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MULTI-ANALYTIC OPERATORS AND SOME
FACTORIZATION THEOREM. I -
by

Gelu Popescu

This paper is a continuation of [5] and deals with f—-Toeplitz operators. (For
the tex*ﬁwinology see Section 1).

Section 2 is devoted to an extension of the li‘ejér~Riesz theorem [6] to our
setting and to a concrete realization for the Fock space [1].

In the last section we extend the abstract Szegd infimum theorem [2], to

f~Toeplitz operators.

1. PRELIMINARIES

Throughout this paper /% stands for the set {1,200k} Kk eN¥) or the set
N* = 11,005 §{. For every neN™ let F(n,A) be the set of all functions from the set

{1,2,...,n§ to /A and
(78]
: ?‘ =U F(n,A), where F(0,A\) stands for the set {07%.
n=0

. . \«?:I 2 . . i 5 S / s g

A sequence J €S:&§?\é.ﬁ of unilateral shifts on a Hilbert space F with

orthogonal final spaces is called a /\-orthogonal shift if the operator matrix

[8,,89s:..] is nonunitary, i.e., =3O }%?}& s}}e) # 403 . This definition is

essentially the same as that from [3,4]. The dimension of & is called the multiplieity

of the /A -~orthogonal shift. One can show that a On-orthogonal shift is determined up
to unitary equivalence by its multipliecity.

Let us recall from [5] some definitions. An operator Te B(¥) is called



(i) 30~Toeplitz if S;TS}\ =T for any Ae A and S;: RSU =0 for A#p;
2 MEN;
(ii) f-analytic (or multi-analytie) if TS?‘ = S?\T for any jen ;

(iii) :ﬁinner ifTis f~analy‘cic and partially isometric;

-m:ﬂ'"‘
(iv) f-outer it sis f~analytic and T ¢¢€ reduces each S}‘ (Ae ).

In the next two section we shall use some of the results from [5].

2. E‘EJéR-_—REEﬁZ THEOREM ON THE FOCK SPACE

Let us consider f:fs}e%ﬁe:[\, a A -orthogonal shift on #£€  and
0

(e ’ J ,
c{‘-——gf@( @ S.J3 ). The following is an abstract extension of the Fejer-Riesz
A&A, .

theorem [7, p. 118], [6] to our setting.

THEOREM 2.1. Let T& B(X) be a nonnegative .\f)“'l‘oeplitz operator and let

&' be a dense subset of & such that for all 1 ez’ there i? By, €N such that
ST =0 for eny f& F(n,, , A)
£ 5 ¥ It #4634y

where for any f& F(n,A), Sf stands for the product Sf(l)sf(z) Sf(n)“

Then there is an J -outer operator A€ B(H) such that

T =A% A= PAR. 210

where PO is the orthogonal projection of € on e;f, and
S?Al‘ = 0, for any feF(nl, s I\,

PROOF. By hypothesis, for anyl'é &', hed andn > ny, , we have

%

<SfT1‘,h> =Q, for any fe F(n, A).

From this we get

lim E:,\ sup {1<T1‘,th>12; hedl , ﬁT%hn: 1} 2l
Nyes f & F(n,A)
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Applying Theorem 4.1 in [5], we find an ﬁouter operator A € B() such that

B .
T'=A%A, AO_POAPO 20

: . .

Let us show that StAl'=0, for any l'e &', fe F(n, ,/\). Since A is an
f~outer operator ond€, the subspaceéf(f‘i/f":: AT of e reduces each Sy (Ae ).
Therefore, there is an f—-im‘xer operator B ond€ such that ufé: B e namely B = Pﬁj s
Wi

where P, stands for the orthogonal projection of ¢ on '.Z'f?z Since each Sm (e A)
(22 ]

commutes with B it follows that

Spvlb= 57B*3 = B*STH € B¥ o= LA
whence
(2.1) siAveds,  for any e £

On the other hand

A*(S’{A_v) = S;fTI‘ 230 for any f&F(n, ,A)
and hence
AL
@y S;Al'e Ker A* = ol

From (2.1) and (2.2) we deduce S:,‘fAI’ =0, for any f& F(nl, ,4%). The proof is complete.

Now, let us give a concrete form of the above theorem on the full Fock

space [1]

Fuy=c1e ® u®m,
m>1

where Hn is an n-dimensional complex Hilbert space with orthonormal basis
€19€q1eeesC e

For this, let us define thé isometries S. ,Ae A = {1,2,...,n§ by

A
M &
S,h=e, ®h,  hefm)

It is easy to see that :f_—_{sl,sz,..,,sni is a A -~orthogonal shift on '}’(Hn) with the

multiplicity one, i.e.,



a a¥ B
dim(I - 11 8o, = s 8 n).:HU)~1

THEOREM 2.2. If Te B(@T(Hn)) is a nonnegative ‘Zi@-Toeplit.Z operator and

there is k€ N such that
S?T(l) =0 for any f&F(k,A),

then T has a factorization T = A™A and A is an f~analytie operator on ?(Hn) defined
by
Ah=h @, h& ‘?(Hn) 7

L e t@ - o -y &m
where f= ¥ @ - OY, ®000®.. and CEC, ‘P E€H
(m ¢ %1;2,,,.,k5 )

PROOF. By Theorem 2.1, in the particular case when J "—"E;ff(Hn)S
B {1,27“;,@ , it follows that T = A™A for some :ﬁanalytic operator Ag B(Tg—(Hn))
and SFA(D = 0, for any f€ F(k,A).

But this condition holds if and only if
A=¥90¢e..0 €, P10 i® ..,

where \gj & ‘{’ e- H @ Mme! 1,2,,..,k§ k
' (& /
Let us point out that %@f’ = A(1) can be viewed ag polynomzal in- "p"
noncom mutmg muetormmatcb

On the other hand, since A is - analvtlc, it is uniquely determined by \f’

This follows since for any fe .,b = u F(k, we have ASf(l) = Sf “‘g and
k=0
k\f’ﬁ e ::FAP o |
ey Sf( C) y(Hn). Now it is easy to see that
(2.3) Ah=h @y,  foranyhe ';’»-“(Hn) ’

The proof is complete.

REMARK 2.3. a) If we replace H_ by an infinite dimensional Hilbert space

with orthogonal basis {ei’j iéjl » & similar result holds true.



b) As in the proof of Theorem 2.2 we can see that an :ﬁanalytic operator A
on ?7(1-1”) is given by
(5.3) sh=n ey ,  hedm),
where ¥’ stands for A(1). ‘

¢) A characterization (as in the classical case) of those "ui?" for which (5.3)

provides a bounded operator on ?’(I—In) would be interesting.

3. ABSTRACT QZEGG INFIMUM FOR j P-TOEPLITZ OPERATORS

In this Section we extend the Moore's treatment [2] of Szego' infimum

problein, to :}"’—Toepl_itz operators.

Let wus consider 30:{83\3?“%& a A -orthogonal shift on J¢€ ,
e/\ = O( ® ‘SAVC) and let T¢ B(d{) be a nonnegative fwToeplitz operator. For
AEA e

X
each :’\z.- A we define the Lowdc,nslagu s isometry S Sp.q on :?*‘”I = T*J8 by setting

i })—T }h (hedf). It is easy to see that ‘fT = is a

T’ v

sequence of isometries with orthogonal final spaces.

T”“}M_g\

After these preliminaries we can prove the following theorem.

THEOREM 3.1. th Te Bm,) be & nonnegatxve Toeoht:r operator. If l1& ¢ :fm

then

" 3
inf £ <T(L - = 8, h )1~ > S, 0y >ihyed, 27 fih )l 2<m§ >0
AeA T T T den Ae A

1

if and only if 1 has a nonzero projection on N1

\¥ o | A : - "
PROOF. Let KT and f’l‘ i { ST, }\3 reA be defined as above. If we set
(3.1) Er=H O © Sp.¥8)
) « L 1 & T
Spl R

then

(3.2) - T%xszmT%gég .
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Indeed, if 106; éfT ; then for any he 42 and Ae/\ we have

¢g*r? Lded i s h> =<1.,8

4 3 1>-D

PI\ :%

y _
Hence, taking into account (3.1) and that T*38 is dense in gﬁ.T we deduce

'I"l & ﬂKerS &f S0

AC A

-t 1.
(3.3) ngz:’,ra:f:: LT Ie
Conversely, if h¢ ¢€ such that The ?ﬁf, then for any k & d{and Ae A we get

1 1 1 i}
m 2 -~ 2 ~ N2
gz <Ih,S?‘ ko= TR JSK B = <T?h,£>T’?"1 k> .

X . 1
Hence, it follows that T*he ?fT , whence Th @,Ti T . Therefore XQT QTz,&T 3
which together with (3.3) proves (3.2).

Now, we have

. Al —_ 71’_ 9
TU- 20 Sybyhl- 3 s ho>=flr’1- 37 1% h, ) 2=

[y ?‘ ;{‘ Eﬁ = A kY

ACA de A dea,
- %r 7} ot ~ r 7} § 2
=ft"1- 37 Spa Ty |

Aeh
g, W5 v M
for any h e::m., S, hy | 7 <e.
R T ) & A §
1 ﬁ(:;{\

Since T*g is dense in cifiT and (3.1), (3.2) hold, the infimum in the theorem

is 0 if and only if T° Li,ﬁf\,r » that is, 14T ‘;&g 7 OF 1LX AT '*C The result follows.
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