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APPROXIMATION FOR GOURSAT PROBLEM OF

HYPERBOLIC CONTROLLED STOCHASTIC DIFFERENTIAL EQUATIONS
A
by C. Varsan

1. Introduction
% The problem we are going to consider is intimately related to those
studied in [1] and [2] for controlled diffusion equationé. What is shown in [1] and [2]
regarding the approximation can be resumed to the following. When the drift part
in a controlled diffusion equation depends linearly on control functions then the
solution is not continuous with respect to control functions using the uniform
convergence topology and as a measure of this discontinuity any term from a Lie
algebra can be added to the limiting equation. A similar fact appears for hyperbolic
~controlled stochastic differential equation but this time the previous Lie algebra
has to be replaced by an algebra generated using a symmetric bracket and it is
determined by th¢ even dimension of the "time" parameter' 1= (tl,tz). As in
one-dimensional case (see [2]) it can be useful for getting the existence of bounded
or periodic solutions. It is our conviction that dealing with integral equations of
Volterra type for which the "time" parameter has an odd dimension we refind the
Lie algebra obtained in the one dimensional case and when the dimension is even

we get correpondingly the algebra in the two dimensional case.

2. Formulation of the problem and main result
In short the problem can be stated as follows.
Having given a Goursat problem for a nonlinear second order hyperbolic system

&
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o n o el 2
Gy falbth XER', 1= 19¢R, KR,

|

x(eh,0) = x (1D, x0,19) = x,(t%), x,(0) = x,(0)




we are interested in the behaviour of the solution when the right hand side fo is
perturbed by a control part 1% uj(t)gj(t,x), g;eR", uj&R.

Generally the dependence of the solution x(-) on the continuous function
q(-) = (LTI(-),...,'Jm(-)) on a fixed compact rectagle [0,T], T = (TI,TZ), is not
continuous in the topology of uniform convergence. A measure of this discontinuity
is  determined by the fact that the  bracket {gi,gj}(t,x) M
= ((}gilax)gj + (9 gj/Bx)gi)(t,x), te [0,T], xe R", is not vanishing and any linear
combination of such brackets added to the original system generate a solution x()

which is approximated uniformly on [0,T] by a sequence of solutions xh(-),'h >0, of

C m .
géf;;Z: s = U?(t)gi(t,X), x"(t1,0) - xl(tl), x"(0,t2) = x2(t2)

~ t 0&5
where lim . Tax lfﬁ?(t)(: 0, 1 = dysssymi ‘u.L({'J:: g u; () .

h»0 t&[0,T] !

Any hyperbolic system of the form
2 2 2082 i -, s w1
(3°S/9t°) - 1/e“(d°S/ 2% )+A1(as/’azz) +A(2S/21) =1 (1,%,5), S(t,5)€R,

with commuting matrices A A (AiAZ =A_A,) can be reduced by a transfor-

I 21
) _ 1.2 1.2
mation (t,%,5(t,B)) - (t7,t%, S(t*,t%)) to the above form.

It will appear as a special case in a Goursat problem for a stochastic
hyperbolic system which we are going to state as follows.
>4 _ ; A
Denote C}r), *‘(RZ x R") the space consisting of continuous functions h(t,x)

which are piecewice r-differentiable with respect to t and s-differentiable with

respect to x which are bounded along with the assumed partial derivatives.

: . i 2y i
We are given a two parameter Wiener process w(t), t = (tl,t ) thy 0,
he -
Lo By 1 ; ;
e oy Pr, and/ differentiable functions
¢

o byl Do o5
£&C 'R xRY) i =0,1,...,d, gjﬁ:Cgs ®% xR, j = 1,00,

w(t)@Rd,fon the probability spe;ce\\t

Write S(gl,...,gm) for the algebra over reals generated by B8, using
the symmetric bracket

{gi’gjgf = ((Qgi/?ﬁx)gj + (:f}‘gj/ ;}x)gi)(t,x), x&R", t > 0.



Eor any g(t,x) = ZV (t,x)h (t,x),  where hjé S(gl,...,g ) and

vjéc (R xR ) there exists a unique solution x(t,¢)), of the Goursat problem

which is continuous in t for ggch w , and measurable in ¢J for each t, such

that
1) x(t) = xl(tl) + xz(tz) =X+ fz [fo(s,x(s)) + g(s,x(s))]ds +
d t
=z SS f.(s; x(s))w (ds); t= (tl,tz)z 0, s= (sl,sz)
I-o

- where xl(-), xz(-)é CI(R+), xl(O) = x2(0) =X and

E max lx(t lu))) < const.,
tel0,T

where "E" stands for expectation.

Along with (1) we consider the system
2) T A ¢ Tt st il el
y(t) = x; + X, - X # So‘ ol8y(s +T uj s,y(s gj s,y(s))ds +

d ot
g 1 £.(s,y(s)w,(ds).
0

ooy

3,3

where {., By X (), (-), are the given functions and u; eCQ (R2 x R") are to be

found such that the solution in (2) to approximate the solution x(-) in (1).

Theorem 2.

Let x(*) be the solution in (1). Then there exists Fu:‘ ‘Th>ow: Cg’B(RZ x R™

b

j = l,..,m, such that the corresponding solution xh(*) in (2) fulfils

E %nax ]x (t - x(t)s e max(hl,hz),
el

where I = [O,Tl] % [O,Tz], T' >0 and the constant C depends on T = (Tl,TZ), but

doesn't depend on h = {h ]',hz).

Remark 1.
The boundedness of the functions fi’ gj in the hypothesis of the Theorem 2

is not essential. It can be relaxed assuming a linear growth condition in x uniformly

S i b e it
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with respect to t€ I, and the ‘conclusion is replaced by there exists a sequerice

ih } L0 such that limE max{x (t) - x(t)l = 0 where x (t)—x (t), but we
n-»a0

assume additionally that l(’b g /ax X, x)l( c/(1 +1xp), k> 2, L= lwsm, 1el0,T]

x &R,

3.' Some auxiliary results and proof of Theorem 2

As a fllrst step.in provmg Theorem 2 we consider m = 2. We are gwen
féC (R x R"), g,geC# Q(R xR™), i=0,1,.,d, and a two parameter Wiener
process w(t)€ RS,

Let TI,T2 >0 be fixed and hi = Ti/N, N natural. Define p(s,h) =

= pl(sl,hl)pz(sz,hz), q(s,h) = ql(sl,hl)qz(sz,hz) where pi(sl,hl) = pi((sl - kh')/nY,

'qi(s‘,hl) g qi((s,1 - kh)/h'), for s' € [kh',(ke Dh'], k = 0,1,...,N-1, and p,,q; : [0,1]—=R

are polynomials fulfilling

1
p,0) = p,(1) = q;,(0) = q;(1) = 0, andjp(z)dz —jq(ﬁ = %
1
fp(r)drfq('c)da =154 =,2
The corresponding equations are the following
3) X(©) = x,(t) + x,(t) - x +j_f{g,§f(sx Nds + L (05t;x6))

1) = x, ) (19 - 5t ;;‘[pe,h)g(s,xh(s)) + qls, s, x (s)Xds + oL (05155)),
0

where

, t dt
5) t'C('EO;t;X(")) ={f fo(s,x(s))ds +2 ST 1. (s x(s )w (ds).
LS -

Theorem 1.

Let x(-) and xh(-) be fulfilling (3) and respectively (4). Then

E ma;\ gx(t) - xh(‘c)}z £ max(hl,hz), = [O,Tl] X [O,TZ].
te

In order to prove this result we need the following lemmas. Denote

0 x = x(h) - x(0,h%) - x(h!,0) + x(0)

d h
6) =5 § Y [plty (3 &/ 2 x)(0,%(0) (1,2 873 )(0,x(0))] -
1 0 .

SRR 220 Lt S )
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L = h h F
G O I 0D - o (w0,

Lemma l.

Let x(-) and xh(-) be fulfilling (3) and respectively (4). Then

h h L2
Doox'moox =x(h) - x () =h"h"R + M,

1 122

E max |x(t) - x (t)I2 £ Ch
teI

where I = [0,h ] X [O,hzl

e E[M l < Clhh

Proof. Denote xh(-) = y(*) and using (3) and {4) we get.

h.
0,y = f] Iptug(ty() + at mft,ydt + o O3hsye)

h
OooX = /OS {g;,gg(t,x(t))dt 4 5{(0;]’1;)((’))

and developing g and pit follows

: h
7) U, = ({ [p(t,hglt,y() + ate,nf ley(0ldt =
0

h ‘ g
= 1f (plt,g2(0) + qlt,(O)et) - 20Dt +

h
b3 ]) (plt,hg () + qlt,I((ON(z(t) - 2(ON(z() - 2(0))d +
0 ‘

%, E[R}? < chlh

L2

h
_1_,; (p(t,h)g"(z(0)) + qlt,hI"(z(ONNz(t) ~ z(0))(z(t) - z(0))(z(t) - z(0))dt +
30
! h( (t,h)g¥(z (1) + g l/)Iﬁ? ENz(t) = z(0))..u(2(t) - 2(0))dt =
l*,lolptﬂg z@t + qlt,h z@t/\zt-«z weelZIT) = 2 o=

I e s "
=gy ‘5,*3*"4;‘ *71 R1
where z(t) = (t,y(t)), g' = ¢ 8/2 2, ,g = E’ /“}z

On the other hand
8  Eyw-x0f < C(h]-hz)"’7 (V) t[0,h'] x [0,h%]

and using (3).and (8) we write T, in (7) as




. t .
9) f p(t,h)dt || qlz ,h)g(z(ONf(z(0)dx +
0 : )
h ; ma Yupp
JJ qlt,h)dt J\p(’& »h)1"(z(0)g(z(0))d T + M +h'hR
0 0 .
~ where
AL m h 13
10) Mll = ,_TJOS [p(t,h)g'(z(0)) + q(t,h)lv(z(O))]‘% fi(s,y(s))wi(ds)
and |
g ~
1 ERPgontn?, gM) 17 ccn'nd?,
Since
120 E|x@® - y@f < hlhz)‘* () t<[o,n' 1 x [0,h2],
we rewrite T1 in (9) as
. h p we AL l 2 —
13) L= el fx(o)dt + M} + h'h%R
A : 11
where E[R| 2 4 < C(h h'n?).
Using (8) in (7) we obtain
1) R, =h'n’R, ERI<chln?
and finally (7) can be written as
h ) | 2N "
15) U, =4\ ¢ gl (ty(t)dt + h"h" R, + M
I )O Lo 1 11
where EiRﬂi ch'h? and F\Tﬁ“ is defined in (10).
Using (15) and (12) we get
16) x(h) - y(h) = i3 _x- 11 y=h'n%R + M
SN e 007 T ; 11
where M 11 is defined in (6) and
s h /
R=R, +/’0, (fo(t,x(t)) - fo(t,y(t)))dt.
Denote \; (t) = E max|x(7) - y(a )/

o <1
and using (12) in (3) and (4) it follows

1) Wechind ) 1€ o, x 0%




=i

1h2)2 1

2 ' 3
Combining (16) and({7) we get E[M“I < C(h : EIRIZS ch!h? and the proof is

complete. s
Denote O o = x(2h1,h2) - x(hl,hz) - x(2h1,0) + x(hl,O) : t) = (hl,O),
t, = (zn',h%) Kot e

d t? +2
18) My =2 Jff [t y() - £(6x(t)]w (dt)+ U [p(t,h)g!(2(t ) +
i= tl tl
t
+ qlt,hz(e D] £,(z(s))w,(ds))
t
1

Lemma 2.
[
Let xh(~) and x(+) be fulfilling (3) and respectively (4).

Then E max |x(1) - x(0]% < ch!h? + (h'h9D), 1= n}, 2011 x 0,07
tel

i Dlox - x s IR e ) T (LT S R A

e =
=h'hR + M,

where E[RF < ch'n? Elm, |? < ch'nH%

Proof.
o f
[TyoY = ‘}t, [p(t,h)g(t,y(t) + qt,h)§t, y(t)]dt + e[(’fl;'fz 3 y()
1
t
£, o= }tf{g,é}(’(t x(©)dt + (131, 5 XCD.

1
Similarly as in Lemma 1 (see (7)) we get
19) U, = .1 (pg + ql)dt - ("l(c 4 [p('t,h)g‘(Z('tl)) + q(t,h)i'(z('tl))](z(t) - z(h))dt +
L
! 1

g 1 |
+512+-§£T3+~@1l}: 11+R1

where z(0) in (7) is repaced by z(tj) = ('tl,y(“ci))=
Using (3} we write

Fd e 2 .].
20) y(t) - y(t)) = y(tl,tZ) - y\hl,t7) % y(hl,t ) - y(h™,0) =

1 )
- xl(t'l') 3 xl(hl) + y(hl,tz) - y(h.l,O) % // (pg + q‘%d? + e«ff(‘tl;“t 5 y())

4
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tehl2n!] x [0,h2]

20 x@h-x0h = eled, vomlaly

: 1 2

yh',t2) - yh',0) = x,(t%) - x,0) + j lbpes gl i+ 5 0 liL s gl
\ — ,

=

= (')
whefe’z fulfils E )"z(r),éi ccr,

Using (21) in (29) we obtain

22) E[y() - y(t)|® < cth'n?), t e[h!,2n17 x [0,h?]

and Rl in (19) can be rewritten as

23) R, =h"n’R where E[R]? < Ch'h?.
For '1"‘1 we repeat the computation in Lemma 1 getting
. 1, 25
20) T, = P biexide + h'hR + &
: | e P37 21
|
where E|R|2 < ch!h?, E[if, 2 < cth'hH? and :
~ d tz t .
25) M, =2 ] [p(t,h)g‘(z(tl)) + q(t,h)i'(Z(tl))] I fi(z(t))wi(dt).
1% t
1 |
Using (23) and (24) in (19) it follows
o
26) . 1oY )) g, Lo (t,x(t)dt + ’\(tl tz,y( )) +h h R & MZI
and l
27)  Ldygy - Dhygx = h'R2R 4+ M o [ G stx@) - (1 p5t590)
2 ot = et s Vig ol VOGRS g

where I:(l\ /F\s )MO (E(X/Y) stands for conditioned expa—zctatior:;)"fé estimate

/\ (tl;tz;y(o)) - (tl;tz;x(«’)) is necessary to evaluate E _tmalx bylt): - x(t)iz.
£ LI

By definition
' t

28)  y(t) - x(®) = (yh,tD) - x(h 1) + [ Tpg + adds -
tl ,
.t r > ”~
- t j g,i (s, x(s))ds + (4 ('tl;t;y(»)) - (tI;t;x(-))) = L1 + L2 + LB
The

and using Lemma | we have



G =

29)  Emax|L |’ <Chlhd), 1=10,n'1x 10,07
. el

Similarly we get

300 Emax |L[? <chhd? 1=nk2nt1x 10,07
. N te[ )
3)  EmaxLy)® <h'hPE max (o) - xF, 120,20 1x [0,h%

tel tel
On the other hand, from (28) via (29)-(31) we obtain
32 Emax [y - x)]” <chlh? + (1'h9P), 121}, 201 ) x 10,0,

tel
and f‘inally

' 1,2
33) Oy - Dlox:h h R+MZL
2 1,2 2 1. 2.2
where E[R|” < C(h'h%), EM, /M) =0, E[M, [ < Ch'h%)
A
34) M, =M, ?ig [fi(t,y(tp - fL(t,i,x(t))]wi(dt).
]
The proof is complete.
Denote
35)  Opx = Il + DL - xtinh,h?) - x(@ + DhY,00 + xtin!,0)
| d ti42 (7 k
; - a 4 1 . 1 ? r /
36) Mi-e-l,l % 2. ff [p(t,h)g(z(tnl)) + q(t,h)} (z(ti+1))]][1j(z(s))\vj\c!s) +
1+ it
2 Figp '
+ 2 ff [£.(z(1) - £.(t,x(t)Iw.(dt)
=1t ) “d )

i+1

where (G + Dh,00 = 1, (G + 20107 = 1, 2(0) = (t,y(0)).

It holds

Lemma 3.

£
Let x'(+) and x(-) be fulfilling (3) and (4). Then

h o Ry oyl 2 R T N
[jj}”l’ox = ui+lsOX =x ((i+ 2h",h7) - x((i + 2h",h") - (L}mx - D’i,()y) =

= h'h%R + M.
i+1,1
2 < cthth? + anhAnd%

E max \xh(t%x(t) }

tel



where E{R} <Ch t? P EM ) /M ) =0, = L2k

J <chln®? 1=+ Dht, G + 2011 x 0,02
Denote |
| C3x = x(h'46 + Dh) - x(0,(i + DY) - x(hL,ih?) + x(0,in).
Along with Lemma 3 it holds
Lemma #.

Let x() and x() be fulfilling (3) and (4). Then

= A o i LG+ 22 - xthl G+ 202 - (Do’ixh - g ) =

= hlth + M, . ‘
1,i+2

E ;nalx\xh(t) P < cin'n? + aLand)), 1= 10,04 x 06 + DhZG + 20
£ 1,22

where E[R)% < ch'h?, B, . ) < cthln®?, E(M) 1, /M) ) =0.
i = 1,1 15}

In proving Lemmas 3 and 4 we need
Lemma 5

It holds ?

{ g [pls, Mg, v(5) + als,1fls,y(Mds =7 h2), Efy ©F ccr , h=ChihD)
0k h

Pf*ac# Coa (i}/) tz{} [khzg (zi +1)E’\?]9 t?@_ [O,T}-L k = O,I;”'yN "" 1.

Let {%f@éi(i 4 l)hl] for some i €{0,1,...,N - 1} and we write

gt 42 ‘ h L2 i 'é
S g (pg + ql)d pg + ql)d (pv+qldqvi+11
0 kn? O 'Iy\hz gh !/,

-~

. . DT . ‘ 2 . .
It is easily seen that Il =7 (hjh ) and we shall prove that I:fz (h™), For i=1, it

requires I = sz (h2) for k = 0,1,...,N-1. We have

1 42 1,2 o
h h 1 . 1
Lk Z(Pg + ql)ds = j j <pls;h)f g2(2(0))ds + gls,h){ 1 (z(e ))de,
kh kh? 0 0
v o= o (sl, y(s) - y(O,sz)) > ds,

where z = (sl,y), 21(6‘) ={e 51,52,\/(0,52) + 2 (y(s) - y(o ,32)), and
12 |
(pg + q)dt + L(0,5 3 y()) =

O S D
O

y(s) - y(D,sz) = xl{sl) - xl(o) +

: ¥ i 2
. W (h') + )’ ‘; (pg + ql)dt, sZ» Lkhz, i v]



\We have to prove that
2

h oA
(pg + qldt = kh™ % (h7), (#) k = 1,2,...,N-1

O X

3
‘ko

For k = 1, it is obvious that U, = h VL(h ) and assuming that U, _, = (k -1)h 7(11{)

. we get
U, =k - Dh%y (b)) v SSI Pﬁhz ( 1)
=(k - 1)h + : pg + gl)dt
S5 [ 0 (k= Dh? _
and since tl tz 150
y(@)-y(t!, (k = Dh?) = xz(tz) - x,((k S DhA) (% V2 (pg + qds + { Co,d-1) 4% G5 y0)=
- -0 ((k-Dh

= ’Z(’/z%.??

we can rewrite the second term in Uk as I for i = 1, obtaining that

1 2
§ ?h (pg + ql)dt = h2n(hh)?)
pg + ql)dt =
0 (k-—l)hz yz

k

Therefore:l] = khzlz(hl), K =0,1,...,N=1, and y(s) - y(0,52) = 7 (h!) which implies
I=7 (hz) fori= 1. Assumel = ’l(h?‘) up to i-1 and we shall prove it for i

By definition

i-1 (+Dh" t -1
beg Lo f z(pg;ql)ds:"S~ T
i=0 jh kh i=0

t% (j+Dh 1 1 1 sun A
ki 1;21{1 <p(s,h>g g, (z(6))de + qls, h)é (z,(8 )9 , (s - jh, ;f[»ﬂ%j(ém L
<N jh

N

where z = (Sl,y), 23(:9) = [jhl' + 8 (s1 - jhl‘),sz, y(jhl,sz) + 6 (y(s) - y(jh

and we have

y(s) - (Jh s%) = yts L e Y(N ,<h 4 5 f pg + gl)dt + L (Gh khzgs;y(")) =
jh Ph

)
- yshkhd) - yGnt ke + 7 ('),

2 1
kh™ s
y(sl,kh7) ~ y(;h] /\h?, = % ( ) 5 (jh ) j I i (pg + gl)dt 4-‘!((jh1,0;sl,kh2;y(=))
0 jh” .

for s'e [jh!, G+ Dh'), 5% [kh,t”]

“To complete the proof itrequires . - -



which is implied by -

(m+1)h 1
1)dt = h? ¥(h i
n{z th (Pg+q) " el

We rewrite Rm as

(m+1)h2 | 1

- jh [, <otee e (6)d6 + althf Iz (0 oo (7 - mbZy(0) -
jh™ mh 0 0

—y(t!,mh?) > dt

where
_ fl t2
1 Z o el Z ; .

y(t) - y(t',mh®) = y(jh",t%) - y(jh",mh") + :Jl [ 5 (pg + ql)ds +[(Jh1,1h2;t;y(°))
jh™ mh

and
]hl TZ

h it ) - (Jhl,mhz) = x7(t2) = xz(mhz) # 4 f (?g + ql)ds + ,((o,mhz;jhl’tz;y(-))_
2 0

In the ladequeation j < i-1, and the induction argument insures that

y(h't9) - yohhmh?) = (6D for any m = 0,1,epkel, k= lyunN-1 and
y(t) - y(tl,mhz) = ’l (hz), R = !125[( 1) The proof is complete.

i‘Vith re‘ijijf;\ecf to the proof of Lemmas 3 and 4 the foliowing remark is in
order.

Remark 2.

In the Lemmas 1-4 the following estimaté&

. b 2
f 2 ha 5 - - NVWldY = T 4+ = T =T =
]jhl j() ‘[p(t,n)gj(t,y(t)) + g, It y(e)]dt = 1 B i 3§1 3+ 4? L

Z
G+D)h! {;1 f (t,x(£)dt + hTh%R + M,

il
)

T O i
is based on‘the presence of y(t) ~ y(ih™,0) in the terms Tlf“"qu.‘ Since

y(t) - y(in',0 = y(t! 19 - y(ih]‘,tZ) + yih,t9 - yin',0) = U + U,
and
U1 = y(t) - y(ihl,'tz) = Xl<‘t

/(m ,0;t5y(=))

L j (pg + ql)(s,y(s))ds
m ) +
Jh

Jh

K t
%) - x. (O +f f (pg + ql)(s,y(s)ds +
00 .

U2 = y(ihl,tz) yih ,O)

/(O sih ,t ,y *)), té[ihl,(i + l)hl] X [O,hz]°




—{3 -

We notice that Ul insures the passing to the term {g,l} while U2 will give a term

L2

of the type h'n?R, with EJR|% < C(h'h?).

When U2 is not combined with Ul in Tl’TZ and T3 its contribution doesn't
; \ e
count and in Tl‘t using Lemma 5 it gives a term of the form C(hz)2 "_J(,hlhzié'gi"zC }N)L)I

Denote x (-) = y(-), z(t) = (t,y(1)), tij = (ih ,jh ), and

Qs PSR DhY, G + DR?) - xtihl G + Dh?) - x(G + DhY,jRD) + xin,ih?d)

d
i+1,j+1
e kijfts [p(t, g ate; ) + qlt, et ))Jjé £, (2(s))w, (ds) +
i]

LI () - £ ()] (a0
+ .t55 (2 = £, (6 x(t)]w,
1}
Lemma 6.
Let xh(°) x(-) be fulfilling (3) and (4). Then

1y 2

D ~[:] x,th+M i l,jrl

F max lx (t) - x(‘t)[2 < Ch? h"), Emaxx(t) - x(t )l £ chln?

te ] e

where | = [m (i + Dh ]x [lh s (j + Dh ] E R{ < Ch 'h? and it holds E(M /iij Mlk) = 0
either 1 € ,or kK< i.

Prooi.

For j=0, and i=0, the Lemma 6 is contained in Lemma 3, and
respectively in Lemma 4. Let ’fhe' Lemma 6 be fulfilled for (i,j).

We have to prove the following
1,2

_ D i 1
x=h h"R + Mi+2d< (¥Y) k

7

y - LI

E:%ul k i+l,k

Emc\ay( t) - ("L‘)%2 < Chlhz, where I = [(i + l)hl, (i + 2)%‘}1] X [khz,(knti)h?']
tel ‘

EIR| < Ch'h?, Efm, ?kgr\ )=0, () Lk fulfilling either 1<i+2, or

By definition
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2)_

39) L y= s 2hY, G+ WD) - (G o+ DR G+ 962) = ¥ £ 2nin?) o

1

eyl + DhLknD) = (2 (g + aldt +{ G+ DR, kb e 20, (o DA% 5 96D
1
I

t
0k o B =5t32"<g,1}(s,x(s))ds e[+ Dhtikn® 5 @+ 20t DhZ 5 x6)
I

where t; = ((i + DR, kn?), 1, = (G Ml k + DhD), and

t t '
41) U= 52 (pg + qldt g [p(t,h)g'(z(t ) + qlt,h1'(z(t NX=(t) - z{t )dt +
Y % o '
t
3 47 Tl Wg"(a(t ) + gttt DIz(e) - 2(t)), 2() - 2(t)) +
t
: |
. |
+ 37 Dol g (ate ) + qemIMGate Wzte) - 2(t)), 20) - 2(t)), 2(6) - 2t Dt +
i
1

t

+ %}gjz [p(t;h)g (z () + q(t,h)] (2 (8 DIz(t) - 2(t));eeey 2(0) - 2(t)))dt =
1

:‘T1+T2+T3+TQ

where z(t) = (t,y(t))

y(8) - ylt) = y(t' 1) - (o DRLED) + y(G + D) - G+ DR kD) = Uy U,
~and l 1
U, = x, (1) - x, (@ Des + o (G + DL, 05596))
Jp=x () - x 1+_.1 1f pg + glids + ¢ (i + 1Dh7,0;t;y()
(sih” <0
SR bt p L
U, = xz( g T 5 (kn + 6{ "kh*(Fg + ql)ds + el (0,kh ,(i + 1Ih"x ,y( )

for t [t ,t,]=[(i + phl G+ 281 x [khZ, e+ U070

Using Lemma 5 it follows that UI and U2 can be rewritten as
_ (Y - 2)
42) U = -{kh/a U, = t’) (h

and combining (42) with the transformation of T, in (41) as in Lemma 1 (see (7) and

(15)) we get
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43) U= tf 17 (6, x(®)dt + h'h?R + M
\m’z iy Tt
Ty e Sl 1,2)2
ElRI=<chin, ELMtl’t\ <Chh9),

Adding (40) and (43) we get finally

1.2
Ly) CIHlky [:] KX = th+M $2,K

E max|y(t) - xm{ < ch'h?, BR)Z < ch
tel

and'the proof is complete.

1,2
h, where I =[t,t.],

Now we are in position to prove Theorem 1. Denote xh(') = yle)

Proof of Theorem 1.

Pt L O R LN h - Hyt =fk e kb 2y
I
we have
- m 3 2
y(t) - x(t) = .“““?“ ik
15@,[;92
N, -1,N -1 -
max }y(i‘) - x(t))z 5_} «:li_j_j;z ..y - E}..xi{‘z
teH 125550 ij
and using Lemma 6 it follows
9 1 -1 S
43) (E maxly(t) - x(‘t)‘ 4 J:F;}::l; '::‘;f’ (1‘;‘; ¥ -Q 57; L€ ﬁh
teH Ul20,550 |

oA : ; o e b 2% 2
Denote F(r) a random variable which fulfils (E}g::"{r)e‘ ¥ L Cr F= max(hl,h ).

: |
Let té‘li]. = [ih 0 =+ L}hl] X [jhz,(j» + l)hZ]. By definition of solution we

have
2 ; /
le) y(t) = x () + x,(t7) = x  +{}(pg + qhdt +¢{ (055y())
0

and

T . ih! }2 ¢! t/z )

U, = 5(}; (pg + gl)ds = g S g + ads + [ [ (pg+al)ds + ] (pg + ql)dt
gh ih'o 0

‘where tij = (ihl,jhz)-
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Using Lemma 5 and (43) we get
4s) U =2 ye,) - x (i) - xz(t.z) e x —,[(O;f..;y(-)) .

= )+ 10 ¢ty - x, ) = xyfe0) + % o Oty =

e
= 2’5 (;/; ) + X (r) +fé”{g,l§(s.,x(s))ds + c,((O;tij;x(-)) - O((O;tij;y('))
Combining (44) and (45) it follows
1) yt) - x@® = YD + 280 +o 05ty )L (05150 +

% O[(O;tij;x(')) ~o((0§tij§)’(°))

and finally

? o
47) E max ]y(t) - y(t)/ < C}r & ngE max | y(t) - x(t)!zds
tel0, 7l 0 tef0,s]

The inequality (47) implies the same conclusion as in the one dimensional case (see
remark below)

48) s max }y(‘t) - y(t){ £ CEy. Bis max(h},h7)
te[0,T]

and the proof is complete.

Remark 3.
Denote E max Iy(f) - x(t )1 —5)0 %) and assume
te [O 4
Lf/3> £ i"‘(/ % Lﬁ Lt } ) e [0,T], where &,L > 0.

Let V() be the unique solution of

z

v () ij v(t)dt, ©¢[0,T]
and it fulfils the following estimate /7:'/' )< Cl &.

) t& [0,T], where Q’ > 0 is a constant.

Denote u(t) = (£ (t) - ¥t), and we have

s
u(s) <L ff u(t)dt or
0



B

u(s) =L jj’ u(t)dt + \Q(s), where \{}(t) <0, te[0,T],
is a fixed continugus functions. |

The solution of the last equation is un'ique- and by using the standard
argument of the successive approximations we get u(t)=lim 'U»n(t), where
uo(t) = y(t), and un(t) <0n >0, te[0,T], which shows thét u(t) = \,0n(t) - ¥'(t) <0 and
£ () < VW <C K (#) e [0,T)

The result in Theorem 1 will play the main role in proving theorem 2. It is

neccessary also to be alble to approximate an equation which contains

combinations of symmetric brackets of different lengths by one containing such
brackets on disjoint intervals. In this respect, et /\l, /\2 : [0,T] - »R_F be
measurable fulfilling A, (€)%, A )+ A =1, and f‘,f & chld xrM,
j = 0,1,00,d, 1= 1,2, fulfilling Ka £.72 x)(t, %)) f( (/fa?/?x)(t »’C-)ﬁ K, (¥) te[0,T),
xe R™ Let T > 0 be fixed and h = (hl,h7), hl =T /N, i=1,2.Henote tij = (ihl, jhz),

iy4 = 0, 1L,eN = 1. Let yy (<) be the solution of

4
A . ; ‘
49) yit)= xl(tl) + ><7(1:2) o T LA gf (s,y)(s)) + /tz(s)fz(s,y)(s))]ds o Lo Ty 0
) 0 ’
where C is defined in (5), and let fj; be as follows.
S f:l(t,,x), te A xe gn
1
50) E:';}\(t,x} £
1 (6, te A (), xeR"
where aﬁi, ﬁ? are disjoint and fuifils /j U »*-4“'2 =4,
o i 1. 22 2
A (i) = [‘ti., tij +h }x [’rw .+ h ], -
ol = meas 4 ,(i,)) = ﬂ A ((B)de, 1 -0 = mead. FARNEH) it )\ (B)dw
j f‘(l ) : (‘/\ (1,))

l
x

A (i) = m th ot nl]x [t Mf}m?}

P

gl e M| 1 2 2 2
A 2(1,3) = [‘cij +0Ch, i +hlx [tij, tij + h™]
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Lemma 7

:fi 1 xR—R" be as in (50). Then
"> the solution xﬁ D) af ' . | ‘ ‘ : ,

Let Y (-) be the solution in (49) and |

t to i

X(0) = x (1) 0,17 - %+ f Rz, e Nz + L (0513() SR

2 1,2 | ' S

fulfils E max[x - yy, (D) < Cmaxth’,h%), 1=10,T). ' o |
tel .

e

Remark 3.

The conslusion in Lemma 7 remains unchanged if we replace A l(°) ,/\ ),

5 L
by a finite set )\1(»),...,)(L(-), )\i(t)_>_0, ‘Z‘l)ki(t) =1, and 1}}\‘(.) in (50) is defined
; <

accordingly. ; ‘

Proof of Lemma 7.

The proof follows the same lines as in [1] and we shall give only a scketch.
.Denote 1/\ (t,x) = A (’r)l %) +}6 o)l (‘r x). It is easily seen that we have the
following estimate

E max| 5 - y(w)]” € cz[ LSS 0P - 1y Gy R HE7 +
<t ) {1(1,1 ‘ -, .

B - 1 xon|an? (e maxl <) - ytsh] Ao §

E max ( L’ ‘* (t
"0 s5%

G AR

and

( h/ Bh ) Tz jJ '* (;E:{L)}(lu + j{“ \1. )\m(f
3

’}‘s

A (1 J) ‘ ‘ A (17J) (!,})

f& ly (t, \A (t)dt + h th(n
..43(1
where E| R(h}éz <0 max(hl,hz).

On the other hand

Emax| SO [y, \hh)f - 4 (&, xh( Nd ti 27 < o2 S Ea i&(t)iz)dt)% &
) 40, A, .
B

o £y h 12 .
Write YAt) = E maxixk("i; ) - y(= )i and we get
Rat o



t
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Using Remark 2 we obtain

L€ ()< C max(h! p?)

and the proof is complete.

Proof of Theorem 2.

It follows the same scheme as in [2] for proving Theorem l. It can be
explained shortly as follows. Using Lemma 7 and Remark 3 it follows that we can
divide the two—dimensionall interval [0,T] into srr:all rectangles 4 (h) with meas
A(h):hlhz, hi:fl"i/N, and each A (h) is divided into L disjoint rectangles Ij’
j = 1,0, such that, meas Ij = hlhz/L and for ‘te‘;Ij the equation (1) is replaced by
one in which the drift

£ (%) + ij(t,x)hj(t,x)

L ;
replaces the original one fo(‘t,-x)+2" vj(t,x)hj(t,x), On each fixed interval Ij we

j=1
apply Theorem 1 and it is obtained an equation for which the drift has the following
form
h,, b £ .
fo(t,x) Uy ('c,x)gi(‘t,x) + vV Oh(t,x), for some 1 & ‘él,msm},

~

h _h . : . o .
where u, v are scalar functions and he:S(g],...sgm) but the length of h is strictly
smaller then the length of the original hj and the length is the number of grr By
appearing in the comnposition of hj(t?x)g

Actually both procedures contained in Lemma 7 and Theorem 1 are
performed jointly and the first approximate equation generate a solution which
compared with that in (1) fulfils the same estimate as in Theorem 1. Now we have
to start with the new equation as the original one but its coefficients like u, (t,%)

h . . o 4 1, 2y
and v () are unbounded with respect to h = (hsh™ )
This new equation becomes with bounded coefficients with respect to h by

making a "time change" th = N"fl, where 0 _<_'§51 < NT' = 'T; h = TL/N, i=1,2, and the
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previous scheme has to be repeated considering the last equation in the place of
(1.
: RS R I
The interval [0,T], T = (T",T") is divided into small rectangles A(h) with

1 25 , . . e ’
)" and a corrésponding unbounded coefficients equation with

meas A (h) = ('h
respect to h is defined with the property.that the length of the brackets decreases
strictly. The estimation of the two solutions in L (@,P) is upper bounded by
cmax()L0D7 % on each interval [T, G+ DTHx [k,TZ, (K, + D12
ki =0,1l,...,N - 1 and on the whole interval [O,T] the estimation will be bounded by
Tl ol ‘
C max[(h")?,(h")?].

By reversing "time change" we refind the first approximation equation and
the second one with bounded coefcients with respect to h, but with the
corresponding solutions fulfilling in Lz(&B,P) an estimate having the previous upper
bounded

C max[(h )% (hz)%].

Now in the second approximate equation we perform the "time chdnéc“ th = NGTI,
0 5? £ N6TJ :r'\fl, i = 1,2, to obatin a bounded coefficients equation with respect to
h and Ti/f‘»l6 appears in the definition of the corresponding auxiliary functions
p(t,h), gft,h). The new interval _Oﬁl] is divided into small rectangles 4 (h) with meas

o 0.0
AMy=[h 1@ h“]} o

and a corresponding approximate equation is defined with the
property that the estimate of the two solutions on each interval
5 a1 v b i il ol 6 . ,
[k, T ,(!«. + DT ]x[;g“z ,(k? + DT ki =0,1,..,N” - 1 is upper bounded by C.
1\ /} 2 ,,_"/' . " €3 -
max[(h / s{h e ] and on the whole interval [0,T] the estimate in I‘?(“'P'a!-)) of
; 3 . = ] '?' Z 14
the two solutions has the upper bound Cmax[(h')?, (h“)2] By reversing "time
change" we get the second estimate equation and the third one defined on t&[0,T]
for which the corresponding solutions fulfils an Lz(@,P) estimate upper bounded by
et ! .
Cmax[(h?)%,h")?]). By a finite number of steps we get the last estimate equation
s Y

which doesn't contain any bracket but only original g T iz lye..,m, as it is defined in

(2) with the property stated in Theorem 2.
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