ON SIMPLE GERMS WITH NON-ISOLATED SINGULARITIES

by

A. ZAHARIA*)

April 1990

^{*)} Department of Mathematics, INCREST, Bd. Pacii 220, 79622 Bucharest, Romania.

by A. Zaharia

§1. Introduction .

Let $\mathcal{O}=\mathcal{O}_n$ denote the local ring of germs of analytic functions $f:(\mathbb{C}^n,0) \longrightarrow \mathbb{C}$ and m its maximal ideal . For an analytic germ $f \in \mathcal{O}$ we denote by J_f its Jacobi ideal , namely $J_f = \left(\frac{\partial f}{\partial z_1}, \ldots, \frac{\partial f}{\partial z_n}\right)$. For an ideal $I \subseteq \mathcal{O}$ we consider as in $\left\{8\right\}, \left\{9\right\}$:

- the primitive ideal $\int I$, defined by $\int I = \{ f \in \mathcal{O} \mid (f) + J_f \subseteq I \}$; we have $I^2 \subseteq \int I \subseteq I$;
- the group $\mathcal{D}_{\mathbb{I}}$ of local analytic isomorphisms $h:(\mathbb{C}^n,0) \longrightarrow (\mathbb{C}^n,0)$ such that $h^*(\mathbb{I})=\mathbb{I}$; it is a subgroup of the group of all germs of local analytic isomorphisms of $(\mathbb{C}^n,0)$.
- $\mathcal{D}_{\mathbb{I}}$ acts on $\int\mathbb{I}$ and we shall consider the $\mathcal{R}_{\mathbf{I}}$ (right-equivalence) relation on $\int\mathbb{I}$.

In the next section we prove the following

Theorem 1. Let I $\subseteq \mathcal{O}$ be a radical ideal defining a germ of a quasihomogeneous complete intersection in $(\mathbb{C}^n,0)$ with isolated singularity. Suppose that there exist $\mathcal{R}_{\mathbb{T}}$ -simple germs in $\int I$. Then in some coordinates (z_1,\ldots,z_n) of $(\mathbb{C}^n,0)$ we have either

- a) there exists $k \in \{1, \ldots, n\}$ such that $I=(z_1, \ldots, z_k)$, or
- b) there exists $k \in \{1, \ldots, n\}$ and a quasihomogeneous isolated singularity $g=g(z_1, \ldots, z_k) \in \mathcal{O}_k$ such that $I=(g, z_{k+1}, \ldots, z_n)$.
- A. Nemethi has proved a similar result in [7] for the case when $I=(f^S)$ where s>1 and $f\in \mathcal{O}$ is an isolated singularity. When n=3, D. Siersma has considered a similar problem for the inner modality (see [12]).

In the last section we derive the list of R_{I} -simple germs for $I=(z_1, z_2)$.

§ 2. Proof of Theorem 1.

tangent space at f to the \mathcal{R}_{T} -orbit of f is defined by

$$\mathbb{T}_{\mathbf{I}}(\mathbf{f}) = \left\{ \gamma(\mathbf{f}) \middle| \quad \gamma = \sum_{j=1}^{n} \gamma_j \frac{\partial}{\partial z_j} \quad \text{with} \quad \gamma(\mathbf{I}) \subseteq \mathbf{I} \text{ and } \gamma_j \in \mathbf{m} \text{ for } j=1,\dots,n \right\}$$
 and the I-codimension of f is

$$c_{\mathbb{I}}(f) = \dim_{\mathbb{C}} \frac{\int_{\mathbb{I}} f}{\mathbb{T}_{\mathbb{I}}(f)}$$
.

Let f_1 , ..., f_p be a minimal set of quasihomogeneous generators of I. Let q be the dimension of the C-vector space $\frac{I+m^2}{m}$ 2. If q=p, we have a) with k=q=p .

Suppose that q < p . Using a linear change of coordinates , we can assume , without altering the quasihomogeneity of f_1 , ..., f_p , that $f_j(z)=z$ +higher monomials not containing z_j , for $j=1,\ldots,q$ (we assume that the weights of the coordinates are positive) . Thus , we can consider , by substracting suitable multiples of f_1 , ... , f_q , if necessary , that f_{q+1} , ... , f_p are quasihomogeneous polynomials , not depending on \mathbf{z}_1 , ... , \mathbf{z}_q . It follows that , in a suitable system z of coordinates , the ideal I is generated by $f_1=z_1$, ..., $f_q=z_q$, f_{q+1} , ..., f_p , where f_{q+1} , ..., $f_p \in m^2$ are quasihomogeneous polynomials depending only on \mathbf{z}_{q+1} , ... , \mathbf{z}_{n} .

Since there exist $\mathcal{R}_{\mathbb{T}}$ -simple germs in $\int \mathbb{I}$, we can find $\mathbf{f} \in \int \mathbb{I}$ such that $c_{\mathrm{T}}(\mathrm{f}) = 0$. (The \mathcal{R}_{T} -simple germs are defined similarly with the simple isolated singularities; see for example [2] or [4].) From [8],[9] we have $\int I=I^2$ and we can write $f=\sum_{i=1}^p g_{ij}f_if_j$, with $g_{ij}=g_{ji}$. Let r be the rank of the matrix $(g_{ij}(0))_{i,j=1,q}$. Then r is also the rank of the Hessian matrix evaluated in 0 , $\left(\frac{\partial^2 f}{\partial z_* \partial z_*}(0)\right)_{i,j=1,n}$. As in the proof of Morse Lemma (see for example $\begin{bmatrix} 6 \end{bmatrix}$) we can obtain a system \widetilde{z} of coordinates , with $\tilde{z}_j = z_j$ for j > q, such that I is generated by $\tilde{f}_1 = \tilde{z}_1$, ..., $\tilde{f}_q = \tilde{z}_q$, $\widetilde{f}_{q+1} = f_{q+1}$, ..., $\widetilde{f}_p = f_p$ and such that

(1)
$$f=\widetilde{z}_1^2+\ldots+\widetilde{z}_r^2+\sum_{i,j=r+1}^p \widetilde{z}_{ij}\widetilde{f}_i\widetilde{f}_j$$
,

with $\widetilde{g}_{ij} = \widetilde{g}_{ji}$ and with $\widetilde{g}_{ij}\widetilde{f}_{i}\widetilde{f}_{j} \in m^{3}$. It is easy to see that for any i,j > r+1, there exists $h_{ij} = h_{ij} (\widetilde{z}_{r+1}, \dots, \widetilde{z}_{n})$ with $h_{ij} \widetilde{f}_{ij} \in m^{3}$ and such that for any $k \in \mathbb{N}$, k = 72, we have that f is R_{I} -equivalent to $z_1^2 + ... + z_r^2 + \sum_{i=r+1}^{r} h_{ij} f_i f_j + \cdots$

 $+\sum_{i,j=r+1}^{p} \varphi_{ij} f_{i} f_{j} \text{, for some } \varphi_{ij} \in (\widetilde{z}_{1}, \ldots, \widetilde{z}_{r})^{k} \text{. Since } c_{\mathbb{I}}(f) < \infty \text{, f is }$ I-finitely determined (see [8],[9]). Hence we can assume that in (1) the germs \widetilde{g}_{ij} do not depend on \widetilde{z}_{1} , ..., \widetilde{z}_{r} .

We shall write in the sequel z for \tilde{z} , f_j for \tilde{f}_j and g_{ij} for \tilde{g}_{ij} . Since $c_{\mathbb{I}}(f)=0$, we must have $T_{\mathbb{I}}(f)=\int \mathbb{I}=I^2$; we prove that this equality implies that r=q=p-1.

Let $\Theta_{\mathbb{I}} = \left\{ \eta = \sum_{j=1}^{n} \gamma_{j} \frac{\partial}{\partial z_{j}} \middle| \gamma(\mathbb{I}) \subseteq \mathbb{I} \right\}$ be the \mathcal{O} -module of logarithmic vector fields for \mathbb{I} . Since $\mathbb{I} = (f_{1}, \ldots, f_{p})$ is a reduced quasihomogeneous complete intersection in $(\mathbb{C}^{n}, 0)$ with isolated singularity, the \mathcal{O} -module $\Theta_{\mathbb{I}}$ is generated by the following vector fields (see for example [3]):

(A) $f_{1} \frac{\partial}{\partial z_{1}}$, where $i=1,\ldots,p$ and $j=1,\ldots,n$;

(B) the "trivial vector fields"

$$\frac{\partial}{\partial z_{i_{1}}} \cdots \frac{\partial}{\partial z_{i_{p+1}}}$$

$$\frac{\partial f_{1}}{\partial z_{i_{1}}} \cdots \frac{\partial f_{1}}{\partial z_{i_{p+1}}}$$

$$\frac{\partial f_{p}}{\partial z_{i_{1}}} \cdots \frac{\partial f_{p}}{\partial z_{i_{p+1}}}$$

for all (p+1)-tuples (i₁, ..., i_{p+1}) satisfying $1 \le i_1 \le i_2 \le \cdots \le i_{p+1} \le n$; (C) the Euler vector field $E = \sum_{j=1}^n w_j z_j \frac{\partial}{\partial z_j}$, where w_1 , ..., w_n are the weights of the coordinates .

It is clear that $T_{I}(f) = \Theta_{I}(f)$.

We recall that $f_j = z_j$ for $1 \leqslant j \leqslant q$ and f_{q+1} , ..., $f_p \in m^2$ do not depend on z_1 , ..., z_q . Also we recall that $f = z_1^2 + \ldots + z_r^2 + \sum_{i,j=r+1}^p g_{ij} f_i f_j$ with $g_{ij} = g_{ji}$ not depending on z_1, \ldots, z_r and with $g_{ij} = f_i f_j \in m^3$. Suppose first that r < q. Then a moment thought will convince us that for any $\gamma \in \Theta_I$, if we consider the expansion of $\gamma(f)$ in a power series, then the coefficient of z_q^2 is zero. Hence $z_q^2 \notin T_I(f) = I^2$, a contradiction. It follows that r = q.

We look now for f_{q+1}^2 , ..., f_p^2 . It is easy to see that if $\gamma \in \bigoplus_T$ is one of the generators from (A) or (B), then $\gamma(f)$ belongs to the ideal

L=m·(f_{q+1},..., f_p)²+(z₁,..., z_q)·(f_{q+1},..., f_p)+(z₁,..., z_q)². On the other hand, for any germ gem we have also (gE)(f) ∈ L. Thus $\bigoplus_{\mathbf{I}}(\mathbf{f})=\mathbf{L}+\mathbb{C}\cdot\mathbf{E}(\mathbf{f}) \text{. If p-q} \geq \text{we have the uniqueness of the weights w}_{\mathbf{q}+1}, \ldots, w_n \text{ (see for example [4]), hence f}_{\mathbf{q}+1}^2, \ldots, f_p^2 \text{ can not belong simultaneously to }\bigoplus_{\mathbf{I}}(\mathbf{f}), \text{ in contradiction with the equality }\mathbf{I}^2=\bigoplus_{\mathbf{I}}(\mathbf{f}). \text{ It follows that q+1=p}. The theorem is proved.}$

§3. The simple germs for $I=(z_1, z_2)$.

D. Siersma has found the \mathcal{R}_{I} -simple germs when $I=(z_1,\ldots,z_{n-1}) \subseteq \mathcal{O}$ in [10] and for $I=(z_1z_2,z_3,\ldots,z_n) \subseteq \mathcal{O}$ in [12]. For the case when $I=(z_1) \subseteq \mathcal{O}$, the list of \mathcal{R}_{I} -simple germs follows from the work of V. I. Arnold [1] (see for example [13]).

In the sequel we derive the list of $\mathcal{R}_{\mathbb{I}}$ -simple germs for $\mathbb{I}=(z_1\ ,z_2)$. We shall suppose that n $\not >4$ and we shall consider only germs $f\in\mathbb{I}^2$ with $j^2f=0$. (The simple germs $f\in\mathbb{I}^2$ with $j^2f\neq 0$ are suspensions of those in [13].)

We use the following classical lemma :

Lemma . Let $f_t = f + t \cdot \phi \in I^2$ be a family of germs , with $t \in \mathbb{R}$.

- a) If $\Phi\!\in\!\mathcal{T}(f_t)$ for every $t\!\in\!\mathbb{R}$, then , for any $t\!\in\!\mathbb{R}$, f_t is \mathcal{R}_I -equivalent with f_0 .
- b) If $\varphi \notin \mathcal{T}(f_t)$ for every $t \in \mathbb{R}$, then , for any $t \in \mathbb{R}$, f_t is not $\mathcal{R}_I\text{-simple}$.

If we denote the coordinates z_3 , ..., z_n by u_1 , ..., u_{n-2} and the Milnor number of an isolated singularity g by $\mathcal{M}(g)$, we have the following :

Theorem 2. Let $I=(z_1$, $z_2) \in \mathcal{O}$ and $f \in I^2$ with $j^2 f=0$. Then f is \mathcal{R}_I -simple if and only if f is \mathcal{R}_I -equivalent to a germ in the following table.

		·	
	Normal form of f	c _I (f)	Conditions
In	u ₁ z ₁ ² +u ₂ z ₂ ² +u ₃ z ₁ z ₂	3	n 7,5
I ₄	u ₁ z ² +u ₂ z ² 2	3	n=4
II	$u_1 z_1^2 + u_2 z_2^2 + z_1 z_2 \cdot g(u_3, \dots, u_{n-2})$	n-2+ M(g)	n >5 ; g∈A-D-E
III	$u_1 z_1 z_2 + u_2 z_1^2 + z_2^2 (z_2 + u_2^k + u_3^2 + \dots + u_{n-2}^2)$	k+n-2	n 7,4 ; k 7, 2
	$u_1 z_1 z_2 + u_2 z_1^2 + z_2^2 (z_2 + u_2 u_3 + u_3^k + u_4^2 + \dots + u_{n-2}^2)$	k+n-2	n 7,4 ; k 7,3
	$u_1 z_1 z_2 + u_2 z_1^2 + z_2^2 (z_2 + u_2^2 + u_3^3 + u_4^2 + \dots + u_{n-2}^2)$	n+2	n 7/4
IV	$u_1 z_1 z_2 + u_2 z_1^2 + z_2^2 (z_2^k + u_2^2 + \dots + u_{n-2}^2)$	k+n-1	n 74 ; k 72
Va	$u_1 z_1 z_2 + u_2 z_1^2 + z_2^2 (z_2^2 + u_2^3 + u_3^2 + \dots + u_{n-2}^2)$	n+3	n 7,4
Vb	$u_1 z_1 z_2 + u_3 z_1^2 + z_2^2 (z_2^2 + u_2^3 + u_3^2 + \dots + u_{n-2}^2)$	n+4	n 7, 4
VI	$u_1 z_1 z_2 + u_2 z_1^2 + z_2^2 (z_2 u_2 + u_2^k + u_3^2 + \dots + u_{n-2}^2)$	k+n-1	n7,4; k7,3
VI3	$u_1 z_1 z_2 + u_3 z_1^2 + z_2^2 (z_2 u_2 + u_2^3 + u_3^2 + \dots + u_{m-2}^2)$	n+4	n > 4

Proof. If $f \in I^2$ has $j^2 f = 0$, then $j^3 f = u_1^Q (z_1, z_2) + \dots + u_{n-2}^Q (z_1, z_2) + \dots +$

Let V be the C-vector space generated by \mathbf{Q}_1 , ..., \mathbf{Q}_{n-2} in the vector space of quadrics in \mathbf{z}_1 , \mathbf{z}_2 .

If dimV=3 then n >5 and we can find in $\mathcal{D}_{\mathbb{I}}$ a linear isomorphism of (Cⁿ,0) such that $j^3f=u_1z_1^2+u_2z_2^2+u_3z_1z_2$. It follows by [8],[9] that f is $\mathcal{R}_{\mathbb{I}}$ -equivalent with j^3f (f is a D(1,1)-type germ) and f is $\mathcal{R}_{\mathbb{I}}$ -simple.

If $\dim V \leq 1$ then f is not \mathcal{R}_{1} -simple. Namely, any neighbourhood of f contains a germ which is \mathcal{R}_{1} -equivalent to a germ $\widetilde{f}=u_{1}z_{1}z_{2}+z_{1}^{3}+z_{2}^{3}+z_{1}^{2}(u_{2}^{2}+\ldots+u_{n-2}^{2})+z_{2}^{2}\cdot \varphi(u_{2},\ldots,u_{n-2})$ where $\varphi\in\mathbb{R}^{2}$. It is easy to see that for any φ , \widetilde{f} is not \mathcal{R}_{1} -simple.

If dimV=2 then , using the classification of pencils of quadrics in z_1 , z_2 we can find in D_1 some linear isomorphisms of (\mathbb{C}^n ,0) such that j^3 is one of

the following cubics :

$$u_1 z_1^2 + u_2 z_2^2$$
; $u_1 z_1 z_2 + u_2 z_1^2$ or $u_1 z_1 z_2 + u_2 z_1^2 + z_2^3$.

When $j^3f = u_1z_1^2 + u_2z_2^2$ it follows, directly or using the technique of global transversal from [5], that f is $\mathcal{R}_{\mathbb{H}}$ -equivalent to $u_1z_1^2 + u_2z_2^2 + z_1z_2g(u_3, \ldots, u_{n-2})$. Now it is easy to see, for n > 5, that f is $\mathcal{R}_{\mathbb{H}}$ -simple if and only if g is a simple isolated singularity (g is an A-D-E singularity; see [2], or [4] for the normal forms).

If $j^3f=u_1z_1z_2+w_2z_1^2+z_2^3$, then f is $\mathcal{R}_{\mathbb{I}}$ -equivalent to $u_1z_1z_2+u_2z_1^2+z_2^2(z_2+y_2z_1^2+z_2^2)$ with $g\in \mathbb{R}^2$. It is easy to see that f is $\mathcal{R}_{\mathbb{I}}$ -simple if and only if g is a simple boundary singularity in the sense of Arnold, the boundary being $u_2=0$ (see [1]).

The most difficult case is when $j^3f=u_1z_1z_2+u_2z_1^2$. In this situation f is \mathcal{R}_{I} -equivalent to $u_1z_1z_2+u_2z_1^2+z_2^2h(z_2,u_2,\ldots,u_{n-2})$ with $h\in m^2$. If h is a simple boundary singularity with respect to $z_2=0$, we change the coordinates such that h becomes the normal form of a B-C-F singularity. Then f is \mathcal{R}_{I} -equivalent to $u_1z_1z_2+\gamma(u_2,\ldots,u_{n-2})z_1^2+z_2^2h$, with $\gamma\in m\setminus m^2$, and we obtain the germs in the table by using the lemma and loocking at $j^1\gamma$.

If h is not a simple boundary singularity then f can be deformed to a germ which is \mathcal{R}_{I} -equivalent to $\mathbf{u}_{1}\mathbf{z}_{1}\mathbf{z}_{2}+\mathbf{Y}(\mathbf{u}_{2}$, ..., $\mathbf{u}_{n-2})\mathbf{z}_{1}^{2}+\mathbf{z}_{2}^{2}\mathbf{h}(\mathbf{z}_{2}$, \mathbf{u}_{2} , ..., $\mathbf{u}_{n-2})$ where $\mathbf{y} \in \mathbf{m} \setminus \mathbf{m}^{2}$ and h is one of the following unimodal boundary singularities (see [21]):

F_{1,0}:
$$z_2^3 + az_2 u_2^2 + u_2^3 + u_3^2 + \dots + u_{n-2}^2$$
, $4a^3 + 27 \neq 0$
 $K_{4,2}$: $z_2^2 + az_2 u_2^2 + u_2^4 + u_3^2 + \dots + u_{n-2}^2$, $a^2 \neq 4$
or L_6 : $z_2 u_2^2 + az_2 u_3^2 + u_2^2 u_3^2 + u_3^2 + u_4^2 + \dots + u_{n-2}^2$.

Using the lemma with $\zeta(f)$ replaced by $\zeta(f)+(u_2$, ..., $u_{n-2})^3(z_1)^2$ we obtain that f is not R_I -simple .

References

- 1 V. I. Arnold , Critical points of functions on a manifold with boundary , the simple Lie groups B_k , C_k and F_4 and singularities of evolutes . Uspekhi Matematicheskykh Nauk 33:5 (1978) , p. 91-105 .
- 2 V. I. Arnold , S. M. Gusein-Zade , A. N. Varchenko , Singularities of Pifferentiable Maps I , Monograph Math. 82 (Birkhäuser , Boston-Basel-

- Stuttgart , 1985) .
- J. W. Bruce, R. M. Roberts, Critical points of functions on analytic varieties, Topology 27:1 (1988), p. 57-90.
- 4 A. Dimca, Topics on real and complex singularities, Vieweg Verlag
 Braunschweig (1987).
- 5 A. Dimca, C. G. Gibson, Classification of equidimensional contact unimodular map germs, Mathematica Scandinavica 56:1 (1985), p. 15-28.
- Ann. of Math. Studies 51, Grant Morse Theory Princeton University Press (1963).
- 7 A. Némethi, The Milnor fibre and the zeta function of the singularities of type f=P(h,g), to appear in Compositio Math.
- 8 G. R. Pellikaan , Hypersurfaces singularities and resolutions of Jacobi modules , Thesis , Rijksuniversiteit Utrecht , 1985 .
- 9 G. R. Pellikaan, Finite determinacy of functions with non-isolated singularities, Proc. London Math. Soc. 57:3 (1988), p. 357-382.
- 10 D. Siersma, Isolated line singularities, Proceedings of Symposia in Pure Mathematics Volume 40 (1983), Part 2, p. 485-496.
- D. Siersma , Hypersurfaces with singular locus a plane curve and transversal type ${\rm A}_1$, Singularities Banach Center Publications , Volume 20 , PWN-Polish Scientific Publishers Warsaw (1988) .
- 12 D. Siersma , Quasihomogeneous singularities with transversal type A ,
 Preprint 452 , Rijksuniversiteit Utrecht (1987) .
- 13 A. Zaharia, Sur une classe de singularités non-isolées, to appear in Rev. Roum. Math. Pures Appl.
- Alexandru Zaharia , Department of Mathematics , INCREST , Bd. Păcii 220 , 79622 Bucharest , ROMANIA