MULTI-ANALYTIC OPERATORS AND SOME

FACTORIZATION THEOREM. II

by

G. POPESCU*)

March, 1990

*) Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bucharest, Romania.

MULTI-ANALYTIC OPERATORS AND SOME FACTORIZATION THEOREM. II

by

Gelu Popescu

This paper is a continuation of [5] and deals with Y-Toeplitz operators. (For the terminology see Section 1).

Section 2 is devoted to an extension of the Fejer-Riesz theorem [6] to our setting and to a concrete realization for the Fock space [1].

In the last section we extend the abstract Szegő infimum theorem [2], to $\mathcal G$ -Toeplitz operators.

1. PRELIMINARIES

Throughout this paper Λ stands for the set $\{1,2,...,k\}$ (k $\in \mathbb{N}^*$) or the set $\mathbb{N}^* = \{1,2,...,k\}$. For every $n \in \mathbb{N}^*$ let $F(n,\Lambda)$ be the set of all functions from the set $\{1,2,...,n\}$ to Λ and

 $\mathcal{F} = \bigcup_{n=0}^{\infty} F(n,\Lambda),$ where $F(0,\Lambda)$ stands for the set $\{0\}$.

A sequence $\mathcal{Y} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ of unilateral shifts on a Hilbert space \mathcal{H} with orthogonal final spaces is called a Λ -orthogonal shift if the operator matrix $[S_1, S_2, ...]$ is nonunitary, i.e., $\mathcal{X} := \mathcal{H} \ominus (\bigoplus_{\lambda \in \Lambda} S_{\lambda} \mathcal{H}) \neq \{0\}$. This definition is essentially the same as that from [3,4]. The dimension of \mathcal{X} is called the multiplicity of the Λ -orthogonal shift. One can show that a Λ -orthogonal shift is determined up to unitary equivalence by its multiplicity.

Let us recall from [5] some definitions. An operator $T \in B(\mathcal{H})$ is called

(i) \mathcal{J} -Toeplitz if $S_{\lambda}^*TS_{\lambda} = T$ for any $\lambda \in \Lambda$ and $S_{\lambda}^*RS_{\mu} = 0$ for $\lambda \neq \mu$; $\lambda, \mu \in \Lambda$;

> (ii) \mathcal{J} -analytic (or multi-analytic) if $TS_{\lambda} = S_{\lambda} T$ for any $\lambda \in \Lambda$; (iii) \mathcal{J} -inner if T is \mathcal{J} -analytic and partially isometric; (iv) \mathcal{J} -outer if T is \mathcal{J} -analytic and $T\mathcal{H}$ reduces each S_{λ} ($\lambda \in \Lambda$). In the next two section we shall use some of the results from [5].

2. FEJÉR-RIESZ THEOREM ON THE FOCK SPACE

Let us consider $\mathcal{J} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ a Λ -orthogonal shift on \mathcal{K} and $\mathcal{L} = \mathcal{K} \ominus (\bigoplus_{\lambda \in \Lambda} S_{\lambda} \mathcal{H})$. The following is an abstract extension of the Fejer-Riesz theorem [7, p. 118], [6] to our setting.

THEOREM 2.1. Let $T \in B(\mathcal{K})$ be a nonnegative \mathcal{Y} -Toeplitz operator and let \mathcal{X}' be a dense subset of \mathcal{X} such that for all $1' \in \mathcal{X}'$ there is $n_{\mu} \in \mathbb{N}^*$ such that

 $S_{f}^{*}TP = 0$, for any $f \in F(n_{p}, \Lambda)$,

where for any $f \in F(n, \Lambda)$, S_f stands for the product $S_{f(1)}S_{f(2)} \cdots S_{f(n)}$. Then there is an \mathcal{F} -outer operator $A \in B(\mathcal{H})$ such that

 $T = A^*A, A_0 := P_0AP_0 \ge 0,$

where \mathbf{P}_{o} is the orthogonal projection of $\mathcal R$ on $\mathcal L$, and

$$S_f^*Al' = 0$$
, for any $f \in F(n_{11}, \Lambda)$.

PROOF. By hypothesis, for any l' $\in \mathbb{X}$ ', h $\in \mathbb{K}$ and $n \ge n_{\mu}$, we have

 $\langle S_{f}^{*}TI',h\rangle = 0$, for any $f \in F(n, \Lambda)$.

From this we get

$$\lim_{n\to\infty}\sum_{f\in F(n,\Lambda)}\sup\left\{|\langle TI',S_{f}h\rangle|^{2};h\in\mathcal{H}, \|T^{\frac{1}{2}}h\|=1\right\}=0.$$

- 2 -

Applying Theorem 4.1 in [5], we find an \mathcal{J} -outer operator $A \in B(\mathcal{H})$ such that

$$T = A^*A, A_o = P_oAP_o \ge 0.$$

Let us show that $S_{f}^{*}Al' = 0$, for any $l' \in \mathcal{L}'$, $f \in F(n_{l'}, \Lambda)$. Since A is an \mathcal{L} -outer operator on \mathcal{H} , the subspace $\mathcal{M} := \overline{A\mathcal{H}}$ of \mathcal{H} reduces each S_{λ} ($\lambda \in \Lambda$). Therefore, there is an \mathcal{L} -inner operator B on \mathcal{H} such that $\mathcal{M} = B^*\mathcal{H}$, namely $B = P_{\mathcal{M}}$, where $P_{\mathcal{M}}$ stands for the orthogonal projection of \mathcal{H} on \mathcal{M} . Since each S_{λ} ($\lambda \in \Lambda$) commutes with B it follows that

$$S_{f}^{*}\mathcal{M} = S_{f}^{*}B^{*}\mathcal{H} = B^{*}S_{f}^{*}\mathcal{H} \subset B^{*}\mathcal{H} = \mathcal{M}$$

whence

(2.1)
$$S_f^* Al' \in \mathcal{U}$$
, for any l' $\in \mathcal{L}'$.

On the other hand

$$A^*(S_f^*Al') = S_f^*Tl' = 0,$$
 for any $f \in F(n_1, \Lambda)$

and hence

(2.2)
$$S_f^* A I' \in \operatorname{Ker} A^* = \mathcal{A}_{\mathcal{A}}^{\mathcal{A}}$$
.

From (2.1) and (2.2) we deduce $S_f^*AI' = 0$, for any $f \in F(n_{I'}, \Lambda)$. The proof is complete.

Now, let us give a concrete form of the above theorem on the full Fock space [1]

$$\mathcal{F}(H_n) = \mathbb{C}1 \oplus \bigoplus_{m \ge 1} H_n^{\bigotimes m},$$

where H_n is an n-dimensional complex Hilbert space with orthonormal basis e_1, e_2, \dots, e_n .

For this, let us define the isometries S_{λ} , $\lambda \in \Lambda = \{1, 2, ..., n\}$ by

$$S_{\lambda} h = e_{\lambda} \otimes h, \quad h \in \mathcal{F}(H_n)$$

It is easy to see that $\mathcal{J} = \{S_1, S_2, ..., S_n\}$ is a Λ -orthogonal shift on $\mathcal{J}(H_n)$ with the multiplicity one, i.e.,

dim
$$(I - S_1 S_1^* - S_2 S_2^* - \dots - S_n S_n^*) \mathcal{F}(H_n) = 1$$
.

THEOREM 2.2. If $T \in B(\mathcal{F}(H_n))$ is a nonnegative \mathscr{Y} -Toeplitz operator and there is $k \in \mathbb{N}$ such that

$$S_{f}^{*}T(1) = 0$$
 for any $f \in F(k, \Lambda)$,

then T has a factorization $T = A^*A$ and A is an \mathscr{J} -analytic operator on $\mathscr{F}(H_n)$ defined by

$$Ah = h \otimes \gamma$$
, $h \in \mathcal{F}(H_n)$,

where $\Upsilon = \mathscr{C} \oplus \mathscr{C}_1 \oplus ... \oplus \mathscr{C}_k \oplus 0 \oplus 0 \oplus ...$ and $\mathscr{C} \oplus \mathscr{C}, \qquad \mathscr{C} \oplus \mathscr{C}_n \oplus \mathscr{C}_n^{\otimes m}$ ($m \in \{1, 2, ..., k \}$).

PROOF. By Theorem 2.1, in the particular case when $\mathcal{H} = \mathcal{F}(H_n)$, $\Lambda = \{1, 2, ..., n\}$, it follows that $T = A^*A$ for some \mathcal{F} -analytic operator $A \in B(\mathcal{F}(H_n))$ and $S_f^*A(1) = 0$, for any $f \in F(k, \Lambda)$.

But this condition holds if and only if

$$A(1) = \mathscr{C}_{0} \oplus \mathscr{C}_{1} \oplus \dots \oplus \mathscr{C}_{k} \oplus 0 \oplus 0 \oplus \dots ,$$

where $\forall_0 \in \mathbb{C}$, $\forall_m \in H_n^{\otimes m}$ ($m \in \{1, 2, ..., k\}$).

Let us point out that $\varphi := A(1)$ can be viewed as polynomial in "n" noncommuting indeterminates.

On the other hand, since A is \mathscr{G} -analytic, it is uniquely determined by \mathscr{Q} . This follows since for any $f \in \mathscr{F} = \bigcup_{k=0}^{\infty} F(k, \Lambda)$ we have $AS_f(1) = S_f \mathscr{Q}$ and $f \in \mathscr{F} S_f(\mathbb{C}) = \mathscr{F}(H_n)$. Now it is easy to see that

(2.3) Ah = h $\otimes \gamma$, for any h $\in \mathcal{F}(H_n)$.

The proof is complete.

REMARK 2.3. a) If we replace H_n by an infinite dimensional Hilbert space with orthogonal basis $\{e_i\}_{i=1}^{\infty}$, a similar result holds true.

b) As in the proof of Theorem 2.2 we can see that an $\mathcal{J}-$ analytic operator A on $\mathcal{J}(\mathrm{H_n})$ is given by

(5.3) $Ah = h \otimes \gamma$, $h \in \mathcal{F}(H_n)$,

where γ stands for A(1).

c) A characterization (as in the classical case) of those " χ " for which (5.3) provides a bounded operator on $\mathcal{F}(H_n)$ would be interesting.

3. Abstract szegő infimum for \mathscr{G} -toeplitz operators

In this Section we extend the Moore's treatment [2] of Szegö' infimum problem, to \mathscr{Y} -Toeplitz operators.

Let us consider $\mathcal{J} = \{S_{\lambda}\}_{\lambda \in \Lambda}$ a Λ -orthogonal shift on \mathcal{H} , $\mathcal{L} = \mathcal{H} \ominus (\bigoplus_{\lambda \in \Lambda} S_{\lambda} \mathcal{H})$ and let $T \in B(\mathcal{H})$ be a nonnegative \mathcal{J} -Toeplitz operator. For each $\lambda \in \Lambda$ we define the Lowdenslager's isometry $S_{T,\lambda}$ on $\mathcal{H}_{T} := T^{\frac{1}{2}}\mathcal{H}$ by setting $S_{T,\lambda}(T^{\frac{1}{2}}h) = T^{\frac{1}{2}}S_{\lambda}h$, (h $\in \mathcal{H}$). It is easy to see that $\mathcal{J}_{T} := \{S_{T,\lambda}\}_{\lambda \in \Lambda}$ is a sequence of isometries with orthogonal final spaces.

After these preliminaries we can prove the following theorem.

THEOREM 3.1. Let $T \in B(\mathcal{K})$ be a nonnegative \mathcal{Y} -Toeplitz operator. If $l \in \mathcal{L}$, then

$$\inf \left\{ \langle T(1 - \sum_{\lambda \in \Lambda} s_{\lambda} h_{\lambda}), 1 - \sum_{\lambda \in \Lambda} s_{\lambda} h_{\lambda} \rangle; h_{\lambda} \in \mathcal{R}, \sum_{\lambda \in \Lambda} \|h_{\lambda}\|^{2} \langle \infty \right\} > 0$$

if and only if 1 has a nonzero projection on $(\chi \cap T^{\frac{1}{2}}\mathcal{H})^{-}$.

PROOF. Let \mathcal{K}_T and $\mathcal{I}_T = \{S_T, \lambda\}_{\lambda \in \Lambda}$ be defined as above. If we set

then

(3.2) $T^{\frac{1}{2}} \mathcal{L}_{T} = \mathcal{L} \cap T^{\frac{1}{2}} \mathcal{R}$.

Indeed, if $\mathbf{1}_{\mathsf{o}} \in \mathcal{K}_{\mathsf{T}}$, then for any $\mathsf{h} \in \mathcal{H}$ and $\boldsymbol{\lambda} \in \boldsymbol{\Lambda}$ we have

$$\langle \mathbf{S}_{\lambda}^{*}\mathbf{T}^{\frac{1}{2}}\mathbf{l}_{o}, \mathbf{h} \rangle = \langle \mathbf{l}_{o}, \mathbf{T}^{\frac{1}{2}}\mathbf{S}_{\lambda}, \mathbf{h} \rangle = \langle \mathbf{l}_{o}, \mathbf{S}_{\mathrm{T}, \lambda}, \mathbf{T}^{\frac{1}{2}}\mathbf{h} \rangle = 0 \ .$$

Hence, taking into account (3.1) and that $T^{\frac{1}{2}}\mathcal{R}$ is dense in \mathcal{R}_{T} we deduce $T^{\frac{1}{2}}I_{0} \in \bigcap_{\lambda \in \Lambda} \operatorname{Ker} S^{*}_{\lambda} = \mathcal{X}$, so (3.3) $T^{\frac{1}{2}}\mathcal{X}_{T} \subset \mathcal{X} \cap T^{\frac{1}{2}}\mathcal{R}$

Conversely, if he \mathcal{R} such that The \mathcal{L} , then for any ke \mathcal{K} and $\lambda \in \Lambda$ we get

$$0 = \langle \mathrm{Th}, \mathrm{S}_{\lambda} \mathsf{k} \rangle = \langle \mathrm{T}^{\frac{1}{2}} \mathsf{h}, \mathrm{T}^{\frac{1}{2}} \mathrm{S}_{\lambda} \mathsf{k} \rangle = \langle \mathrm{T}^{\frac{1}{2}} \mathsf{h}, \mathrm{S}_{\mathrm{T}, \lambda} \mathrm{T}^{\frac{1}{2}} \mathsf{k} \rangle .$$

Hence, it follows that $T^{\frac{1}{2}}h \in \mathcal{L}_{T}$, whence $Th \in T^{\frac{1}{2}}\mathcal{L}_{T}$. Therefore $\mathcal{L} \cap T^{\frac{1}{2}}\mathcal{H} \subset T^{\frac{1}{2}}\mathcal{L}_{T}$, which together with (3.3) proves (3.2).

Now, we have

$$\langle T(1 - \sum_{\lambda \in \Lambda} S_{\lambda} h_{\lambda}), 1 - \sum_{\lambda \in \Lambda} S_{\lambda} h_{\lambda} \rangle = \|T^{\frac{1}{2}}I - \sum_{\lambda \in \Lambda} T^{\frac{1}{2}}S_{\lambda} h_{\lambda}\|\|^{2} = \|T^{\frac{1}{2}}I - \sum_{\lambda \in \Lambda} S_{T,\lambda} T^{\frac{1}{2}}h_{\lambda}\|\|^{2} = \|T^{\frac{1}{2}}I - \sum_{\lambda \in \Lambda} S_{T,\lambda} T^{\frac{1}{2}}h_{\lambda}\|\|^{2}$$

for any $h_{\lambda} \in \mathcal{H}$, $\sum_{\lambda \in \Lambda} \|h_{\lambda}\|^2 < \infty$.

Since $T^{\frac{1}{2}}\mathcal{K}$ is dense in \mathcal{H}_{Γ} and (3.1), (3.2) hold, the infimum in the theorem is 0 if and only if $T^{\frac{1}{2}}I \perp \mathcal{L}_{T}$, that is, $I \perp T^{\frac{1}{2}}\mathcal{L}_{T}$ or $I \perp \mathcal{L} \cap T^{\frac{1}{2}}\mathcal{H}$. The result follows.

REFERENCES

- 1. D.E. Evans, On On, Publ. Res. Inst. Math. Sci., 16 (1980), 915-927.
- B. Moore, The Szegő infimum, Proc. Amer. Math. Soc. 29 (1971), 55-62, Erratum, ibid. 31 (1972), 638.
- 3. G. Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc., to appear.
- 4. G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory, 22 (1989), 51-71.
- 5. G. Popescu, Multi-analytic operators and some factorization theorems, Indiana Univ. Math. J., vol. 38, no. 3 (1989), 693-710.
- M. Rosenblum, Vectorial Toeplitz operators and the Fejer-Riesz theorem, J.
 Math. Anal. Appl. 23 (1968), 139-147.
- 7. M. Rosenblum; J. Rovnyak, "Hardy Classes and Operator Theory", New York: Oxford University Press, 1985.

Department of Mathematics INCREST, Bd. Pacii 220 79622 Bucharest, Romania.