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1. INTRODUCTION

Let us consider a separable Hilbest space X, a dense

subspace DMCX and a linear selfadjoint operator AsDA) ~:X which
satisfies the conditions:

(Lol S ATE T D I

where ... is the scalar product in X and  ti.tb dis  the
corresponding Norm.

L We shall study the following initial value problem:

pY

(Lam) ' W) + BCL(uie)iult) = 0,
%4739 W(O) = ug, UlO) = ug,
172

where 1:DA “)»>§ and RO M) :DAY—-3X is a selfadioint operator
for each uéD@ ' ). This abstract framework is metivated by the

study” of the nonlinear mathematical models  foar  the gmal 1
vibrations of a string or of a Timoshenko beam.

T+ in eguation (1.9) we choose:

2 2
:Al/h :

BCL () = ¢ wi i a,

we obtain the initial value problem:

1/

(1.4) Gee) o+ gCiia Fu 1iSau = 0,
(1.5) WY = ug , WlO) = Uy,

which containg as a particular case the equations modelling the

nonlinaar vibrations of a string (cf.L41,071 ch 7 B9 .
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For el (R} and g»0, a local existence and

unigueness  result for the problem (1.4) , (1.9} was Qiven in [%1.
E 3 bl

provided that <Au,urzeliull®, un€d(A) and ule.D(ﬁ1/$). - Bilobal
evistence for (1.4, (1.5 was proved in [131,081 for initial gdata
much more regular.

The free vibrations of a nonlinear Timoshenko beam with
the ends hinged and held a fived distence apart were modeled  in
the appendix of [51 by the following initial and boundary value

'prmhlﬁmﬁ
32w i Dw . DLW .y

(1.6} e (% o 1) BLCd~ath (= (y,t)) Tdy T (u , b)) ~cd—=(,t),
2t? 0O Ox T ox

for Qaxdl, t20

© y 2 @ Ow
(1.7) e (34 ¢ £ ) ¥2C (% ,8)~cTdyin, &) e d=(1,t), \
,a_t.c.; fa}{z *®

for Odxdi, tr0

oW syl
(1.8 w(x,O)wWQ(x);ggﬂ(x,O)zwi(x);‘Y(H,O)m%b(x);5;w(n50[?%’1(x)?

‘ G -
(1.5) w(O.,t)r«w(lﬂ)xl)*-'-(ﬂ,t):@--\—t(l,t)mo,
O O

whare w represents the transverse deflection of the centerling of
the beam andy is the rotary displacement of the cross  section.
The constaents a, b, ¢, d are supposed ta be strictly positive,
with cdra. For the physical m@éning of these constantsy; seeldl,
£101. '

Let uws notice that the eguations (L.4), (1L.5)  and-

(1.6)-(1.9) have at least two common proprieties:

they are consequences of a conservation law (see also relation

(4,1)) and they act “nicely" on the gigenfunctio of & certain
operator (this is the reason we introduce the assumptions  (4.6)-
(4.7)). Thiss Si@ilariﬁy lead us  considering the problem

(1.2) 4 (1.3)  which contains as particﬁlar cases the problems
(1.4}5(1.5) and  (1.&)=(1.9)Y. A local existence result for the

problem (1.6)=(1.9) similar with the one given in L[&1 for
(1.4, (1.5 was qgiven in [101. As far as "we know no  global

eviostence result for (1.6)-(1.9) was obtained till nowe




The paper is organised as follows. In section 2 we
prove a local existence result for the problem (1.2), (1.3},
. Section 3 contains some energetic estimates for  the
solutions of a linear evolution equation. Section 4 contains  the
global existence theorem and in srtion 5% the applications for
the nonlinear string and Timoshenko beam models are given.

Z. THE LOCAL. EXISTENCE RESULT

In this section we shall use notations and assumptions
from  [31 in order to apply an existence and unigqueness result
agiven there.

We begin by noticing that due to the assumption (i.1}

and  to the selfadiointness of th@ operator A we can define the
 fractional powers of A (cf.lél,ch.1). Let us make the natationss:

2

(2.1 ° He= DAY D), §20, Ho=X

Under these circumstances it is well known that the
family of Hilbert spaces {Hg} ¢ ELO,mle with m>*2 represents an
interpolated scale of real, separable Hilbert spaces.(see [&1,
ch.1 and [101 for the background in interpolation theory). We
denote by H.q the dual space of Hy constructed by means of | the
inmer- preguetef S Hp et Ll and by <aned the corresponding
duality. To simplify our notations we set:

M2
225 = (Q\O((i"‘i"yl-_f:l?l“!j) 1
!

equiped with the obvious operator norm, where by ikZ,Y) Al
denoted the space of bounded linesar operators from Z to Y. We
denote by i.10 the norm in Hkn

We consider a family of linear operators B(?), §}65

gatisfying the following conditions:

1) Bew"™ro,p1, £) for each D0

(B2) For each E ;o-ana k=, aw. gm=2 the conditions v € H;, and

B( 7)VGHM imply that v & Hp+p. Moreover there is a . constaht Coxo

such thats

ERl s 2 Lol Tvty  #EtR v ) v €00, DR
b2 8] 5 b

(B3)  There s a constant Cl>o’ ©roasuch that




{B(?}VgV}EG1:=V}:€ {E(ﬁ)vgﬁkzﬁB(g)zgvkﬂu

7 i

for any v,zéleqgéthnlu .
Let us consider now a functional 1:D(ﬁ"/“)w}R+n

As  a straightforward consaquence of the Theorem 4.1 from
L3531 we obtain the following results

THECOREM 2.1 fssume  that (B1) through (B3) hold and and

that the functiocnal ! is localy bounded and -1

times continously differentiable, with m>Z. Then
for sufficiently small T>0 the initial wvalus
prablem (1.2),(1.3) has a unigue solution:

11}
uél ) Ck(EO,T) s Hpeic? s
k=0

for each ug€ Hg, u; CHy g

REMARK 2.1 Due to the special choice of the interpolated

scale of Hilbert spaces and to the proprieties
af B{l{(w), the higher order compatibility
conditions necessary in [3] are satisfied in our
situation without any other asumptions.

REMARK 2.2 . In the Ffollowing we shall ﬁuppaae that the

soclution of (1.2), (1.3} defined on [O,T) is =a

maximal one.

3. ENERGY ESTIMATES FOR A& LINEAR EQUATION

In this section we shall make use of the fact that y due
to the assumptions made on the operator @&, the space X admits  an

orthonormal basis {vlisg such that for each k=1,2,...

(3.1 AVi= AL Vis 230,
[3”\”0'\//4@0[ that the lmbec‘/c/’«'ng DMWY X s Com/odc:f.
in order to establish' the global existence +or

(L2, (1.3 we shall need stronger assumptions on  the initial

data uwg, uj. More precisely we shall cgnaider them A-analvytic.
According to 11,081, a vector v DA™ ™) is A-analytic if there

exists congtantﬁlﬁgﬁ‘auch thats

/2

alvenal’®, 1eatv,vat® andit |, j=0,1,....

K
i
!
&
5
&
§




In (11 éarosio ans Spagnolo proved the following

characterisation of A-analicity.

PR b?ﬂwaﬁﬂ¢ Z. 1 Ossums that conditions (3.1) holds. Then a vector
e tj vV €Hy 1is A ~antalybic if and only if
k>i .

-
thers exists soms O >0 such thats

' . <%
- g < y [t
(3.2) =yl aﬁm(?aﬂw§<cﬂm
2, LR P
fezid
In this section we shall consider a family of linear
aperators C(t): D(AY-3X, te€Lo,T), satisfying certain  assumptions

in connection with the bases (vi)in1u We suppose that the space X
is decomposable in direct sum of orthogonal subspaces xl,..u,xp
to which it corresponds a partition le--'%Np af the set of the

natur«l numbers such thaty

(3“3)‘ (pjvi)iem@ ig an orthonormal basis in Xj,jml,p;
(5.4 ‘Pj(C(t)vi) = (t)%l jVie LENG, J=1l,p, LELO,T)

where Pj is the orthogonal projector on Xj, ,@ij:(G,CO)M}R are
continously differentiable and C1J(t) & Lo » O

(Z.9) Pj(D(t)vi) = 0 if ig Nj, LteLO,T).
Let us make the notations:
B g 2
(3s &) ek(u,t)m(l/z A RSyk(t)! +hyp (Rt
where u(t):= > Vi (B V.
iy

k=i
Consider the initial value problems

1] :
(2.7 WiEIAC (L udit)=0 .
(3.8, o w0 =upy, WO)=ty.

Concerning the solutions of (3.7),((3.8) the following
lemma which is a slight vartat1an of a result in [11 holds:

LEMMA §LL Let u be a solution of (3.7) on EQ;T} and suppose that
tog R M, iz, j=l.p, t€L0,T). Then we have for
pach k=1,2,... and O{E<T

(3.9 e, ) € B lu,0MMgexp M) . for anw’ﬂ}ev where My is a
pasitive constant depending on T aﬁd/?L

6]




Eﬁ::wi fji;
< . <N = s =
Consider uit)s= > LAtIve s the Fourier ex ansion of the
e 5 fo v
bkl

solution of (E.8).
If we take the projection of (3.7) an X and take into
consideration (E.5) we gets

[y (B P vty (8D F 5 (O () vi) T=0.

o A ¥

EEd

{' & P-c/k

......

Fram (3.3) and (3.4} it follows thats

{54 10) y[(t)’vyi“ijitkyi~fl ke §.

: Erom (3.10), following exactly the proof of Lemma 2
from ' £11 we obtain that (3.9 holds for all k €Nj. As  the sats
(N3) jmi,p COVEE the set of ﬂaﬁural Aumbers the conclusion of  the
Lenma follows.

We can prove now that, in certain conditions, the

solution of (3.8) will not blow up in finite time.

THEOREM 3.1 Let u be & eplution of (3.7) on [O,T? such that w0}

and Q(O) are A-analytic. Than, i+f ckjét} is hounded

for £=3>T . Moreover u(T ) and &(T”) are A—analytic

vertors.

Proof: Since Cu (0 and Wi are A-analytic, by Proposition 3.1
there exists a constant GBS gXuﬁﬁul)}Q such thats
:zf“m‘(u O @up (2EAp) 00 .
kel .
Using the estimate (3.10) with =d  we have
Sletu,trexp G £ Moy (T, 83 Loy, (uy 0 exp (20 4)
kxl i bl
hence
2. 12 ;E:ek<u,t)@xp{5%%)
bl
Farticularly:

1

M=, where Mz depends on Ty oty Wy

2 ==
GL AR e wlky 4T = osun o
0Lt T ok

8
l
T

@ (B4 00
and hence by equations (3.8)

PrauEy il €00,

—

0

on [O0,T)}, ult), GeE} and Ault) admit a limit in He




-

This implies the existence of QQ(TN)g hence of (rf-‘uwv.)(‘i"m).J
wW(T™)y  and w(T ). By the use (3.12) and of Proposition 3.1 e

pbtain that the vectors w(t ) and (T ) are A-analytic.
4. THE GLOBAL EXISTENCE RESULT

In oarder to prove the global existence result we have

ta assume  that (1.2) is the exwpression of a conservation 1aw.

More precisely we shall suppose that the following condition
holds:

(4.1) iﬁl(uighlbiﬁ'(l(u})Ub,hg?ﬁiﬁl(u},hzﬁﬁﬂ'(Z(U))ky,hl),

for any u,hy.hn €Hy, where by DL sHy->H.y we denoted the

Frechet differential of 1.
According  to the Herner-Vainberg potentiality theorem

(cf.C111, ch.2) we obtain that the nonlinear operator

Fd

FeHy—rH.qy Fu=8(1 (Wi

is the gradient of the functionals

1
(4,323 FiHy~*R 3 Fu) s 5 -:f.H(‘3. (buwd Y tu,u>
0

In these conditions the following result holds:

PROPOSITION 4.1 Let wilo,Ti=->X be a solution of (1.2),(1.35, andg

suppose that (4.1} and (B3} hold. Then there is a

Cmngt&ntFM}Q-ﬁuch thats
(4.3} itu(t)!!é+5tu(t)?i% < My for any tel(,T).

PROOF I+ we take the inner product of (1.32) with_u and integrate

on L0t we obtain:

(4. 4) kl/ﬁ)!Su(t)i7§+F(Q(t))m(1/2)u%+F<uo), teLa,T).
Frmm-(4u2)‘aqd (4.3%) we obtain that:

(4.5) F(u)gﬂ3|!ult%q Cxg 0. -
Relations (4.4), (4.5) imply (4.35).

We shall also make the following assumptions, related

with (3.3)—(3.5)z




2]

a6y  PitBGFINGaTS b13(5>zalfjv1, IEN 4 I=1,.py

bijalﬁﬁm)w}(aﬁﬁaﬁ continously differentiable
4.7y Pj(B(ZIvy) = 0, if ifN g, 7 20,
We can state now the main reault.
THEOREM 4.1 Assume  that conditions (BLY~{B3Y, Ba3), {Galdy

(4.6}, (4.7} hold trus. Then the problem - (Lal) (L2}
has a solution u in EzéﬁﬂgmﬁgXE far any choice aof thea
@g—analytic initial data ug and uj. Moreover the ventors

1

uek), G(t) and t) are A-analytic for each €20

PROUE By Theorem 2.1 we know that the problem (1n2)w51.3) has a
maximal solution u in CLO,TY, Hz) O Cl(tO,T)ngk 3 Cﬁ(EﬂgT),HQ).

Let us make the notation:

Cu(t)mB(l(u(t)))3 OntdTa

By the use of Proposition 4.1 and of the assumptions
(4.6), (A4.7) we sai thet C (t) satisfies the hypotesis of Lemma
%1 so that u belongs to P (LOyTIH Y PATH I o CO(FD T1yHg) wiT )
and alT ) are A- analytlc,QU51ng again Theorem 2. 1 with initial

inestant T and initial data u(F ) and u(f Ty we deduce that u may
e oditended ta  a anlution w in (EO T+G71, Hy? with Au in

C(LO,T+T1,Hp? for some 7:0 This contradicts the mavimality of W,
o we obtain that T=+0. The vectors u(t) and Gty are A-analytic

for each ©r0 by Th@aren T it Wi in C(LO s9) g Hp)  and Uity is  A-
analytic because U ie a solution of (4.6).

5. GPPLICATIONS

A straighforward application of Theorens 2.1 énd 4.1 can
bhe obtalned by chonsing:
51w =g 1al/Zui®a,
with g a 61 function, g strictly QQ%lthQn In this parLqulmr Case |

/2

“from  Theorem 2.1 we ohtain the local Fresult given in Thearem‘ i
from [91, already stated in the intrmductian For initial data
un and g A-anal ytic we obtain the global éuigt@nceAra%ult‘prmvwd
in [81. The eguation modelling the free vibrations of & nonlinear
stritg can. be obtained from (1. a) hy choosing:
- _ ” d<u
X=L"(0,1), D(A)zHé(Q,i)nH*(o,1), Aus - e,

=

d w e

r-‘\-'
g (v)=atbv™, arl, b>0.



o we obtain the initial valus problem:
% o
b ay ) 'i ;‘3 Lt ’Sj.‘. L

o

(5 1) e (0, ) L (@D | G (y  £3) Ty ) B w5 0 0404

ot” O D T i

Daa 1

(5,2 Oy =unn ), (O =g (), Qs e
Bt i

(5.5 w0, ty=u(l, t)=0,

& local evistence result for the problem (5. 1)~(5.35)
was  proved for o the flrst time by Bernstein in [E1 and  then by
Dickey in [41 by the use of Galerkin’s method. As a conseqguence

of Theorem 2.1 wse obtain s

PROPOSITION 5.1 Let u@<_%é(0 I)nH (G 13, uiéHé(D,lku Then for T ?
small enough the initial and boundary value |

pruulﬁm (5. i)“( ) th a unlquu Suiuﬁlmw }
uﬁ%ﬁrﬂ T HQ(G 1yaH" (0, l}iﬂL CEG, TS hg(@ i))ﬁP (CO, T L0, 1)), §

|
L.et us consider now the linear operators ' %
. g - . ) o=
ﬁ;H'O(Ovl)nH“<0,1)m}L“(Gg1), AU - seon
de
In this particular case the function viLO,11-*R is A~
analytic i+ and only if (cf.L5D)
(5. 4) v is analytic in some neigbbowhood of [O,11; » !
d.?.f'iv d’EL::V ;
(5.5 = e (1) = Oy k=0, 1,0 .. " _ |
P 2 i ‘ e i !
ol el

By applying Theorem 4.1 we obtain the following result:

PROPOSITION 5.2 Assume that up and u aatisfy the conditions
- O 1 =
(5.4}, (5.9). Then the initial and boundary wvalue
prablem (3.1)-(3.3) has a unigue solutions

uécditeﬁmﬁ,Lz(o,i))ﬁﬁiéiﬂﬁwi?Hé(ﬂ,1}>ﬁﬂ£(E0§&ﬁgwécogi>nH2(0,1))m

The above result was proved for the first time in [21
cand in its abstract version for the problem (1.4),(1.%) in
retr,ci1l.

We shall consider now another choice for & and B ()
in order to obtain existence results for the problem (1.6)-(1.9).



This rhmitc iess

4
: : Covr e by
; o o Wy + \ ¥
v 91 )s (3933 7,7 C )R T T

1 o s dy ey :
DAY =L (w0 e X TWeHG (O, 1IaHT (0, 1) & HT (0O, 1), mmm () moommem (1) =0} g
' el thy
A" df"’?u(
Aluty et e = s’ 4
el ™ e
L dw » -
LG e g me%(y) 1 dys
ol

le

It is wasvy to check that

satisfied so from Theorem 2.1 we geb:

FROPOSITION 3.3 Assume that w;émé(ﬁ 1§ﬁH (O 1), wléihé(ﬂal)g

Yo €HZ0,1), 4 entio, 12,

-(5.6) g(g) -(cd - u_fb )f_éjz & el oluff)_-f(

' Tx

assumptiony

i vl m il e

(B1)=C(B3)

dg? d%»
(O
el el

f'! (2

are

Then the initial and boundary value problem (1.46)—

£1.9) has a unigue
2

3
(g W 3 L0, T3¢0, 1y nl”

such thats

i

we Lo, T), H (G lbﬁﬁé(ﬂ 1ial (EG, T} H@(D i¥¥al

1/62({05t>¥H2<G,1)>nﬁ1<50,T:§H1<o,1>>)ﬁﬁ

This result was obtained in

method.

Due  to  the independence of

saolution

(Og1) For T

2

smnall  enough

2.2
CLO,TY L0, 1),

CCO,T),Lo€0,10),

CLOT by using BGalerkin’

two components

oparator A we get -that a vector . (w,Y) is A-analytic if and

if

(ﬁwé) wWweyare analytit in sone neighbourhood of [0,113

ek ek gkl
q.g) (0) w2 e (1) ()

ak 2k b

ol ; ol ; ‘ ¢l et

t:l:"*k'*”i“\’

Rt 1
Ve
4

(L) =0

, k=0,1,.

As a consequence of Theorem 4.1 we obtaing

A0

cf

g
only

J




\'g
PAY

\

msume that wh,wi.Wa,YWy satidy (5.7),(5.8). Then
the initial and boundary problem (1.6)~(1.9) has a

unigue solution s

1 . o5 ) 2 ¥
W e (L0, b é;ia,,,,mw? 0,133 a0 (ro,m 0} ,Hg (0, 13 §AS° (0L ,L (0,13 .

W can choose the basig v

i in the following way:

Ve g (Y= (Q,cos i), 120,

&y

i obvious that (Vk)k}o, the AL @

o

Ao
w
:L&(Gﬁi)ﬁ{Q%K QX x “(O 1Y and the family of operators B(%}\\:a }t{%w

e 55w LM 3
the assumptions (J3.25)(3.%) so we can apply Theorem 4.1. chx

REFMARK S.1 The local solution for (1.6)—(1.9) obtained in
Proposition 5.3 are amuch smoother with respect to & if

the initial data are smoother. In fact it ‘
. i ??21 . . = e - . .
{H§J quwﬁtﬁ . ds with A given by S5.6, we have thats

(e, Y€ ‘: C (B0, T yHp—? -
kxﬂ
In order to study the dynamnic buckling of the nonlinear
Timoshenko beam Hirschhorn and Reiss in 041 didn’t uss chirectiy
(1.6)=(1.9), but the following initial and boundary value problamn
for the transverse detlection wix,t): '

Q% (e, 1) 3 agw' O : - Fig
(5. 100 w4 (ﬁ(f)“ﬂ"”(ngc))”c(uwi)wmm““'(nvt)+L "] o (32 ) s

bﬁ4 A A ' R w% 'Bt“
2%w e, ) . Sy 5

)
G e o (—; et

(s, ) + m&dﬁ(t)
4

- 4 whoe
O - ?xi RS

1 2w -
whea e P(t)m ~oa o+ b (g-'—“"y.,i))“'dvn

(sat)y OUxdl,tr0,.

9]
Dlw e, )
(8. 110 wmm;wmm = oWy (), im0,1,2,3, Odxdl.
ot .
~y e
02w 2w
(O, t) = -
o >
Dx PR

(5.12) w(0,t) = wll,t) =

(1,t5 = O;t}Q,

11

!
%
|
|
K
i
i



We shall prove the following existence and wunigueness
result for the problem (S5.10~-(85.12).

PROPOSITION 5.8 Gssume that wi, i=0,4 satisfy (5.5). Then the
ol

problem (5.8!1~(5.10} has a unigue solution =

&
ko=
. §72 .
whare H = DA } and A is defined by (35.4).

"SI’

?1 [res twn functions satisfving the conditions:

d W(‘) ! d \izo
£S5 13D Wi ='(cd+y(0))m~“~* - et 4
™ e
b : =
(.‘i""wi d\%i dMWQ
6
Se 14 W= = (Ld*ﬂ(ﬂ))mwwwm ! ] i o FAO) ; “
- @
dw’ ‘ e ebs

The above relations ioply that wp, Wi, %bg %i satisfv
conditions (5.8),(5.9). Consider the solution w,p of (Lo bdy={1.2)
with initial data wo, wi, Wo. ¥y

From Remark 4.1 we obtain that:

4

wape N e o0, 1 o, 00,
‘ =02
This  means that all the derivates necessary to

@11m1na te P from (1.2, (1.3 make sense #0 we obtain that w
satisfies (S5.10) and the last tweo boundery conditions {from
(S 120,

ii) Uniguesnsss

et w be a solubtion of Sl -5, 12 having  the
regularity

we M cFeeo, v ,u¥ w0, 100,
k=0 '
We  define y/ (2 ,t)Y  as  the unigus solution of the

aguation (1.7) with ﬁh@ initial and boundary conditionss

4

W, 0) =Wy () %%%M(H,O)" $, 60 2 (= 32ﬁ3<1vt) = 0,

Dx S x
wher&/.wo,kka satisfy (9.13). It is easy to see that wah, Wiy, Yoo
Yy satisfy (5.8) , (8.9 and by the use of Theorem 3.1 from (3]

we obtaing




4
£ b Vi o
e e wo,m 1 0,00,
b=

Dafine GiLO,1ixlo, 00 ~5R by:

oW 5w S
Gin by = mewemmly k) = (V(t) + od) (3, 2) .+ Cde——(x,t).

2 D

-y

N
S

~ A . o
ot O3

S

Taking into account (3.10), 8B, 13 we obtain that 6 is &

&

solution of the initial-boundary value problen:

5 20 fé?}@
e S =P Sl = O,y + GOt = 0

>t ou” 3G
Glo, )y = G(i,t)‘w Oy G(xqo)mwmw(ﬁ,ﬂ) w0,
~ ot
Fyom the  standard  uniguensss resull for Linsar
hyperbolic equations we 'obtain that 6 = 0, i.e. w¢k are
aoiutions of  (L.é) - (1.9)Y. By the use of Proposition 3.3 the

-

unigueness result follows.

ot i et s
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