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1. INTRODUCTION

The representation theory for maximal Cohen-Macaulay (shortly MCM)
modules has achieved a remarkable progress in the recent years. The general idea is to
suitably extend the techniques whiech have been developed in I’eprésentation theory of
Artin algebras. This strategy works very well indeed (sce e.g. [Yol, [Dil, [Po], [PR]).
I\"Iotiva':ced by these papers, we were led to study some objects closely related to
Cohen-Macaulay modules - namely, the Buchsbaum modules. In some respects, they
share many pleasant features with modules having Cohen-Macaulay property. It is the
aim of this paper to show a similar behaviour from the representation theory point of
view.

Of course, there is no deeper reason why one should restrict one's attention to
maximal Buchsbaum (shortly MB) modules. The great technical advantage of this class
of modules is that we dispose of Goto's Structure Theorem ([Gol; the precise statement
is recalled in (2.2)). :

Let (R,m,k) be a local Cohen-Macaulay ring. Suppose that R has closed
singular locus defined by the ideal I< m. Denote by A the completion of R with respect
to I and let IMB(R) (resp. IMB(A)) be the isomorphism classes of indecomposable MB
modules over R (resp. over A). In this setting the main result of this paper is the

following:
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THEOREM A (see (4.9)). Suppose that R is a reduced excellent henselian
Cohen-Macaulay ring and k is perfect. If R contains a field, then the base change

functor - () ;A induces a bijection IMB(R) —>IMB(A).

This statement is obtained in section 4 by showing that a certain ideal bisa
.reduction ideal in the sense that the functor - & rR/b reflects isomorphisms,
preserves indecomposability and separates isomorphism classes of MB R-modules. This
line of proof paraliels to Maranda's approach for lattices over orders. We shall pursue
the analogy with some works done by Yoshino, Dieterich, Roczen and the second author.

To answer the question of existence of a reduction ideal we choose the method
from [Po], [PR]. Thus, in section 3 we shall discuss the bound properties for MB modules
which provide a main teol in the subsequent part. Though the proof pattern is as given
by [PR], we shall need some new results.

“In the second section are given several definitions and properties from the
theory of Buchsbaum modules. The main results are stated in (2.6), (2.8) and these
represent the technical core of the paper. |

We explicitely mention tha_t some of the hypotheses from Theorem A are
superfluous. They are carried away because we know the existence of reduction ideals
only in rather restrictive conditions. By meaking use of the hard theory of Artin
approximation property, it is possible to get a stronger result (see (4.10)).

We would like to thank Professor W. Vogel who suggested to us the possibility

to extend [PR, (2.8)] in the frame of MB modules using Goto's Structure Theorem.

2. MAXIMAL BUCHSBAUM MODULES

(2.1) Throughout this paper, the rings are understood to be commutative,
unitary, Noetherian and all modules are supposed to be finitely generated.
Let (A,m) be a local ring. An A-module M is said to be Buchsbaum (resp.

generalized Cohen-Macaulay) if there exists an integer IA(M) such that for all

parameter ideals q of M one has IA(I\A)=1engthA(l\/T/gM)—e(g,M) (resp.



1,(M) = Supg {_lengthA(M/gM) 5 e(g,M)}, where g runs over parameter ideals of M).
Here e(g,M) denotes the multiplicity of g with respect to M. A Buchsbaum module

having the same dimension as the ring itself is called maximal Buchsbaum (shortly

MB -module).

Let Hi(_lp_,M) denote the i-th cohomology module for the Koézul complex
generated by a minimal system of generators for m with respect to M. Then thefc exist
canonical homomorphisms 9\i(M + H (m I\j)—qu (M) where H (IV) denotes the i-th
local conomology module of M relative to m (see zg I8V, Ch, , §1]) Recall that M is
a Buchsbaum A-module iff 9\(1\4) are surjective for all i=0,1,...,dimM - 1 [SV, Ch. 1
(2.15)].

Now assume that A is a module-finite extension of a regular local ring (R,n)
such that R/n¥ A/m and dimAM =dimR = d. Let Ei denote ‘;he i~-th syzygy module of .
the residue field R/n of R. For a given R-module E and an integer h > 0, let hE denotes
the direct sum of h copies of E. With the above notations, the part we need from Goto's

Structure Theorem is stated as follows:

(2.2) THEOREM ([Go, (1.1)]). Let X = XyesXy be & regular system of
parameters for R and put q= (Xl””’xd)A' Then the following conditions are equivalent:

(i) M is a generalized Cohen-Macaulay A-moedule and IA(M) = lengthA(l\/I/_gI\’T) -
- e(g,M);

(ii) M is a Buchsbaum R-module;

d
(iii) MY P h].Ei as R-modules for some non-negative integers h;-
i=0
In particular, the properties (ii} and (iii) are true if M is a MB A-module.

For every ring A one denotes by X(A) the set of all non-maximal prime ideals

of A homomorphism of rings u: B—3A is said to be flat on the punctured spectrum

if for all g €X(A) the induced map u gﬂB_)A is flat. Similarly, an A-module N is

q° g
called free on the punctured spectrum if Ng is a free Ag—module for all g €X(A). This




termmology is useful in stating the next results. Bellow we shall denote by HA/B the
non-smooth locus of the B- -algebra A, i.e. HA/B is the lntersectlon of all prime ideals
g A such that B-—-~-;>Aq is not smooth.

(2.3) LEMMA. Let u:B-—s3A be a finite ring homomorphism, Q€A a primary
ideal, gq= V"é, p= u—l(g), p= u*l(Q) and x an element from AN q. Suppose that

BEW«»Aq is smooth. Then for every A-module N it holds

(QN : x)Ng_ N (’\PN_g = N(YPNE
Proof. Note that the map Bl;)————B*»Aq is ctale because it is smooth and
essentially finite. Thus we get EAE], :QA;. LetﬂN be an A-module. If z €N ﬁPNg then
there exists y e A\ g such that yz € PN, Since the induced extension B/p —»A/q is finite
we get‘u—l(y/\)ﬁp Thus changing y by one of its multiple we may suppose y€ B\ p.
Hence z C—:PNP , 1.e. the equality holds. The above inclusion will be established in several

i

steps.

Step 1. Case when the residue field extension of Bp-«—w&S is trivial.

Then the extension Bp~~—-—>Aq is dense and so PAq = QAq. Let weN be such

that xw € QN. Thus wG:tQNq’z PNq and so the inclusion holds.

e

Step 2. Case when there exist a finite B-algebra C and a prime ideal

qgecb:=C Qmﬁ A such that g' lies on g, the residue field extension of Cp ——-}Dg

p':=(C @ u) q is trivial and the map B ——-\Cp, is smooth.

b A9~—-——>Dg, are étale and so pC

p Er = E‘CP—: )

qu, = Q'Dq'. Clearly QDq, ; PCp, are primary ideals and so Q' = DN QDq, #Ple CﬂPCP.

As above the morphisms BP———m’aC
are primary too.
Let X':=1® x, u':=C ®u, E = (QN : X)y and N':=D @AN. By Step 1 we

get



(1) E':=(QN': X')N,QN'{]P'N'P, = N'ﬂPN'B,

X .
Obviously E is the kernel of the composed morphism N —3N —3N/QN. Since

C., is flat over B we get the following exact sequence of Cp,—modules

]

(2) 0 «-;:ocB, BE — Cyy ®@ N -~—‘>_CB, & g/aN)
where the last map is in fact the composite homomorphism

o~ X!
(3) CE, @pN = N'P_, ~—~»~w19, «»N*B,/Q'N:E.'r‘fcp_, @ p(N/QN)

For the last isomorphism note that Q'Nq = QN by construction.

._é

Thus if 7FQ'N \then y7<:QN for a certain yeD \ g'. Since the map C/p ~——3D /g
is finite we get u' (yA ;Z‘o‘ Thus changing y by one of its multlple we may suppose that
yeCA\plie, Q’NE, = QNE,

By (2) and (3) we get C ' @ gE According to (1) the inclusion

B,
B
PNPS} E.p & PNE becomes equality after tensorization with CE,. By faithfully flatness it

followsPN =E + PN _ij.e. E €PN . Thus EC N PN
ST ke A p

o

Step 3. General case-reduction to Step 2

We need the following Lemma - a particular case of {Po, (B:4)1

(2.3.1.) LEMMA. Let S¢R be a finite ring homomorphism, p<S a prime ideal
and '

d min  ([k(g) : k(p)] - 1)
g&SpecR

q NS=p

R,E

where k(p) denotes the residue field of Sp. Suppose that dR D > 0. Then there exists a
7= 5

prime ideal p' <R lying on p such that dR @SR,P' < dR,p X
By the above Lemma a finite B-algebra C of the form A @ A G B @B

satisfies all the hypothesis required for Step 2.
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(2.4) LEMMA. Let u:B—>A be a finite ring homomorphism, acA an ideal,
b uﬁl(_@) and x€H, , 5 an element such that for all ge X(A), x is not a zero-divisor on

(A/g)q. Suppose that u is flat on the punctured spectrum. Then for every A-module N

which is free on the punctured spectrum of B it holds
(aN : x)Ng,. N ﬁp_NE

for every p € X(B).

e
Proof. Let a=N Q; be an irredundant primary decomposition of a,
i=1

Pl. = unl(Qi), Pis \ﬁ;i » Gy 1= @i. If gie:’;X(A) then xgé‘qi because x is not a zero-divisor

on (A/gg)9 be hypothesis. Thus the map B ——->Aq is smooth (XGHA/B!). Let N be as in
i i

our Lemma. Applying Lemma (2.3) we get

(aN : Xy & (QN : x) e NO PiN_Pj

It follows

e
(8N :x)y € f_‘} ‘ (aninv)
i=1 =1
P; €X(B)

because giEX(A) iff P; €X(B), u being finite. Let p €X(B). Since Np is free over Bp we

get

)2 (N : x)y .

e
bN_ = N_AP.N
o £y« Eﬁpl P,

—

if

1:
Biep

(2.5) LEMMA. Let u: (Byn) —>»(A,m) be a finite homomorphism of local rings,
acA an ideal, xe HA/B and 5"& finite set of B~modules. Suppose that u is flat on the
punctured spectrum. Then there exists a positive integer r such that for every

A-module N having the properties
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a) N is free on the punctured spectrum of B;

b) NZ P tpF as a B-module, for certain non-negative integers tp
Fe¥

it holds

(aN : XP)N = (aN : errl)N :

Proof. Clearly the equality holds for e?ery reN if xg{m and so we may assume
X€ m. By noetherianity, the increasing chain of ideals {(g:xs)}s stops beyond a
certain non-negative integer t. Let us say a':=(a: xt). As is readily seen, if r' satisfies
the conclusion of Lemma for x and a', then r:= t + r' will satisfy the conclusion for x
and a. Thus changing a by a' one may suppose X is not a zero-divisor modulo a.

Using a primary decomposition over B, for every Fe F  we can write
bE = F'0 FO where FO is a n-primary sub-B-module of F and F'c F is a sub-B-module
such that AssB(I*‘/F‘)C X(B). Let se N be a non-negative integer such that _QSFQ FO for
all F€¥ . Since u is finite we get gfg; Lr)bsA for a certain re N. We claim that this r is
the wanted one.

Indeed, let N be as in our Lemma. By b) we get N = .@r tFF for some '[Fé N.

Fes
Then bN = @ tF(QF). Denote NO= e tpF, and N'= EB” tpl'. Clearly we have
Fe¥ Fe¥ Fe§¥
DN=N ONandmNep’N= @ t.’Fle @ t.F =N_.
0 - B I Fe F-o 0

By construction AssB(N/N')s:'X(B) and so N'is uniguely determined by

N'= () (NNBN) , X(N):= X(B) SuppN
p € X(N) E :

Now let ze N be such that x' 1z ¢aN. By (2.4) we get zc—QNp for all pe X(N) and so
z e Nk Alse XFZGNO because xem. Consequently X z& NO(\ N'=DbNg aN, i.e.

r+1)

o R
(aN : x N—(gN.x)N.

(2.6.) PROPOSITION. Let BCA be a finite extension of local rings, acA an

ideal and x EHA/B' Suppose B is regular, A is a generalized Cohen-Macaulay ring and
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the residue field extension is trivial. Then there exists a natural number r such that for
every MB A-module N it holds

(aN : XF)N = (aN : XPH)N

Proof. According to [Go, (4.1)], for every ge& X(A) A9 is a Cohen-Macaulay ring
of dimension d := dim A - dim A/qg. If p == 0B, then BE is a regular ring of dimension
dimB - dimB/p = dim A - dim A/q =d. Hence it follows A9 is free over BE ; i.e. the
structural homomorphism B-3A is flat on the punctured spectrum.

Let N be a MB A-module and Ei s 1= 0,...,5:= dim A denote the i-th syzygy
module of the residue field of B. By Goto's theorem (2.2) we know that N fulfils the
condition b) from (2.5) with 5 {EO’EI’.“’ES} . Applying [Go,(4.1)] to N we note that
Np is a MCM over B_ for pe& X(B)n SuppBN. Thus N is free on the punctured spectrum of
B‘;lnd the assertion gollows from (2.5).

Now we recall that for an arbitrary R-algebra S, the Noether different is

defined by

S :

where I denotes the kernel of the multiplication mapp:S ® RS —»5, pla & b) := ab.

(2.7) LEMMA. Let (B,n)C(A,m) be a finite extension of local rings and let
d = ‘f‘é‘ be the Noether different. Suppose ¥ is a finite set of B-modules. Then there
exists a positive integer r such that for every A-module M having the properties:

a) M is free on the punctured speetrum of B;

b) MZ B tFF as B-modules for certain non-negative integers t

Fe%
it holds

F7
Br e Exti(M,N) =0 for every A-module N,

Proof. If M and N are as above, consider
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a short exact sequence of A-modules with L finitely generated and free. Clearly one
gets the exaet sequences over B

' o b
(*) C D! o= HomB(M,N) d__,v_:;;E o= HomB(L,N) e ) e )

(o %) 0 —D ~%—‘>E" = HomB(K,N)

where D denotes the image of W= HomB(w,N) and h, g are obtained from W in an
obvious way.

In the following diagram

> D ——50
lg
&’ § E
i ’ J . J/Sl/

\% w
0 —sHom (A,E") ——>3 Hom_(A,E) > HomB(A,E”)

B

B

the homomorphism § is defined by
(§x):=xf-fx, fe& x€A

and similarly &' and §". Clearly the rows are exact and since W= gh the diagram is
commutative. As ker §'=Hom,(M,N) (see e.g. [Pi, (11.2) + (10.4)]) we get by Snake
Lemma the following exact sequence

oc
0—> HomA(M,N) —— HomA(L,N) ——3>DnN Ker § "—>Coker &'

In fact, the last homomorphism has the image in the Hochschild cohomology module
Hé(A,E')c Coker §'. It is well known that the Noether different J annihilates Hllg(A,P)

for every A-bimodule P (see e.g. [Yo, (2.2)]). Therefore
(1) D, CIme, whereD,:=D NKer §".

Now we need the following Lemma
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(2.7.1.) LEMMA. Let E be a finitely generated module over a local ring (R,n)
such that it is free on the punctured spectrum of R. Then there exists a positive integer

s ¢ N such that

Syl e
D Extp(E,P) = 0
for every R-module P.
By the above Lemma there exists re N such that _I_)PEXté(F,P) =0 for every

Fe and every B-module P. In particular we have

DExto(M,N) = 0

1
p!
for all M,N as in our Lemma. It follows

(2) n"Hom

p(K,N) & D

using (+). Since H%(A,-—) is a functor it preserves the multiplications and so we get
(3) ' _g‘"HomA(K,N) _grﬁg(A,HomB(K,N))g DA Kerg"=D,_.
Combining (1) and (3) it follows

J.n' Hom , (K,N) ¢ Imat

Since ¢( has the same image as I—i’omA(\.\r,I\T) we get JgrEth(l\i,I‘i) =0 for all

M,N as in our Lemma.

Proof of Lemma (2.7.1). Choose a finitely generated free R-module L and a
surjective R-linear map p : L—%E. Let x€ n. Then EX is projective by assumption and

S = . . 3 v B /X ~ 4 .
so R, @ p has a section q. Since (Homp (B,L)), = HomRX(E L.), there exists a

x’
homomorphism ¢ : E—>L  such that R, @ ¢=qg. Thus id B = (RX @0 e
o (B @(P) = R,X @ @pe (D) and therefore we may find a positive integer t such that %"
annihilates p 9= idE. If p : E—3E denotes the multiplication by xt, then it results p
factorises through L. As Extll{(L,P) = 0, it follows

(4) xtExt%{(E,P) =0
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for every R-module P.
Choose a system of generators X geensXg of n-and a positive integer t for which

(4) holds for all x = x;. Then teking s = te we get

By Ext%{(E,P) C (x},m,'xg)Ext%{(E,P) =0

(2.8) PROPOSITION. Let (B,n) < (A,m) be 2 finite extension of local rings and
let J be the Noether different. Suppose that B is regular and the residue field extension

is trivial. Then fhere exists a natural number r such that
Py 2l 4
mJExt, (M,N) = 0

for every MB A-module M and for every A-module N.

The proof follows by the preceding Lemma using the same argumentation as in
the proof of (2.6). Moreover, we note that nA is a m-primary ideal and so _r_n_tg_ nA for a
Vcertain te N,

We record here some simple facts concerning the transfer proper‘ties for the

Buehsbaum property.

(2.9) LEMMA. Let f: R—> S be a flat local homomorphism of local rings.

Suppose M is a Buchsbaum S-module of positive dimension d = dimSM, Then M is a

Buchsbaum module over R.

Proof. By [SV, Ch. I, (1.10)] M is a Buchsbaum S-module iff for every system of

parameters YyseeesY €S of M we have for all i = 0,...,d - 1

d
5 2L
((yla“-syi)m : yi+1)M = ((yly-"syi)m : yi+1)M

Let us consider Xy500esX, € R @ system of parameters for M as a R-module.

t

Since f is flat, it results t= dimRMSdimSM and Xysee0Xy is & part of a system of

parameters for the S-module M. The assertion follows from the above characterization.
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(2.10) LEMMA. Let f:(R,m)—3(S,n) be a flat local homomorphism of rings
with the same dimension and let M be a finitely generated R-module of positive
dimension d. If N:= M & gS is a Buchsbaum S-module, then M is a Buchsbaum

R-module. The converse implication holds if mS = n,

Proof. Since mS¢n and f is flat, we get for each i=0,1,...,d-1 a

commutative di'agram with canonical maps
Hin,N) s H(mS,N) 22l (m,M) @ 5

N(N) ' Ao @ s

W = s . AV
T’" 1 T 1 ..f‘:iy»\ = 1 o S
hﬂ(l\) —--M’}qu(N) - > Hm(M) {Q R®

.

As mS is a n-primary ideal, actually v is an isomorphism. Suppose that N is a
Buchsbaum S-module. Then the left vertical homomorphism ?\i(N) is onto. By faithfully
flatness it follows ;}J(M) is-surjection too.

Conversely, the additional assumption mS = n implies u is onto and thus the

assertion is obvious.

3. RINGS WITH BOUND PROPERTIES ON MAXIMAL

BUCHSBAUM MODULES
(3.1) In this seetion (R,m,k) will be a ring having unique maximal ideal m and
residue field k. Suppose that the set
RegR := {E €SpecR : RE regular‘}

is open (this is the case if R is complete or quasi-excellent). Then the singular locus is a
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closed set defined by a radical ideal denoted IS(R). Since the situation R regular is
covered by (2.2), we shall furthermore assume IS(R)Q m.

The next definition is inspired by [PR].

(3.2) We say that R has bound properties on MB-modules if the following

- conditions are fulfilled:

(B1) there exists a positive integer r such that IS(R)PEX'E%(M,N) = 0 for every

MB module M and every R-module N;

(B2) for every ideal a in R and for every element y of IS(R) there exists a
positive integer e such that
(aM :‘ye)M = (aM : yeH)

Y]

for every MB module M.

(3.3) REMARK. A moment of thought reveals that it is sufficient to consider
in (B1) and (B2} only indecomposable MB modules M in order to establish if R satisfies

the definition (3.2).

The next result roughly says the descent of bound properties on MB-modules.

(3.4) LEMMA. Let f: (R,m)~—»(A,n) be a flat homomorphism of local rings
such that IS(R)AQ IS(A)Q n. Suppose mA=n and A has bound properties on

MB-modules. Then R has bound properties on MB-modules.

Proof. Let r be the natural number given for A by (B1). We shall show that R
satisfies the condition (B1) for the same value r.

Let M be & MB R-module and N a R~module (finitely generated, as always). By

(2.10) we note that M ®RA is a MB module over A and by flatness A & RExti{(M,N)'g

’_-‘;Exti-(M & AN (D gA). According to the assumption I (R)A € I(A) and from (BI)
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one gets -

IR (A @ RExtg(M,N) € I(AVExth (M @ AN @ gA) = 0
whence IS(R)PExtII{(M,N) = 0 since f is faithfully flat.

Next one examines the condition (B2). If a is an ideal of R and y ¢ I(R), then
f(y) e IS(A) and by hypothesis there exists a natural number e such that (aN : f(y)e)N =
= (aN : f(y)e+1)N for every MB A-module N,

Let M be a MB R-module. As above N := M 8 RA is a MB A-module and one

has

S 8
for every non-negative integer s. Thus the desired conclusion follows again by the
faithfully flatness of the morphism f.

Now we provide an answer to the question of existence of rings having bound

properties on MB-modules.

(3.5) PROPOSITION. Let R be a reduced complete ring with perfect residue

field. If R is Cohen-Macaulay and contains a field, then R has bound properties on MB

modules.

Proof. Let x = XpseeerX be a system of parameters for R. By Cohen's Structure
Theorem, R is a finite extension of the regular local ring S(x) := k[[xl,...,xn]]. Moreover,
k is the residue field of S(x). Let us denote by J(x) the Noether different of the

S(x) - algebra R. Since R is Cohen-Macaulay and k is perfeect, by [Y0,(2.5)] we have
IS(R) = Rad(J)

with J :ZZJ(X), where the sum is taken over all system of parameters x for R. Note
that R is flat over S(x).

: t ;
Choose some systems of parameters £ such that J= 5 J(x(l)). Applying
i=1

S. A
(2.8) we find for every i = 1,2...,t an integer §; such that m L J(x(l)).Extll{(M,N) =0 for
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. 8:
every MB R-module M and every N. Therefore, the ideal I:=T£'1r_11 satisfies
: . i=1

I.J.Ext%{(M,N) =0 for M,N as above. Since I(R) = Rad(I.J) we conclude that (B1) 'holds.
Now let acR be an ideal and yel(R). If there exists x as above such that

yé‘J(x) < HR/S(X) (see e.g. [Po, (2.10)]) w‘e obtain the equality asserted in (B2) by (2.6)

applied to the flat extension S(x) —3R. In the general case choose in IS(R) a system of

elements Pseessly such that IS(R) = Rad(Z‘,riR) and for every i=1,..,t there exists a

system of parameters x(l) of R such that r; € J(x(l)).

i g :
()) and as above there exists a natural

.}.1
)M for every MB R-module M.

Then for every i one has yr; € J(x

e e

number e, such that (aM = (yr;) l)M = (aM : (yr;) ;

We claim that the condition (B2} is fulfilled for e := v+ max e, , where vis a

positive integer for which it holds IS(R)VQ }; r; 'R.

+ Indeed, let M be a MB R-module. If ySz € aM for a certain zeM and seN,
e, :
then (yri)“’z € aM and so (yri) e aM for every i = 1,...,t. Thus one has

- e e.
yez & ye % Z,ri Rz QZ(yri) Rz aM
This finishes the proof of (3.5).

By combining the preceding facts one gets the main result of this section,

which ressembles to [PR, (1.5)].

(3.6) THEOREM. Let R bean excellent Cohen-Macaulay reduced ring with

perfect residue field. If R contains a field, then R has bound properties on MB-modules.

Proof. Let A be the completion of R. As R is excellent, the canonical

homomorphism f : R —> A is regular. Hence it follows by [Ma, (33.B)]
2 =1
RegA—{g(»SpeCA:f (g)GRegR}

and therefore IS(A) = Rad (IS(R)A).
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Also, A is reduced Cohen-Macaulay. Thus, by (3.5) it results A has bound

properties on MB-modules and so the assertion is obtained from (3.4).

4. RINGS WITH MB-REDUCTION IDEALS

(4.1) Throughout this section (R,m,k) will denote a Cohen-Macaulay local ring
with non-empty closed singular locus.

Let ac R be an ideal. The couple (R,a) is said to be MB-approximation if there

exists a function )): N—sH, 3) > idy such that for every teN, every MB R-modules
M, N and every féE'IomR(M,N/gymN), there exists a R-linear map g : M~~~sN such
that
R/a' @ pf ¥R/a" @ oo

'» (4.2) LEMMA. Suppose that R has bound properties on MB~modules. Then for
every ideal @ ¢ R and y €1 (R) there exists a function ) : N —N, ) > id; sueh that for
every t& N, every MB modules M, N and every fE.HOIHR(I\"[,I’Q/(_@,X))(t))N) there exists
g Glion'zR(Pv'I,N/g,N) for which the following diagram is commutative:

f

> N/(a,x Y )

M
|
l
|
g
f
o

A\
N/aN ———3 Nfa ,XUIN

Proof. Define ) (t) := r(1 + max (e,t)), where the positive integers r and e are

given by (B1), (B2) respectively. Then proceed as in [PR, Proof of (2.2)].

(4.3) LEMMA. Suppose that R has bound properties on MB-modules. Then for

every ideal ac IS(R) the couple (R,2) is a MB~approximation.
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The proof.uses (4,2)a_ndgoes exactly as in [PR, (2.4)].

(4.4) The ideal bcR is said to be a MB-reduction ideal if the following

statements hold:
1) a MB R-module M is indecomposable iff M/bM is indecomposable over R/b;
2) two indecomposable MB R-modules M, N are isomorphic iff M/bM and N/bN

are isomorphic as R/b~modules.

By [Po, (4.5) + (4.6)] we get immediately:

(4.5) LEMMA. Let R be a henselian ring and a cR an ideal such that the couple
(R,a) is a MB-approximation with associated function )) .. Then _a_r is a MB—reductiqﬁ
ideal, where r = Y (D).

The next proposition sums up our results on MB-reduction ideals. By combining
it with (3.6) we obtain a specific class of rings for which we know a positive answer to

the problem of existence of MB-reduction ideals.

(4.6) PROPOSITION. Let R be a henselian local ring having bound properties on
MB-modules. Then for every ideal a & IS(R) there exists a natural number r such that _gr

is a MB-reduction ideal.

(4.7) THEOREM. Let (R,m) be a reduced excellent henselian Cohen-Macaulay
ring with perfect residue field. If R contains a field, then IS(R)P is a MB-reduction ideal

for a certain positive integer r.

Let IBM(R) be the set of isomorphism classes of indecomposable MB

R-modules. Then

(4.8) PROPOSITION. Let R be an excellent henselian ring having bound

properties on MB-modules. Let A be the completion of R with respect to IS(R). Then the
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base change functor - @ A induces a bijection IMB(R) —>IMB(A).

Proof. Since R is excellent, the canonical map R -—>A is regular. Therefore A
is @ Cohen-Macaulay ring and IS(A) = Rad({S(R)A) by [Ma, (33.B)].

Take M from IMB(R). Then M (9 pf is @ MB A-module by (2.10). According to
(4.6) b= IS(R)P is a MB-reduction ideal for a certain réN ‘and so M ® grR/b is
indecomposable as a R/b¥A/bA-module. This means M RrA/DM & pA) is
indecomposable, whence M & RA is indecomposable by Nakayama's Lemma. Thus the

base change functor - (&) RA defines a function

(p: IMB(R) —3>IMB(A) '

Now we show that C@ is one-to-one. If M,NEIMB(R) are such that
I '

M & RASN @RA, then
M/bMY (M @ gAY/ (M G pbA)Y (N @ R A)/(N 6D pbA)&N/bN

and so M¥ N, because b is a MB-reduction ideal.
Lastly, for every MB A~module N and for every pe SuppANﬂ X(A) we have by

[Go, (4.1)] that NB is a Cohen-Macaulay Ap~modu1e of dim , N‘[2 = dim

- p
=dimA - dimA/p=dimA_. Thus N is locally free on Reg A and so ¢ must be onto by
BZ p

AN - dimA/p=

[El, Th. 3].

(4.9) TBEOREM. Suppose that R is an excellent henselian reduced
Cohen-Macaulay ring with perfect residue field. Let A be the completion of R with
respect to IS(R,). If R contains a field, then the base change functor—(®) RrA induces a

bijection IMB(R) —»IMB(A).

(4.10) REMARK. We discuss, in broad outline, how the above result may be
improved.

Firstly, one must impose conditions on the ring R such that a well-defined

e e e TR

i e
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map ('ﬁ: IMB(R) —3IMB(A) is indu.eed by the base change functor - & RA. To this end
01'16 may use the Artin approximation property as in [PR, (3.4) - (3.8)]. If R is an
“excellent henselian ring, then from [PR, (3.8)] it results ii? is one-to-one.

Secondly, Elkik's theorem implie‘s 6{9 is a surjection, provided one could show
that every MB A-module is locally free on the regular locus. As above, this is the eése«
if A is a generalized Cohen-Macaulay ring. Since the various local cohomology modules
of A are isomorphic to the extensions of the corresponding local cohomology modules of

R, it is sufficient that R is a generalized Cohen-Macaulay ring.
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