%
- R(K) is Dirichlet
and

-LAOIntK is dominating in Int K.

3. ASTRUCTURE THEOREM

The main result of the paper is the following.

THEOREM 3.1. If T €L(H) is a von Neumann operator, then the dual algebra

Aq generated by T has property (Al(l)) and is reflexive.

Proof

If R(U(T)) = C(<3°(T)) then by a result of von Neumann [13], T is a normal
operator. For such operators it is easy tov see that AT has property 'Al(l)) and is
reflexive (ef. [15]). »

Thus, we may assume R(<T(T))# C(@(T)). By Lemma 2.2, there exists a
compact set K™ U(T) such that R(K) is Dirichlet and 9 (T)MVIntK is dominating in

Int K. Let S(Uig ij>; denote the components of IntK and let T = @F)Ti be the
' = : >0

decomposition of T with respect to the spectral set K, given by Theorem 2.1. Let also

(‘pi:H‘w(Ui) —>L(H;) denote the weak* continuous representations satisfying

Z&‘yi(z) =T, i._>_ 1. Since ‘T(Ti)’i vGi, i>1, 1> 2 and 9(T ) C DK, one easily sees that

o)
(T(T)ﬂUi = “\T(Ti)(\Ui for each 1> 1. By assumption, < (T)Q\ IntK is dominating in
Int K, hence (Y(Ti)('\ U, is dominating in U; , for 1> 1. Since f( N) e G’(Q} i(f)) for each
,\Q(Y(Ti)ﬂ'Ui, it follows that q\i : Hw(Ui) > L(Hi) is an isometry. By a standard

application of the Krein-Smulian theorem one gets that @i is a weak* homeomorphism
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from H‘"ﬂ(Ui) onto its image Ai :'(g\. i(Hw (Ui))' Since each Ui is imply connected (cf. [9,
Theorem VI 7.2]), Hw (Ui)’ hence A, , are isometrically isomorphic and weak*
homeomorphie with e (D). By the already mentioned results from [2], [6] and [7], it
follows that every dual algebra A; has property (Al(l)) and is reflexive. Because T s
normal A0 = AT has both the above properties. Therefore, by [10, Proposition 2.5], the

o .
direct sum A = ®Ai has (Al(l)) and obviously A is also reflexive. By [10, Proposition
>0 v :

2.5], every dual subalgebra of A, in particular Arp has (Al(l)) and is reflexive. The proof

is complete.

An operator T & L(H) is said to be reflexive if the weakly closed subalgebra
WT generated by T in L(H) is reflexive. An immediate corollary of Theorem 3.1 is the

following extension of [14, Theorem 31.

COROLLARY 3.2. Every von Neumann operator is reflexive.

L}

Proof

One knows ([3]) that if a dual algebra AC.L(H) has property (Al(r)), for some

r>0, then A is also weakly closed. In particular, this is true for the algebra AT :

generated by a von Neumann operator T on L(H). Apply now Theorem 3.1.
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