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ABSTRACT

We obtain a formula for the determinant of a nonsingular matrix in terms of the

determinants of some of its principal minors in the case when a perfect elimination

bipartite graph is associated to its inverse. As a consequence we obtain the main result

of [5]. This technique permits also to obtain a counterexample to a conjecture from [5].
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INTRODUCTION

The connections between the determinant of a matrix and the graph associated to
its inverse has been pointed out in many papers from which we mention here £, [4], and
[5]. These results have applications in computer science, in solving linear systems and
other fields.

In [1], u-sing perfect Gaussian elimination it is obtained a formula for the
determinant of a nonsingular matrix having associated to its inverse a chordal graph, in
terms of the determinants of some of its principal minors. It is also proved that after a
cancellation process this formula leads to the formula from the earlier paper [4]. These
results are concerning with symmetric zero-pattern of the inverse.

Applying a graph theoretical result from [9] concerning the bi‘partite graph model

of perfect Gaussian elimination, the goal of Section 3 is to obtain a determinantal

formulae for some matrices with asymmetric zero-pattern of its inverse.

.As consequences we mention in Section 4 the main result from [5] and some
determinantal formulas from [1], [3], [5] and [7). Our technique permits to find a

counterexample to a conjecture from [5].



2. PRELIMINARIES
For all terminology and results concerning graph theory we follow here the book

[9). Let G = (V,E) be an undirected graph with vertex set V = { | ,n§ and edge set

E, a symmetric irreflexive binary relation on V. We denote by Adj(v) the adjacency set

of v, i.e. we Adj(v) iff (v,w)e E. Given a subset A< V, we define the subgraph induced

by A by Gp = (A,E,) where Ey = (x,y)& E[x ¢ A and ye A}

The complete graph is the graph with the property that every pair of distinct
vertices is adjacent. A subset A< V is a clique if it induces a complete subgraph,

A graph G is chordal (or triangulated) if every cycle of length stricly greater than

3 possesses a chor d, i.e.. an edge )ommg two nonconsecutive vertices of the cyc1e

Lt

A basic fact ([9], Th. 4.1) is that every chordal graph has a perfect vertex

elimination scheme (or perfect scheme), i.e. an ordering (T :[VI’VZ""’Vn] of the

vertices of G such that each set: : .
12:1) S, :SL vie /\cu(vk)i] % kz.
Is a cligue. If we say that a vertex v of G is simplicial when Adj(v) is a clique, thenT is

a perfect scheme iff each v, is simplicial in the induced graph G :
: i {Vk’vhl’ i ’Vn]S

We say that an undirected graph G is a graph for the matrix M = (m, j)l<l <n (in

the combinatorial symmetric sense) if for every i #j, (i,j)¢ E implies rn.j = mj. 1.4

For X % {1 ,n we denote by M(%{P ) the submatrix of M lying in ‘the rows
® and columns ?) and for X = \g by M(%) the principal submatrix subor dmate to the
index setx . ‘

If R is a nonsingular matrix and G = (V,E) is chordal and it is a gréph for R then
for everyq = [vl,v ceesV ] a perfect scheme for G, by the convention det R(¢%) = 1 in

[1]itis proved the following formula:

g <
(2.2)  detR =[] detR(fv}u s )/ detR(S,)
. k=1

with Sk defined by (2.1) and provided that the terms of the denominator are nonzero.

By a cancellation process as in [1] we obtain the determinantal formulae from [4].



We want now. to generalize the formulae (2.2) for matrices with asymmetric
zero-pattern of its inverse.

A graph G = (V,E) is called bipartite iff V= X + Y and every edge from E has an
endpoint in X and one in Y. We denote it by G = (X,Y,E). An edge e = xy of G is called

¢

bisimplicial if Adj(x) + Adj(y) induces a complete bipartite subgraph of G. Let

Lﬂg = [xlyl,xzyz, Sy ,xnyn] be a sequence of nonadjacent edgeé of the bipartité graph

G=0LY,E) with card X = card Y = n. We say that (f') is a perfect edge elmination

scheme of G if each edge x, vy, is bisimplicial in the induced graph Gg A
s k7K 1 "‘Xni*{yk""’yn%

We call the graphs admiting such a scheme as perfect elimination bipartite

- graphs.
We say that the bipartite geaph G = (X,Y,E) with X =¥ =N :‘i 152500 ,ni is a

~graph for the matrix M = (mij)1<i,j<n (in the combinatorial asymmetric sense) if every
XE X,yeY, (x,y)fvf; E implies mxy =,

In order to make no confusion we denote the edges of a bipartite graph H =
(X,Y,E) by vw assumingﬂ that v& X and we Y.

As it is mentioned in [9], Thm. 12.1, if a matrix M is associated to a perfect
elimination bipartite g;raph it can be reduced by Gaussian elimination to a matrix having
only one nonzero element on each row and column without ever changing a zero entry
(even temporarily) to a nonzero by choosing to act as pivots the elements on 'theA
positions XY Cf = [xlyl, . ,xnyn] being a perfect edge elimination scheme for G.
Throughonﬁ this paper we shall assume that arithmetric coincidence does not cause

zeros on positions we want to choose as pivots.

The purpose of this section is to obtain a formula of type (2.2) for the determinant
of nonsingular matrices having a perfect elimination bipatite graph associated to their
inverse,

Let G =(X,Y,E) be a perfect elimination bipartite graph and R a nonsingular

: ; : -1
matrix such that G is a graph for the matrix M =R~ " and [lel’ e ,xnyn] a perfect

edge elimination scheme for G. Let denote for k = Lyvvain by
&



X, ={ v,€ Aditx I > 1§
3a1) Yk :{ xje Adj(yk)h S k’&
Yo f Uy Aol > 1
Uy =1xp- e kU4 X Adj(ykﬂj > kY
such that N = {ka U Yk\) Uk = {yk'gu X 4.7

Our first result is the following:

LEMBMA 3.1. In the above conditions, after reducing the matrix M by Gaussian

elimination by pivoting on positions X[Y oo eesX WY e obtain a matrix D = \du)l/1 i
with the only nonzero elements d i k=1,...,ngiven by
1Yk : :
Sk+iy -1 \ i -]
= A\ 4 X / . r
(3.2) dxkyk = (1) (detR mkg\) My JU z )/det R x |2, ) =
£ '
Sic+tk : g
=(-1)° *(detR” Q k{& kgu\'%l//dem (U 1B
provided that the terms of denomma tors are nonzero, where & S gyl’ “I?(Q\Qi
{ Yyseenaly 17§L\\ \Vuhi>< 5{,\ 2o e eX % ;'3 yk”, ceesY) Z , arbitrary sets

ct - i % - S / (e ! E
such that ca Fu&‘:k card 2 and CdIO( " = card U I Sk and t (respective 9, and t )bur_g

the rows and columns of X Y| in_the matrix R~ ' k?Xi”w\ %yiiu Z ) (respective
| t Yool R
SERRY Uiy S0P 0.

Proof. Since Zk :{ YpreeesY, ﬁU% yjé /\dj(xk)Kj > kE, after performing partial

5 . . . .’—l B '\><ﬁ ( . S ]
Gaussian elimination in the matrix R (§Xlg ¢ kK yk?XU Zk)’ (in which we keep the
same indices as in R—l) by pivoting on the positions XpYpreeoaXy Yy We obtain a
matrix having on the rows Xppes ooXy and on the columns Yirsmea¥ g exactly one
nonzero element and since no zero element is changed in a nonzero, all elements in the
positions x, y_ with yse?yjé, Adj()&kﬁ}j > k% are zero.

Performing the same operations in the matrix R—l(f"(k‘zk) we obtain the same
matrix as before but without its X, -row and yk—column. Dividing the determinants of
these two matrices we obtain the first equality in (3.2). The second one is obtained in

the same way.

aoe
S
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THEOREM 3.2. The elements dx g e be obtained from R by the formu!as:
k’k

detR(X, | ¥ Ydet R({y, 3U X, I rx 31 o)) =

Sk+T+X|+Y
(3.3) dxkyk =(-1)
:(_1)5|<+tk+xk+)'kdet R(Jk\ Yk)/det R({yk}U Jkl{xk}U Yk).

where ng{xi<+l,...,xn} and Ockc*:{ykﬂ"“’yn} are  arbitrary sets with

card ¥ =cardX, and card cfk =cardY, .

Proof. Using the Jacobi identity (see, e.g. [10]p.21) we have for «, B2 S N;:
detR™H18) = (- 1)UdetR(C4 1Cy )/ det R

where C ¢ and Cg are the complementary sets of « and AinNandu= = j+= J

lex jep”’

the formulas (3.3) are obtained directly from (3.2).

COROLLARY 3.3. The determinant of R can be obtained as:

n
(3.4) detR=sgn / TT d
st -l

k*

with dX y given by (3.3) and -3 is the permutation in which Y} corresponds to x
k7k

EXAMPLE. Let consider

(315 a5 —uis 275
R, ol 8~ 205 =05 <15 oy with

2/8 - =lf5. 525,

L-1/5 -2/5 -7/5- 6/5

B 2 0 0 |
R0 e
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(2.2) leads to det R = det R.

In combinatorial asymmetric sense R—l is associated with the Tolloowing perfect

elimination bipartite graph:

With ‘70 =[34, 11, 22, 43] a perfect edge elimination scheme.

Choosing this pivots we have the following reduction of R“l:

e s o it - . o =
19 ig o [Haz-0 0 10 0 o "1 0 0 0
B 2ol P i 25t -0 07 <4 p 0200

i {ioen R
=10 L2 [T G050 0 0 0 | 00 1
-3k 28 el 20 |0 -1 -2 0] 0 o[~5/2jo_

In this case Xl = {1,3}. Since Xy = 3 we have for X“l the possibilities {1,2}, 11,43
and { 2,4} so »
detR({1,3} 1{1,2}))  detR({1,3}\{2,4})

347 T detR({L,3,57 1 {1,2,3}) " ~ det R({1,3,4})

_detR({1,331{2,4}) |
det R({1,3,4 {2,3,4}) "

Since Y1 = {4} and Y= 4, for- Jl we have the possibilities {1}, {2}, {3} and so:

4 - 1y "ou "34 Sl
347 7 detR({L4}T1{3,4))" " detR({54] 1{3,63) =~ ~ detR({3,45) ~

since X2 =42}, YZ = {.4} we have for d11 the following posibilities:

’ "ou .7 F34 o
11 “detR({L 25 [{1,4}) 7 detR({1,2}) " det R({1,371{4,43) ~ _
Since X, = {3}, Y, = {4} we have:
d "3y

22 7 detR({2,3}[{2,4}) " %

and finally:



) 5
d,=— =-2
r34 2

Thus det R can be obtained by com puting only 2-by-2 determinants.
k. APPLICATIONS

In this section we apply formula (3.3) to obtain the main result of [5]. We give also
a counterexample to a conjecture from [5].

It is known([9], Th. 4.8) that a graph G = (NVE), N = {1,2,...,n} is chordal iff there
oYl

are the maximal cliques of G and the edge set € (T), verifying the intersection property:

exists a tree T = (V(T), € (T)) with node set \#(T) = {Vl, V2,...,Vm}where v

(4.1) Viq Vj = V) Whenever V) lies on a path from v, to VJ. inT

In this case G is the intersection graph of T. We call T a tree for G. In general T is not
uniquely determined by G.
Consider now a fixed chordal graph G = (N,E) and T a tree for G. Consider as in [5}

: : = m-1 i ; -
an orientation D on the edges of T. There are 2 such orientations on T.

DEFINITION 4.1.

We say that a n-by-n matrix M has a nonzero-pattern allowed by the pair (T,D) if
whenever mij # 0 then either:

1) {1, &< Vi, for some k = IS T

ii) there is a path (Vk » Vi senesV) ) in D such that i eV,

1 2 p 1
To a matrix M with a nonzero-pattern allowed by the pair (T,D) we associate first

and j evk
the chordal graph G = (N,E), the intersection graph of T having the property that mij £
and mji # 0 implies (i,j) €E, and second the bipatite graph H = (X,Y,F), X = Y = N with
the property that ij €F iff one of the condition i) or ii) from Definition .1 is
satisfied.

We construct by the aid of T a perfect scheme ¢ = [VI’VZ"”’Vn] of G in the
following way: :

- choose an extremal node set VS of T which must contain a simplicial vertex vy

of G. : = = — A e o R ST i+ R b =

T



0.

If Vs\{vl} is'a maximal clique in G v} then a tree T' of G s
oy
n

i
{vz,. ‘ {vz,...,vnlf
obtained by replacing in T, Vs with VS\{VI}. Consider also D' the orientation on T!

induced by D.

- If VS\ { vl} is not maximal in G \ then T' is obtained by deleting V1 and

{vz,‘..,vn
its edge from T.

- Continue now by choosing vy from an extremal node set of T', and so on, still we

obtain ( = [VI’VZ’“"Vn]'

LEMMA 4.2, For ( constructed as above, ¥= [VIVI’VZVZ""’VnVn] is a perfect

edge elimination scheme for H.

Proof. First we prove that Vivy is bisimplicial. If 'vl vpm. V.V

&

1" €F for p,q > 2,

since v1 e_Vs and Vs is an extremal node set in T we have that VPE—;VS or vq = Vs‘

Assume vqé, VS. If vpevs it is clear Vq vp €F. Ii vp = Vt’ t # s, since vy Vp' ¢ T there

G
YD

Il

is bisimplicial. We obtain the same fact if we assume vqe\/t, t £ 5. Using now the tree

exists a path in D from V_+to V_ and since v ¢V, we have that 'v_v_ €¢F andso v, v
S t q= 4 qg p

(T',D') we obtain that VoV, is bisimplcial in H , and so on as we

2 {v2,...,vn} + {vz,...,vn} )
obtain the desired result. 7 &
In the particulary case of the graph H and perfect edge elimination scheme
constructed above, we have for each k = 1,...,n, Xk = Sk or Yk = Sk where Sk is given by
(2.1) for G and G, Xk’ Yk are given by (3.1) for H and ¥, with = Ny and Yie = Yy

By choosing in the formula (3.3), B’lk = Sk or Ok _ Sk and replacing in the formula

- (3.4), we obtain the following:
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COROLLARY 4&.3. If R is a nonsingular n-by-n matrix which inverse has a nonzero

pattern allowed by (T,D), then:

n detR({v,1US,)
k k
(4.2) detR =El det R(S,)

provided the terms in the denominator are nonzero.
After a cancellation process as in Proposition 3.5 from [1], we obtain Theorem

Sl from [ 5]as.a Cofollary of Theorem 3.2:

COROLLARY &.%. In the same condition as above:

m
T
e det R(Vk)
5 = TI det R(Vi N V})
{vi,vj§eam‘

«

It is clear that the determinant formulas from [4] and [1] for the case of
symmetric zero-pattern of the inverse are consequences of Corollary 4.4 and Corollary
4.3,

Formulas (4.2) and (4.3) permit also to obtain the maximum determinant over the
determinants of all positive completions.of a partial positive matrix associated with a
chordal graph (see [6] and [2]).

In [3], [8] and [7] it is proved that in some conditions, a partial matrix can be
uniquely completed to an invertible matrix with the property that its inverse has 0 in
the positions corresponding to the unspecified entries of the initial partial matrix.
Formulas (4.2) and (4.3) permit the computation of the detérminant of this conipletions.

We analyse now the converse question. First we recall some definitions from [5].

Let us consider the index sets Vl""’vm(; N with the property:

m
(&8 Uv =N
k=1

DEFINITION £&.5. If Vl,Vz,...,Vm & N are index sets satisfyipg (4.4) and Z&=N x N,




ST

m
we say that Z lies outside the profile Vl"“’vm it z [kul (Vk X Vk)] =

DEFINITION &.6. If ZCN x N, we say that the n-by-n matrix M has a nonzerg

pattern allowed by Z if mrs = 0 for:allir;s)eZ, Let c/“é be the set of all n-by-n matrices

with nonzero pattern allowed by Z.

DEFINITION &.7. Given a directed tree (T,D) let Z(T,D) be the set of all

(r,s)EN x N satisfying neither i) nor ii) of Definition &. .

1andiz

be distinct trees with node sets Vl""’vm' We say that Tl and T2 are equivalent if the

DEFINITION 4.8. Let Vl""’vm & N be index sets satisfying (4.4) and let T

o ot o - ! % / - AY o s % . =
two collections {Viﬂ \/j : ﬁVi,Vj}c & ('I'l)} and {ViﬂV}. : {Vi,\j je £(T,)} are 1cfent1cal.

In [5] it is conjuecture the following:

CONJECTURE 4.9. Let Vl,...,VnA)_C;N be index sets satisfying (4.4) and T a tree
with node set Vl""’vm' Let Z&N x N lie outside of the profile of Vl,m,\/m, and
assume that:

m .
(4.5) T} det R(v!): (detR)- I detR(V.VV.)
k=1 : Vpviteem oy

for all nonsingular matrices R for which R-1 e "/'Zz' Then T satisfies the intersection
property (4.1). Furthermore there is a tree T equivalent to T and an orientation D on T'
such that Z&Z(T',D).

It is proved in [5] that in this case T satisfies intersection property (4.1). We give
now a counterexample to the conjecture 4.9,

re

For n =6, consider V, = {1,2}, vV, = {2,3,4}, Vy= 250, V, = {2,5,6} and the

—

tree T : < g - ST
Ao oA / \ Mg
‘\\\TD' \}/j ’ \VE // \\i/l}))

——’

and Z = {(3,1)9(3,6),(4,1)9(#,6),(5,1),(5,3),(6,l),(6,3)}. Let consider an invertible R with

ple U?ZZ. B s e maine pattern:

e e et e MR8+
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[—x X X % X %
X X X X X X
0 X X X X 0
0 X X X X G
0 X 0 X X X
[ 0 X 0 X b3 XJ
To verify that:
(4.6) #r detR(V, ) = (detR) T det R(V.[1V.)
k=1 {vi,vj}ezm !

by the Jacobi identity is equivalent with:

det B({1,3,4,5,6})- det B({1,3,5,6} )+ det B({1,3,4,6}) =

= det B( {3,4,5,6})+ det B({ 1,5,6}) det B({1,3,6})- det B({1,3,4}) for every R€ fit.

Sinbce b31 = bl&l = b51 = b61 = 0, this relation is equivalent with:
det B({3,5,6})- det B({3,4,6}) = det B({5,6}) det B({3,6})- det B( {3,4})

Since b53 = b63 = 0, we have to prove:
b, jdet B({3,4,6}) = det B({3,6})- det B({3,4}).
This last relation is true since by b36 = b% = 0, det B({3,4,6}) = b66' B({3,4}) and

by by =Dy =0, det B({3,6}) = b, - b

3= 766
. TR : Gl
Thus (4.6) is verified for every R with R™'¢ chZ.

There exist the following two trees equivalent with T, denoted by T' and T" :

V) ‘**Qg/ V, , &
OO0 o6 0

N ;

We prove that there is no orientation’on any of trees T, T' or T" such that its set
of mandatary zero given by Definition 4.7 is included in Z.

Let assume that there exists an orientation of one of the trees such its mandatory
zero is included in Z. Since (3,5)¢ Z and (6,4)#2, we must have on the subtree

corresponding to the node set Vz, V3, V[‘ the orientation:



St

Since (k,1)eZ for k >3, the unique edge {vl,vt} inyolving Vy; must have the
orientation from Vl to Vt' So we may have the following orientations D, D' and D" on T,

T' respective T':

W—p——W) @w@f}%@
O—B—W— W)

But (1,6) € Z(T,D), (1,3} €Z(T',D') and (1,3)€ Z(T",D") so none of them is included in

Z and thus the conjecture is not true.
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