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GEOMETRY OF DIFFERENTIAL POLYNOMIAL

‘FUNCTIONS. Il: ALGEBRAIC CURVES

A. BUIUM

O. INTRODUCTION

This paper is a direct continuation of [BI]; we sh'allfreely use the
terminology from that paper. |

As in [B1] let ‘U be an ordinary universal /\-field of characteristic zero
(cf. [-K])\ with derviation operator 5 and field of constants X . For any smooth
U -variety X we considered in [B1] the ring (yA(X) of A-polynomial functions on
X. . This ring has an increasing filtration with subrings @(n)(X) where for each n > 0

(Q(n)(X) is the ring of A-polynomial functions of order at most n (so

(9(0)(X) = @(X)). Moreover each ring @(n)(X) with n > 1, has a filtration Fd(ﬂ(“)(x)_

with (Q(n—l)(x)—modules where Fd (Q(n)(X) is the space of all A -polynomial

functions which are locélly given by A-polynomials in U { yl,...,yN% (for some N)
(n) _(n)

of order at most n and of degree at most d in the variables Y1 seensVN (here and later

e s n ; 2 n ;
we write sometimes x/, x",...,x( ),... insted of gx, J Kiysony 5 X,... whenever x is an.

element of some /\-ring). A remarkable easy fact is that the ?/(,—line‘ér spaces
Fd(g(l)(X) have finite dimension when X is complete. These spaces bare a formal
resemblance with pluricannonical slystems in algebraic geometry (and indeed as we
shall see are related to them at least in the case of curves) so we call them the
A-pluricanonical spaces of degree d of X. The dimension Nd = Nd(X) of Fd(ﬂ (1)(X)
will be called. the /\ -plurigenus of degree d. It is natural to pick-then any basis of

Fd CO(I)(X) to produce a /\-polynomial map




: Nd
‘fd s X ——=2U

which we call the A -pluricanonical map of degree d and we may hope to discover a

"new geometry" of "old varieties" by inspecfing th/ese maps. The aim of the present

paper is to perform this program in the case of smooth complete curves. | : '
Before stating our results let's define a basic invariant for a smooth

completfe curve X of genus g over 7{ which we call the /A -rank of X and will be

denoted by rank A (X). Let

_1)

f : Der ——> HN{(w %

be the Kodaira-Spencer map associated to X —- Spec U (CUX denotes as usual the
-eanonical line bundle on X), consider the Kodaira-Spencer class S (o(‘)é‘Hl(W ;(1)
ahd let C : HO(w X) — Hl(@x) be thé map defined by cup-product with S ( § ). By
definition we let rank A\ (X) be the rank of the linear, map C. So we always have
0 <rank A (X) < g. If X descends to X then f(fy) = 0 so rank A (X) = 0; conversely
if X is nonhyperelliptic and rankA(X) = Othen using Max Noether's theorem (implying
surjectivity of S2H°( (A)X) —> HO%(w 5‘?2) = Hl(w ;(1)0) we see that f (OC) = 0 hence
X descends toK [le. Of course the number rank A (X) equals the A -rank of the
Jacobian J(X) as defined in [81]; so using the results in [Bll, section 7 we see that
equality rankA(X) =g holds for X " /\-generic" i.e. for X lying outside a certain
proper /\ -closed subset of the moduli space (/{g of smooth curves of genus g.

Here are our main results (in which X is a smooth complete curve over Z(; of

genus g > 2):

THEOREM 1. If X does not descend to ,K then for d sufficiently large <r”d
is a /\-closed embedding. Moreover Nl(X) =g+1-rank A(X). If in addition X is
non-hyperelliptic with rank A (X) = g then '“Pd is a /\-closed embedding for d > 3, we

have N, (X) = 1 and N (X =g~ 1)(d2 -1)ford> 2.
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THEOREM 2. If X descends to ]C then for any d>1 we have
Nd(X) = (g - 1)d2 + 2 and (fd sends XJC to a point. If X is non-hyperelliptic Lfd. is

injective outside XJC for d > 1.

REMARKS. 1) The notion of A-closed embedding appearing in Theorém 1
above will be defined in section 1. In any case a, A—closed embedding is in particular
injeetivé and has a A -closed image.

2) It might seem odd to an algebraic geometer.to see a projective curve
embedded into an affine space (even if this is done by A -polynomial rather than by
regular functions which is of course impossible). This phenomenon is different in
nature frqm that discovered by P. Cassidy that for any projective Z{-variet’y X which

descends to ]{ , X, appears as a A—closed subset of some 2(,N. For here we embed

K
the full set of ¢l -points of a variety and we do it in case the variety does not
descend to ]C .’

1 carries

3) Theorem 1 fails for genus g = 0 and g = 1. Recall from [BI] that P
no non-constant A—poiynomial functions (of any order!) while for any elliptic curve,
and more generally for any abelian variety A, all /\ -polynomial fun’ctions (of
arbitrary order) must factor through the factor é‘roup A/A# (N.B.: A#- is never
trivial !); in fact /\-polynomial functions on A define an injective map from A/A
to some affine space. '

4) It follows from [Bl] that if A is a principally polarized abelian Z{ -variety
which is "/_-\—gerlleric" in the moduli space §¢g (g = dim A) then all /\ -pluricanonical
maps Lfd are trivial (i.e., Nd(A) =1, .equivalently (/d maps A to a point in 2 ). This
fails for A not " A -generic": if A descends to K tor instance, then

(lpl A —> Z(,‘ gl s precisely Kolchin's logarithmic derivative (cf. [KI)
¢d : A = L(A)= 2 & followed by an affine embedding U 8= U el

5) There are some features of our A—pluricanonical maps which make them

behave quite differently from those in algebraic geometry. For instance, due to the

fact that the constant functions (i.e. those in 2(/ ) belong to any A -pluricanonical




space it follows that the image of any A- plurlcanomcal map Lto XU d
contained in a hyperplane of Zé d not passing through the origin. Note also that if
d< e are two mtegers then (1” is obtained by composing CP with a linear projection -
’2/{/ e gy d

6) One should be able to generalize perhaps the above results from curves of
genus g > 2 fo varieties with ample cotangent bundle [MD].

The paper is organized as follows. In section 1 we present some generalities
on A -pluricanonical maps. The following two sections are devoted to the proof of the

two theorems above respectively.

1. -PLURICANONICAL MAPS

A
(1.1) Let X be a smooth [{-variety. We defined in [B,] the sheaf (9 of
/\-polynomial functions on X and 1ts subsheaves 69( 4 of A- polynomlal functions of
order at most n. The latter form an increasing filtration of ﬁ with 6)(0) = @X and

; A
(9 (m - x+ Moreover, if
>0

G 5) Ry ,f)

x4 . l, o — X=X X 1=spec U

n>

\

is the infinite prolongation sequence associated to X as in [Bll (3.1) then we proved
~ that (Q(n)(X) = (XM for all n> 0; since the infinite prolongation sequence above is

. "eompatible" with restriction to Zariski open subsets, we get d (}2) =@ 3 (here and
X
later we shall abusively write (9 5 instead of 4\ (9 p Where jT s s Xis
X Ny X

the canonical projection !). Now define for each d > 0 and n > 0 the sheaf Fd (Q(n) by

assigning to each open set X < X the set of all funetxons il X —» 7 such that for

each x €X there is a Zariski affine neighbourhood X; of x, in X, a closed
embedding chU/N and a /\ -polynomial F é?{{yl,...,yN% of order at most n,

which viewed as a polynomial in y(ln),. ,ygl) has degree at most d, such that

(n)

f(x) = F(x) for all xéXl. Clearly Fd(p(X) form a filtration of (QX with

(9()?-1)-modules such that (Ed(p()?))(Fe(p(}?))c Fd+e(9()2) for any integers d, e in

particular the sheaf



Gr (Q(n) has a natural structure of sheaf of graded rings. Moreover note that

Fd@(;?) is the subsheaf of ﬂ generated by products of the form bb) ... b, for

e < d where b o'P1e++be 5(9(” 1) (because if F C-'Z({yl,...,yN% is a /\ -polynomial

of order at most n - 1 then F' has degree at most one as a polynomial in y(n) ,yg\?))

(9( ) can be constructed directly from the sheaf of A -rings @X and its
subsheaf (9 by an obvious inductive procedure.
A particular role will be played by the filtration Fdfg(n)(X) on (p(n)(x)

defined by Fd@(n)(X)=H°(X,Fd(9(£)); one can associate to it the graded ring
cr, 0(x),

(1.2) Let Z be any Noetherian separated scheme, E a locally free coherent

; \%
sheaf on Z and P the V(E)-torsor on Z in the Zariski topology corresponding to some
class 42 ¢ H (Z E) (recall that we put V(P) Spec S(E)). We shall write in what follows

abuswely (QP instead of I, ﬁ where JT:P —> Z is the canonical projection.

Then there is a natural filtration F C)P on ()P with locally free ecoherent

(Qz-modules such that F° (QP = @Z g e U UP and
a>0 :

(F¢ (QP)(Fe (OP)C Fd+e(9P (d,e > 0) and there is a natural isomorphism of sheaves of

graded algebras Grp CQP’—” S(E). The construction of Fd (99 is the following. Cover Z
\'4

with affine open sets Zi and let /YZij € Hl(Zi/\ Zj’ E) represent nz . Then P is defined

by glueing Spec S(E/Z ) via the CQZ-isomorphisms
: i : . .
‘f’ij : S(E/Zin Zj) ey S(E/Zih Zj)

=e+t
%ij(e) e <e”‘Zij>’ eéE/Zinzj

d
Now S(E/,) has a natural filtration defined by FdS(E/Z)= G}Sk(E/Z ). These
i “i k=0 i

filtrations cleafly glue together via LF to give a filtration Fd (9?. Moreover, if

T FdS(E/Z AT ) then one checks that ‘P (O’) -0 € pd 1S(E/Z o ). ~This
i j
provides the 1somorphlsm Grd (9 e Sd(E) In particular if we define a flltratlon on




@ ®) by FAO(p) = Ho(z,rd CQP) then U FI(O(P) = (O(P) and the exact sequence
&0 -

0— p90 , — FU0, — s%B) — o
provides a natural injective map of graded algebras

Grp O(p) —> P HOZ,SUE)
>0

Note that Fd CQP is the subsheaf of COP generated by all products of the form
o
f1 we fo where e < d, f,eeesf € F (QP 3
It will useful for us to give an alternative description of the filtration

Fd(Q(P) defined above. Consider the extension
0 ) (9Z T 8 e E > 0
; R e | 9, i £ : .
corresponding to f>ZéH (Z,E) = Ext (E, Z). Explicitely is obtained by glueing

the sheaves (ﬂz. %) E/Zi via the linear automorphisms of (ﬂz /\Zj@ E/Zir\ZJ

i i

1 0
-~ defined by the matrices ( ); using this deseription of (_C; we see (compare
Mgt '

with [MD]) that P identifies with the complement in P(E ) of the divisor

D =P(E) € !COP(E)(I)' and the filtration F9(9(P) corresponds to the filtration of
@ (P(E)\D) given by the vector spaces H( (’OP( o )(dD)) of all regular functions on
P(E )\D with poles of order at most d along D. Recall also that we have an

identification HY( (QP( < )(dD)) = HO(Z,Sd( E.

(1.3) Recall from [B,] that, in notations of (1.1) we have that for each n> 1,

),

X"——aXn_1 is a torsor under the relative tangent bundle V(T s

corresponding to the Kodaira-Spencer class f(cf‘ ) where
) n-1 -~ 1 P
sDer( 0 it 0 Jes (T _ o - ) We claim ihat cunder the
f Xn 2 Xn 1 Xn I/Xn, 2

identifications (0 = @D ana (¥ = (9 ™=1) the filtration F4OM gefined in
%D Xn-1 X X

(1.1) coincides with the filtration rd(7 g defined in (1.2) (here a slight confusion may
X
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arrise from our abuse of notation making (ﬂp in (1.2) a sheaf on X!. Indeed we only

defined in (1.2) a filtration on the direct image of (J n on Xn--l, but this filtration
X

induces in a natural way a filtration on the direct image of ﬁ non X). To check the

X
claim note that as remarked in [B1] (1.6) for any affine subset U of X, F1 (0 n(U) is
X
generated as an (ﬂ (U) module by g@ (U) hence by (1.2) Fd@
X x?
generated as a subsheaf of ¢ , by elements of the form b ( § by)- ..(S bg) with e < d,
X"

b 1’ c(p . In view of the similar remark about Fd(9<“) made in (1.1) we
(n) d d (n) - d n
conclude that F C9X =F4(J . We get then that F*(/"(X) = F =™ for d> 0.
X -

As a consequence of the above discussion we get:

(1.4.) PROPOSITION. Assume X is a smooth U -variety. Then there is a

natural injective map of graded algebras

X (1) 0
Grp (01(x) —> @DH(X,S 'me)

d>0

In particular, if X is complete, dim’u Fd w(l)(X) < oo for alld > 0.

(1.5) Now we can make the definitions formulated in the Introduction. We
call Fd@(l)(X) the /\-pluricanonical spaces of X, their dimension Nd(X.) will be

called the [\-plurigenera and choosing any basis b1""’bN of Fd(9(1)(X) we call - the
N d

map "f’d : X —>U e with components (b.). the A -pluricanonical map of degree d.

Since 1¢ F (9(1)(X), if )1, iy )N C(ZL are such that Z )JbJ = 1 then we see that
d

kf] (X) is contained in the affine hyperplane in ?,C of equation Z)jxj =1 where

xl,...,de are affine coordinates in ?/L

(1.6) A /-polynomial map Y. X —>Y between two smooth A -varieties

will be called a A—closed immersion if the morphism of D-schemes XG-D———? i

corresponding to it (ef. [B1] (3.6)) is a closed immersion. In particular such a map
as above is injective and its image ¢(X) is /\-closed in Y. The composition of two

A -closed immersions is again a [\ -closed immersion. Note also that if
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jo X LY is a closed immersion of 7 -varieties then it is also a A -closed

immersion; this follow from [B,1(3.4). -

(1.7.) A remark which will be useful in what follows is that if R is any ring
on which an increasing filtration (FdR)d>0 is given such that \FIR =R and
a0

(FdR)(F R)= Fd*eR for all de > 0 and if GrpR is generated as a ring by @GrF
k<d

then R is generated as a ring by F dg.

(1.8) We will also need the following easy remark. Assume we are in the
situation of (1.1). Then for each n>1 there exists a A_—polynomial map:
Vn. X——éX which is a A—closed immersion and which is a section for the
canonical projection x"_5 X such that for any regular function féﬁ(Xn),
;‘V: x"—7( , the composition fo V e X —> X0—5 2 . 15 preeisely: the
/\-polynomial map fé(9(n)(X) corresponding  to ¥ under the identification
(ﬂ(n)(x);-(ﬂ(xn). To cheek this recall from [Bll, section 3 that by adjunction
Homu Sch(X o2 e Homp, _ ch(Xoo (xM°°) so to the canonical projection
(%= ) — X" there corresponds a morphisms of D-schemes X T (Xn)oo (which
is a sectlon for (X Jjee X * hence is a closed immersion of schemes). Finally, to
X ——A(X) there corresponds by [B ], section 3, a /\ -polynomial map

Vn . X —> X" which satisfies the desired properties.

9. CURVES WHICH DO NOT DESCEND TO Jé v

In this section we prove Theorem 1 from the Introduction. Throughout this
(and the following) section we keep notations from section 1, especially from (1.1),

(1.4), (1.5).

(2.1) LEMMA. Let X be & smooth complete curve over U of génus g>2

which does not descend to }( Then X1 is affine.

e R AR AR SIS TR TS

e



PROOF. Let 5 be the vector bundle on X defined by taking the extension

(o) o—»(ﬂ—%g——ﬁwxao

corresponding to the class i ( § )éH (w 1) A Bxt (CUX, (f ). By (1.2) and (1.3) %!
identifies with P(€ )\ P(wW x)- Since X does not descend to ¥, e C) # 0 so the
exact sequence (*) does not split. By a result of Giesekr [G], & is ample. But

P(wy) € }(ﬂp(g )(1) { so P(Wg) is ample on P(& ), hence x!is affine.

- REMARK. This geometriec situation is analogue to that in [MD]; this suggests

that a generalisation should be possible to varieties with ample cotangent bundle.

(2.2) COROLLARY. Let X be as in (2.1). Then (9(1)(}() is generated as an

/Z(,—algebra by Fd(y(l)(x) for d »0; in particular X — @C is a A-closed

d
immersion for d » 0 and \Fd(X) is contained in a Zariski closed smooth surface in
N A
™ 4. Moreover ()7(X) is generated as a A- 7l -algebra by M(l)(X) hence it is
/\ -finitely generated.
PROOF. Since (Jx1) = 0 Mx) = (Urd@M(x) is finitely generated by
£ (), (1) 924
(2.1), F- (0 () generates (9 (X) for d» 0. Let b yeensby e an U -basis of

d

Fd (9(1)(X) (where d » 0) and let b bN & pd (Q(X ) be the correspondmg elements
d

122
under the identification ‘from (1.3). Call \f’d X — ’Z(. the morphism of
QU -varieties with components (b) By (1.8) we have 9” S’ V ; since V and
de are A\- closed immersions so is ‘f We also get that Vd(X) c “( (x1) the latter
being a smooth surface (isomorphic to X ) Finally since x! is afflne, x2 is also
affme and C9(X ) is generated as an (9(X )-algebra by f(ﬂ(x ) (ef. [B ] (1.6)). By
mductlon we get that (]A(X) is generated as a A- 7l -algebra by (Q(X ) and the
Corollary is proved.

In the statement below (and in its proof) we shall use the following notation.
Let X be any smooth complete curve over U and let Ju(g)é‘ Hl(w ;(1) be its

Kodaira-Spencer class. Then we let for any m 21

*
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® (m—l))

®m 1‘

X

o -

c_ :HAw
m

be the cup product with f ( ;). Note that the target space of Cm vanishes for m > 3
so the only relevant values for m are m= 1 (in this case C1 =C from the

e Introduction) and m = 2.
(2.3) LEMMA. Let X be as in (2.1). Then (under the map from (1.4)):
1 . |
GrF(Q (X) = Ker C,

'4

in particular NI(X)=g+1—rankA(X). Assume moreover that rankA(X)=g
(equivalently Gr%@(l)(x)ﬂ), equivalently C; is an isomorphism). Then Cq is

surjective and we have
2By =
GrF (0*(X) = Ker Cy
erd 0 = B, ® d) ford> 3

PROOF. Let's come back to the notations from the proof of (2.1).

We dispose of exact sequences (d>1)
R L sl ) wx‘”d,_a 0

which give rise to exact sequences

ad

() 0 — O3 E ) — BASHEN — HAW, B9 >
d 5 d
10 pliehiey . wlEHED » 1w 29 — 0

Making d = 1 in (x) and noting that 91 : HO(WX) - Hl( CQX) is nothing but our map

C, we get using (1.2) and (1.3) that Gr%‘@(l)(X)= Ker C,. Assume now C, is an

IR

isomorphism. From the sequence (+) for d =1 we get that b/; : Hl(g ) — Hl(WX)
~ QL is an isomorphism. Making d = 2 in () and noting that we have a commutative

diagram
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C,
1w B HY (W)
\ /f
()

we see that Ker 02 = Ker J 9° On the other hand the map C composed with the trace
map H (WX) ~,") is easily identified as an element of the dual space H (w ®e.
» phw Y % ) with T (rf). Consequently 92 is surjective. Since Hl(wX® 2y= 0 we get
that Gr%, (9(1)(X) = KerC, and that Hl(Sz(g)) = 0. Finally, taking d> 3 in (%) we
easily get by induction that Hl(Sd(E))'= 0 and that Grg 0(1)(X) = HY( Wx‘x’ d) for

d>3i

(2.4) REMARK. From (2.3) one immediately obtains the formula for Nd(X)
given in‘\Th‘eorem 1. The only assertion in that Theorem which we did not yet prove is
that if X is non-hyperelliptic and of /\-rankg then (Pd isa /A-closed embedding for

d > 3. This follows from the discussion in the proof of (2.2) and from the following:

(2.5) LEMMA. Assume X is non-hyperelliptic and rank&X)=g. Then

@ (1)(X) is generated as an ?{-algebra by F3C9 (1)(X).

Proof. By (1.7) and (2.3) it is sufficient to prove that GrFfﬂ(l)(X) is
generated as an {-algebra by Ker C, b H°(w By, By Max Noether's theorem the

canonical ring @H"(w ®n) is a quotient of S(HO(LUX)) Since rankA(X) =g, the
n>0

image of ¢ Ldhye H (w )*’ HO(W ®2)° yia the injective map H (W e
e > (HO(WX) ® HO(WX)) obtained by transposing the multiplication is a
symmetric bilinear form b: Ho(wx) X HO(WX) —> ?( of maximum rankg hence
g of HO(WX) such that b(xi,xj) = ooij (Kronecker delta) for
all i,j. Identifying s(Ho(u) )) with the polynomial ring %[xl,---,x ] we see that

there exists a basis X 000X

Grg (9 (1)(X) is a quotient of the graded subalgebra R = @Rd of %[xl, ,x ] where
. a>o
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‘,‘U
I|

U

';U
u

0
{space of forms Zau % with Zaﬁ =i ?(
i

: Rd = gspace of all forms of degree d g ford > 3.

So we shall be done if we prove that R is generated as an ?é—algebra by R2 and R3.

PN e s
Put Uij- X3 Xj ERZ and vij._

u[xl,...,xg] generated by Rz because of the following identities (in which i,j,k are

X;X; €Rgy. Now R, belongs to the ZC-subalgebra of

distinct indices and if g > 4 then r is an index distinet from i,j,k)z

% Pecit o)
5 M iy Vi T Sk
.x3x= v, .V
15y ciki) - kikj
D
\ xixj—vij
xzxx = V..V,
o) k- ik
X.X.X

i KXr Vijvkr
To check that .RS belongs to the 7{-algebra generated by R2 and R4 note that

D 3 2

and note that any monomial in the x.'s of degree 5 which is not of the form xi5 is of
the form Vijm with m a monomial of degree 3. Since the submonoid of the naturals
generated by 3, 4 and 5 is the monoid of all naturals n > 3 it follows that for d 2 6,R ;

is in the algebra generated by R2 and R3 and our proof is closed.

(2.6) We close this section by making a remark on characters of Jacobians

(this subject deserves a detailed further investigation). Let X be a smooth complete

curve of genus g, A = J(X) its Jacobian and X > A the natural embedding. Then one
can investigate the restrictions on X of the A -polynomial functions on A i.e. the
map (DA(A) —_— (PA(X) and more precisely the maps 0‘“)(A) i (n)(X). The

la‘tter
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maps need not be surjective: for instance they are not for n = 1 and X " A -generic" in
; D . :
g (since by [Bll @D '\(A) =2 in this case while from Theorem 1 in our paper
4 (1)(X) has Krull dimension 2!) We leave open the problem whether
|

@A(A) =0 COA(X) is surjective. Indeed it may happen apriori that J (n)(A) —>
Eme ) (n)(X) is not surjective for some n but that any element of d (n)(X) lies in the
‘image of (9(m)(A) .—aeﬁ(m)(x) for some bigger m. Let's remark here that if X is
A—generic in (/‘Cg , the image of d(z)(A) —> (j(z)(X) is not entirely contained in

1

(9(1)(X). Indeed, by [Bl], section 6, A% = Al xL(A) if rank A (A)= g; viewing x2 as

embedded into A2 we may take a fibre Y of the projection X2 — X1

, view it as a
subset of the corresponding fibre of A2 ~—>A1 hence view Y as embecjded into L(A).
Then choose a linear form o on L(A) which is non-constant on Y. Viewing < as an
element of Xa(L(A)) = Xa(Az)c ChA(A) we see that ¢ is non-constant on the fibres

2 1

of X -fs,Xl hence its restriction to 'Xz cannot factor through X2~>X . Our

"remark" is proved.

3. CURVES WHICH DESCEND TO J(

In this section we prove Theorem 2 from the Introduction.

(3.1.) LEMMA. Let X be a smooth ‘Zd-variety which descends to

K (X = Xo ® U, X0 a J -variety). Let S* be the trivial lifting of cp from 2L

X

* y 5 T e 1.2
to X and use §° to identify X~ with V(TX/'Z(, oLt Xoe X0 5 V(TX/Q(, ) be the zero

section of the tangent bundie. Then il(Xo) = XJC h

PROOF. At the level of 7( -points Vl takes any 7{ -point u:
7 = Spee %l —> X into the pair (u,D) where D = <§° ue Der ( ﬁX,{J* (ﬂz) (we use here
the description of Hom (Spee Zl,Xl) given in [BI] (1.4)). The isomorphism
xl—, V(TX/’ZL) defined by §* is given by (u,D)|— (U,D-ue° §'*). Under this
identification Vl(u) éXO for some /Z(, -point u of X if and only if

go u=u?° 5*: (QX — 7 . One easily checks that this happen if and only if




u : Spec U — X factors through Spec /R Spec v Xo and we are done.

v

REMARK. If in (3.1) we view X as a D-scheme via §'* then Vl identifies

with [/ : X —> TX defined in [B,](3.8).

(3.3) Let's prove Theorem 2. We have Axh = dwir

= DH%AW,Z dy
d>0

gz
which gives the formula for Nd(X). The morphism

%l Spec (ﬂ(Xl) is notﬁing but the contraction of the zero section of V(TX/ZL Y
Any basis of rl CQ(XI) provides an embedding of Spec @(x1) into an affine space and

we conclude exactly as in the proof of (2.2) by using (3.1) above.

(3.4) REMARKS. 1) The image of “Fl X — U 8*1 i\ Theorem 2 in case X
is non-hyperelliptic is contained in the affine cone over the canonical curve
Xe ngl; this cone lies in A8 =7/8 and this %g lies as a hyperplane not passing
through\the origin in 2{, AR explained in (1.5).

2) We leave open the problem whether (QA(X) is A-finitely generated if X
descends to K (compare with (2.2)).

3) The list of references below has to be completed with the one appearing

in [B1].
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