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GEOMETRY OF DIFFERENTIAL POLYNOMIAL FUNCTIONS, III

A.Buium

Introduction.

. _ ° '
This paper is a direct continuation of (é{][ézj from where we borrow

terminology and notations.

In section 1 we discuss some further properties of /[\=polynomial
functions and apply these properties to make a rough discussion of
[\-polynomial functions on algebraic surfaces.

In section 2 we prove a theorem which implies in particular that the
order of any /\-polynomial character of the Jacobian of a curve does
not decrease by restriction to the curve.

In section 3 we introduce a new concept (having no analogue in the
"non-differential" algebraic geometry): a A-closed subset » of ?iN
will be called strongly [\-closed if it remains A -closed in [PN
(where we view QLN embedded in ﬁjN via (X1,,..,X )i (1:x
We shall prove that for X a smooth complete curve of genus g > 3
which is Z&-generic in the moduli space Lé%i the image of the [Xw

% 8g-8 i

pluricanonical map f3:X'«~m>’ which is known from [Béj to

be A-closed is in fact strongly éx~closed,

N g :;{DJ) -
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1. Further properties of A-polynomial functions

(1.1) Start by recallina a basic fact from EJ] p.183, PAssume
(f,é‘):X-vY is a smooth kernel and (f,& ):P~» X its canonical prolonaation,

Then we have a natural isomorphism:

s 0

B B, - .NX
@=Qyyy i llyy— P/X

Here naturality of @&/Y means compatibility in the obvious sense with mor-
phisms between kernels. Recall for convenience how § is defined (cf.[ﬁj).

The composition

e s
¢ f d
d)‘hﬂm A HP/X
"’ > f,U, ——25, foP/X

i .
is an € - derivation hence provides an C?~1in ar map .2 e hen=
Y g P XA map =Sy y =2 Tt x
0 e . . . .
ce an CL—iunear map @é as above, [t is easy to see (using for instance the
(S@_\_"UCIY\J( & )
fact that P has a naturalYof principal homoaeneous space for ‘@%TX/Y) or sim-
ply using [J] p.183) that ¢ is an isomorphism.
In particular if X is a smooth 2| -variety and (Xn)n its associated
infinite prolonacation sequence L811(3,1) then we have natural isomornhisms

\/(Txn/xnwl)t'xnxTX where TX denotes as usual the tangent bundle of X.

X
Now let (f, ¢ ):Xo~ﬂ>X~

w1

and (q,«?):YO~§Y_ be two smooth kernels and (uo,

1 1

u 1):(f,(?) 33 (9;51) be a morphism of kernels. Let moreover X]=P(f5§‘)mﬁxo

and Y]:P(gzéf)~wao be the canonical prolongations. Then using the functors
that X1 and Y1 represent one immediately checks that the natural morphism
upiX;~—>Y, induced by (uozu_]) is equivariant (in the obvious sense) with

).

respect to the natural map V(T

SW(T
x,/x_ YTy gy
¢" -1 o' -1
In particular, if we start with a norphism of smooth 7{-varieties
usX—2Y and if u”;xﬂwﬁﬁﬁgﬁ the associatad rorphism of infinfte projongation sequen
' ‘ (c¢es then o
n+1 _n+1 n+1l | el ey . E
u X e Y is equivariant with respect to the map

u”xTu:x”xXTx e YanTY —_— -
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where Tu:TX—»>TY is the ''tangent'' map of u.
Here is a quick but remarkable application of (1.1) above, Let’s
introduce a notation. For X a smooth projective J{ -variety and l=(i], a5

vessi )y i.20, k21 any multiindex we put
k J 4 p

| i [
LA o 1 k
Q) =din HO(X, s gy @ @S Ly
: :
These are birational invariants of X. We put [I[ =k. Note that
the invariants q for |I]=1 have been studied by Sakai [’Sak]‘ We have the

following:

“(1.2) PROPOSITION, Assume g, (X)=0 for 1#0, [ 1] £ n. Then @™ (%)=
7. n particular, if q (X)=0 for all 1#0 then dLx)=H.
To prove (1.2) let’s make one more definition. A morphism of sche-

mes f:X—>Y will said to have property Pn if the map HO((.OY)-—-a Ho(effjx) is an

; 1
1somorphism and for any multiindex 1#0 with “ls £ n we have HO(‘y‘(,S m‘X/Y@'”

Lt

&
. e fS l..X/Y

)=0. Then (1.2) follows by induction applying the Lemma below

48 oms e : n ¢ n n=1 ; g
to the infinite prolongation sequence (f b, o)X s X associated to X,

e
N
(1.3) LEMMA. Assume (f,ep):XmﬁY is a smooth kernel and (f,cg):

Pt
:P—3» X its canonical prolongation. If f has property Pn+1 then f has proper-

1t . \
P :

Proof. For any multiindex i=(i1,c.a,ik), iJ;;O, k<n we have

by (2. 1)

i
i i ~ : ky
o) 1 kn o £ 1 e+ 8BS Q )=
HO (P, S ﬂp/x@.,.@s. 2, )=, (s 0295 ey gy

i i AJ
£ 1 k =l ¢ {v .
=HO(X, S Ly, @85 £y B Op)




- ply khatan de A-tlosed) o

e

- l4"4 .
But by LBZ] (1e2) FxCOP has a filtration whose associated

~ :
graded algebra is S(.QX/Y). This immediately implies that f has proper-

ty Pn'

(1.4) Remarks. 1) One immediately checks that qI(IP1) )=0

for 1#0 and N> 1. So q,
: ] b i
tive X; this reproves the. fact that for any such X, ¢ (X)=;{(CF.E3]]
(6.3)).

2) By [Sak]_ it follows that for any smooth projective surfa-
ce X which is either K3 or Enriques or a hypersurface in(P_3 we have
ql(X)=0 for 1#£0, ll[ﬁl; so for any such X,(,O(I)(X)=2('. Nne might conjec-

ture in fact that for any such X, q‘(X)=0 for all 1#0 hence in particu-

/‘;A 37
lar that O (=4 ;

(1.5) Let’< investianate in what follows the behaviour of
JA) -po]ynomfm functions with respect to Galois coverinds (i.e. finite
Galois morphisms). Assume X~»Y is a Galois covering with aroup #, X
and Y being smooth (non necess.arﬂy pro_iective}’l{ ~varieties. As well
known (J(v)= C;'(X)p', But in general we have the curious fact that

\ A
92N #I0°

. Indeed, let f:X—>Y be a Calois covering of smooth pro-
jective curves with group G such that g(X) %1 and a(Y)=0, so Y=P . Then

A‘( 0 &) 0 A N

by }sz] AP U and Q7(Y)=Y hence (7(X) cannot coincide with

A2(Y). Nevertheless we have the followina

(1.6) PROPOSITION, LetuX —>Y be an étale covering of smooth

U ~varieties. Then:

¥ - (%) (n) i L - <
1) If u is Ralois with aroup ¢ we have @ (¥)=0¢ "(X) "hence '(}’LLCY):@A[X}C

2) u is a closed map for the A -topologies (we will say sim-

(X)=0 for I#0 and any unirational smooth projec- L
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' n n . ;
Proof. Let u":X"'—>Y" be the natural morphisms induced by u bet-
ween the infinite prolongation sequences associated to X and Y, We prove by

5 i n . i N . . % ” o
induction on n that u 1is an étale coverina which is falois if u is so and

this will close the proof of 1), Now by (1.1) !

is equivariant with res-

pect to the map unxﬂizxnxXTX~%YanTY. Since u is étale we have a natural

YTY hence u"xTu identifies with the man unxid:anYTY-a¢>
n+1

~9YanTY. Since u''xid is an étale covering so will be u . 1f u" is Galois

isomorphism TXZ Xx

. n+1
then so is u .

: : Qo ,%° a2
To prove 2) we may assume X and Y affine. Let u“":X —Y be
the morphism of D-scheme induced by u, uC=rim W Since d(x™) is finite
over (J(Y™), we get that @(X”°) is integral over ¢ (Y®) hence u® is clo-

sed for the Zariski topology. This (and the "differential Nullstellensatz')

immediately imply that u is A -closed .

(1.7) Remarks. 1) The A-closedness of étale coveringsimplies

for instance that if (Q%q) is the smooth locus of the moduli space of

reg
principally polarized abelian % -varieties of dimension g then the locus

of all points in (“%q)reg corresponding to abelian:%“varieties of ﬁ;“rank r
is ﬁx—closéd Eor 'all . - lef, [ﬁjj (6.8)).

2) Any [x~c1osed immersion of smocth Zi“varietieé (in the sen-
se of [821 (1.6)) hence in particular any closed immersion of smooth 7{ -va-
rieties is [x~c}bsed in the sense of (1.6).

3) If u:X=>Y is a Galois covering of smooth MU -varieties with

| o i W
group G ramified along the divisor De=Y and if Weldd (%)Y then the funt-
tion ¥ :Y->% induced by & (which is well defined set - theoretically but
which is not in general A -polynomial on Y cf,(1.5)) is nevertheless A -po-
lynomial on Y\D. Here is a typical example. Let u:X=:;’f’\]~~-—~>Y=ii\1 be the Calois
covering defined by u(y):ya, az2 an interger and consider the A —nolyhomial
function ¥ :X=U , ¥{y)=(y)?. Clearly % is invariant with respect to the

Galois group of u and we have ¥ =¥ou where f’:Y\30§'w>QZ is defined by

e e o R s i i e e s R R Bl

e e e i ool —"

] 3 ) R o ,72 .
-We-see~that Y- is _A-polynomial on Y\7OE (embed Y M0Yinto UT via yrly,




il
-1 - . S DS § -2 a-1, yya-1l
y ') and then Y is given by the A -polynomial a W, (w])

w,) are coordinate on N2) and not A ~polynomial on Y. So ¥ may be viewed

where (w1&

as having a "singularity'" at 0eY which can be "resolved" by composing
with a finite covering of Y ramified at 0, The study of such "sinaularities'"

of A-polynomial functions deserves further investigation.

(1.8) PROPOSITION. Let X be a smooth ¥ -varietv and Uc X a Zaris-

ki open subset whose complement has codimension 2 2. Then the restriction

@

maps (Q(n)(X) f§(9(n)(u); (9A(X)»;(9A(U) are isomorphisms. In particularCO(n)(X);

C?ék(x) are birational invariants of the smooth projective variety X.

Proof. If (U), (X") are the infinite prolongation seauences asso-
ciated to U and X then U" is the preimage of U via the nrojection X"—> X hen-

Pyl ; o v il
ce X\ U has codimension » 2 in X and we are done.

[ . o n
(1.9) LEMMA, Let X and Y be smooth 7 -varieties and (Xn),(Y Js
((%xY)") be the infinite prolongation sequences associated to X,Y and XxY.
Then we have natural isomorphisms

n

(xxy)" & x" x ¥"

compatible with the corresponding structure maps of the two prolongation

sequences ((XxY)") and ((x")x(v™)).

Proof. It is a formal consequence of the fact that a functor

édmitting a left adjoint commut@s with products,

(1.10) PROPOSITION, Let X and Y be smooth U -varieties. Then
) b
we have natural isomorphisms 0(n)(XxY)eﬁﬁ(n)(X)@H9<n>(Y),(9 By )

edﬁ"(x)@@&(\()w

Proof. By (1.9) plus Kinneth's formula we get
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0 ™ e o) MO MM e A (v = 0 e d™ (1)

(1.11) COROLLARY, Let X be a smooth 7 -variety and E a vector

bundle on X. Then we have a natural isomorphish

Proof. The question is local on X (for the Zariski topology). So

we may assume E is trivial. Then we conclude by (1.9) and (1.4).

(1.12) PROPOSITION, Let X be a smooth % -variety with (J(X)= 2/
assume we are given a structure of D-scheme on X and let XD be the subset of
X consisting of all points x€ X such that the maximal ideal of CQ 3 is a

Y

A -ideal, Then any A -polynomial function on X is constant on XD'

Me ('
Proof. We shall denote by X" the D-scheme X so X=X%; Let

o] .
O . . . o . . . -
% 2X" s ¥ be the canenical projection. By adjunction the identity ]X &

( \,‘I'!{ !

& Hom X"",X) corresponds to a morphism se;HomDﬁSCh(X o )oso

U*+sch

.‘, { cé' £ 0 y [e = ]
Yo s=l . Forany el TIX) Jet e & (X% )=Hom (X ,A") correspond to

"
\ sty

. o i ! [ .
¢ ., Since (/(X)=1 the composition ¥e s :X~»/" is constant i.e. factors

- : /
(Spec U, N ). Now let o« ¢ Hom, (Spec %, X)

through some a ¢ Hom, 7
a6 200 e sich U-sch
- 7o 3 ® 8 / r 2 al >y “ o rﬂﬁv i -
correspond to a point in XDv Then ¢ provides a morphism X e PomD—ccH

E73
w~

s T ik "
(Spec Y% X)) hence seo¢ ~:Spec U —> X

e

is a morphism of D~schemes such that

e (seax”) =0l . So sex” & Hom (Spec ¥ ,X™ ) corresponds via adjunction

=D

D-sch
ANy _~z-

, , i fila * A
to « ¢ Hom (spec U, X). Consequently Yl)= ¥os0¢ =a and we are done,

U ~sch

The following corollary completes [ﬁ?( Theorem 2:

(1.13) COROLLARY. Let X be‘a,smooth Z{"variety with CQ(X)= U

and assume X descends to J{ . Then anv /\-polvnomial function on X is constant
on X_;-
¢

2 S i 5 - s the, natural
oot |Gkt @ X, = K ovariety) Shen ¢ e ,
D



o

"split' D-scheme structure obtained by lifting c{\ from % to Xoéa’Lt: in this

case XD=X3< and we are done,

(1.14) Remarks. 1) Proposition (1.12) can be useful also in the
case when X does not descent to K For instance if X is the universal éxten«
sion of an abelian {{-variety A then Jx)=1U .and é‘ Jifts from Uto X
(CF.[BB‘),, Chapter 3 section 2; the latter is also a conseauence of firothen-
dieck’s theorem that X is "crystaHing in ﬁature")v On the other hand if A
dose not descend to ]\/, the same will Hold for X1,

2) Assume X is a smooth % -variety which descends to \;{f with’
(3(x)=U and assume that for any xéX there exists ¢~ & Aut X such that
K) dhid . X

Then any A -polynomia

xe 7 (X =

=

)~ Xﬂ #0 .

74
function on X is constant (indeed anv ¥ () (X) is

S

constant on any set of the form G(Xy,) with @¢ Aut X). This gives in parti-

e

/

¢
; g ! ) \ Iy =

cular one more proof of the that CQD(EPPF&{.(CL I{B]] (6.3) or (1.4) of the

present paper):




rl),
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(1.16) The above remarks can be used to make a rough discussion
of [&-polynomial functidns on algebraic surfaces. We expect a deeper discus-
sion could be done if ﬁore results along the work of Sakai [Sak] could be
obtained. Let X be a smooth projective surface over 2 . By (1.8) we have
(?A%X) &:(9A(X1) where X, is a minimal model. So we may assuﬁe T ean %s a
minimal model. Then according to the classification of surfaces X is in one
of the following situations:

BRges tathnals s OP (0= U cf. (1.4

W

4 .
2) X is ruled irrational. I|f X=B is the rullina then (3~ (X) = (B)

ef. (1.11)

3) X is a K3 surface, Then () (]>OO=‘H eF L1 s
. T : ¢ a1 |

L) X is an Enriques surface. Then ()= e (. ),

5) X is an abelian surface. Then {QA(’) is a Hopf A-U -alaebra
generated as an algebra by its space of pr lm!thEJ, which is a finitely gene-
rated D-module (cf. lB1J (6,1) for additional information),

6) % is a-bielliptic surfade,. X=(F xF )/ wher@ Ei are elliptic
curves, Ga:E] is a finite subgroup acting ChlE by translations and on EZ by

s s G2 o il G
algebraic group automorphisms. Then (J (X}:({ﬁé(t]kﬁ Q){ (E?)) cf. (1.10)
= AR A ks e L San G
and (1.6). Now U7 (E)= Yyt (= /\ ~polynomial algebra in one variable) for any

elliptic curve, cf. Lp}i (1.6); if ranks E=0, y corresponds to an element

A

of order 1 while if rank/\ E=1, y corresponds to an element of order 2. So

wf

A= 93 b e B o i e o ve g .
K= &{y},y23 with Y1sYy £ -indeterminates and yq s fixed by §,
Moreover there is a character %’:5~»:?5 such that gy} %( )y29 o=

;’éfE?) Vg it action on Chl\(E J “aind Ehiss action is compa-

deed G acts on (J°
tible with the filtration by orders so 8 invariates the subspace ‘Ayz of
1y,

Consequently () >y?% G§>]{\uh11e Z ( G

can be 'computed in an obvious
way.

7) X is an elliptic surface with Kodaira dimension 1.
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8) X has Kodaira dimension 2.

In cases 7) and 8) very different things can happen. For instance

' ; )
in case 8) if X is a hypersurface in WB,'(V (=Y cf. Ll bahiTe 15 X=C]xC2
P} A
where C. are curves of genus » 2 then by (1.10) C?A(X)=C?(C1)Q§CVL(C2).'ln the
Jatter case if Ci do not descend to }{ then there exist Y%”'°"(€N 6(9(1)(X)

TR

providing a /A -closed embedding Xu&‘M‘N (betause by (1.9)X1=C]XC2 hence

i s Ry
X' is affine cf LBlj 2ut))

: &
2, Non-degeneracy of characters

“Let u:X=—>Y be a morphism of smooth Z{-yarieties, For any é&—po]v—

nomial function ¥ on Y we have

ord(%wnﬂ £ ord()

where ”ord((f)” means ''order of (@ ' cf, [B]] (3:3) « We shall sav that F
fs non-degenerate with respect to u if equality ord(‘feu)ﬂord(}“) holds, The

aim of this section is to prove the following:

(2.1) THEOREM. Let u:X -5 be a morphism from a smooth 7{-varie-

\

ty to a commutative algebraic 1{“oroun such that 0 gu{X) dnd ~wlx) generates G,

oy A 3 * “
Then all /A -polynomial characters of G are non-degenerate with respect to u.

.We need a preparation

(2.2) Let ui¥X-»G be as in (2,1), dim X=r. Then the "Gauss -map"

et

}
D :X—» Grass{r,L(6)) sending each x€X to (T (L

*x Ty (X)"'“ QU)) (TXX)CTO(&.E & ((\1)

(where Ly:G -3~ denotes the translation with y) is non-deagenefate in the sense
: : e -
that there is no hyperplane in L(§) containing §§ (x) for all x¢ X. Indeed

there exists an integer N such that the induced man uN:Xx.‘wxX~%(L




e
. N |
uN(x1,...,xN)=;Z‘u(xi) is dominant, Hence there exists a noint x=(x,..
i=1 '
cee1xy) such tijt the tangent map TxuN:Tx(Xx...xX)u_;TUN(x)
hence the map ;§i~TXiX‘~Q L(6) defined by (t1,,..,tN)+mm§Z(Txi(Lu(xi)4u))(ti)
is surjective and we are done, |

G is surjective

(2.3) Let 6 be as in (2.1), let B its linear part i.e, its maximum

connected subgroup and A=G/B. Then we claim that there is an exact seauence

0~ X_(6) —=5 x_(8)—25 ' (¢

where a is the ''defining map'' of the extension 0—> B = i A 0' according to
Serre’s description of Ext(A,B) (cf. [Bl](2’3> for notitions. To check this,
recall that we have §x B, xG, where B, is an aleebraic vector group and[ﬁ(ei);

e [83}1 Chapter 3, section 2) so if B, is the linear part of Gy we have

2
induced isomorphisms BB xB,, X_(6)xX ) X_(B.)@X_(B,), .the indu-
induced isomorphisms BB, xB,, Xa(() xa(81), X“(B, Aa(B')mYa(BZ),,LhL indu

ced map Xa(Bz)wﬁvH]((gA) is injective and Xa(Bg)wﬁ H1(CQA) is the zero map.

This checks our claim.

(2.4) Let & be as in (2.1) and (&™) its in_finite proleongation
H ; 0 {n) . T = . Bemiw oS
sequence. Let Cnn(G):ChZS(Q);ﬁLH (R). By LB;J section 3, Chn(b) identifies

- n = : 5 ! .
with Xa(G ). We claim there is an exact sequence

iz n My Yn e}
T s R T A
g ; 5 : A R o | = om e
where cxn is induced by the natural projection ﬁ%:g~~m>@ while vfﬂ is in=-

duced by restriction (we identify L(F) with ker ¥ cf [8;] (2.2)). Indeed if

St : n n,.n . : i : i
B is the linear part of f# and A=G /B then we have an-exact secuence of alge

: : : =1 .
braic groups 0 —» L(G)—> B"—>B""'— 0 hence an induced exact seauence
' &

HW1>~mﬂw>Xa(Bn>'~%i.(G)O. Now looking at the diagram with exact rows

Demd-(B
a

(cf.(2.3) above):



e e el mtedy
Xn P
0 — X (6") —gr—> X, (8") ————>H' (T

n

we get that coker L is contained in coker /‘%n and our claim is proved.

(2.3) Proof of (2.1). Let ¥é€ bhn(G)‘\Chn_1(G). We must prove
that Yeu é(p(nQ%X). By (2.4) ¢ corresponds to an element (still denoted
by) Ye Xa(Gn) whose restriction to L{§) is a non-zero functional on L(G).
Let G2-1 be an open Zariski neighbourhood bf 0 in Gn_] on which the L(G)-

=] . n-1 .
torsor ehasnt has a section s:.GO — G and let Gg be the preimage of

62—1 in G'; let moreover Xg‘] be any open subset of u_](G2-1) over which
the (T n_2)~£orsor )<n~—~>’Xn_1 has a section t:xg“lua x" and Jet Xg

Xn—1/X -
be the preimage of XO in X', Consider now the diaaram

n L n n ¥
Xo AT el GO‘S [ — Ga
B A b of
T IU’ ///
\F
n-1 n-1 /
e ~ G G
XO xXTX = = xL (&)
v
where ¥ = ¥eog , <TTQHM]7@>:S(QH_])+91 Qnm1<362~1z b€ LQC) (the sum ''+"

; : N n =1 iy ,
is taken in the group &) and where v :=0 cusT, C<Xn—1’@)=

=il

)+8, (xn 12@)@}X2 Xy TX (the sum "+ here indicates the torsor opera-
i \

tion). With notations above we have



property in (2.1 e specific to characters! For

...]3..

n-1 =] n-1 san=l
0 XTK X TG X TEE x‘L(ﬂ)’

hence we have

AR T e

where x€X is the image of xn_1ex2‘1 and ‘v”:xg' —>L(8) is the composition
n-1 t Ao 2 n-1 * proj
> s 0B w3 2 s e G
Xy Xs 6, G, xL (G) > L(8)

¢

n-1

Let ’JI’:Xn~1x Y »;Xn—1 be the first projection. Then for x € X the
o X o) : n-1 o

image of X (Xn-"]) via v equals
Ju " G )+ U6

where xv(x)

1

(TX(L ou))(TXX)cL(G). Conseauently by eauality (3) above

L i)
: ‘P(Vn(:ﬁ“ (xnn})))eouals

() Pls (™ (x N+ FE" (¢ ) TG

bl ; . . : e
Let fs?’n:)(n'——w)X‘ be the canonical projection. Then the image of & i (an)

via Yeou" equals (xx). too. Since WV (L(§))#0, by (2.2) we have ¥ (x) C,T'Ii

it

c],[:Ker ¥ o faron generic in X . So for such an X the set (xx) does not
n-1 o} n-1 :

. , n
reduce to a point; consequently Yfeu does not factor throuah ﬁ?“n and our

Theorem is proved.

(2.6) The most interesting case in our Theorem above is when X

is a smooth projective curve and u:X-—>C is its canonical map into its Jaco-
A —PoWncnnial

bian G=J(X). it happens in this case that there are plenty of

functions on G which are degenerate with respect to u. So the non-degeneracy

- instance if X descends to

K

\%

s i




S 1
the map u1:Xy~9 G1 identifies with the tangent map Tu:TX —> TG=6xL (G) and
as well known the image of the composition

T -
E 1 QRIS 3 - SR o IO €

is the cone over the canonical image of X into [f(HO(uJX)). So any hvper-
surface in W(HO(UUX)) containing this image Will provide a non-zero form in
/\ -polynomial characters of G which vanishes on X hence is degenerate with
respect to u:X— G.

(2.7) Let us see what Theorem (2.1) gives in case G=GZ=’%N and
X a closed subvariety of %{N containing 0=(0*.,.,0) and not contained in any
hyperplane passing through 0. If J is the ideal of X in ’M£y1,.z..,yN]
then (2.1) says that the ideal EJ]c:Q{%y],..,,yNE does not contain /\-poly-
nomials of the form L+F with L a homogeneous non-zero linear A -polynomial
of order n and F a /A -polynomial of order £n-1, We.exnect that the latter
statement can be proved "directly' usina the usual theory A -ideals in the

ring of A -polynomials (characteristic sets, dEuli) 5

3y Svonaly  Boglosed sets

(3.1) Let 5 be a [-closed subset of QéN. We will say that

1

« | iy M o N N
> is strongly A-closed in %" if, upon embedding J  into [P wvia

: o ) ; . N a; N
(xwu,n,xm)%mﬁw(‘i:x]:.”:xN)5 S remains /\ -closed in[P . Note that U
,__(A\| s . - N
and ;ﬁh are not strongly A-closed in U~ (although they are of course
A ~-closed). it is easy to check the following invariance property of the
. ce 1 iy i f,:N 3 ,M Y re . (.
notion defined above. Let of : U —> W  be an affine morphisms (i.e. the
s N
U

° . ‘. o sy
composition of a translation with a Jinear map); then a subset 2 of

is strongly A -closed in 24N if andonly if of (Z) is strongly /\-closed

D

i . M . ’ - ; .
in 9. The aim of this section is to prove the following:



(3.2) THEOREM. Assume X is a smooth projective curve over ZL of
‘ N
genus g2 which does not descend to K and let "fd:X - 4 e the A-plurica-

nonical map of degree ‘d‘c‘f.[B ] Then for d»0, (Pd(X) is stronaly A -closed

e oY d X
in W 9. Moreover if X is nen-hyperellintic and rankA X)—% then \f’d(x\ is.-

strongly A closed for . d;}, T : e o5 —es oy

Proof. We may assume the first component of ‘f’d is 1 and denote
by ‘f’d: X ~>U the composition of ‘(’d with the projection U - Y onto

the last N -1 components. By (3.1) it is sufficient to prove that ¥ (X) is

N —1
strongly A-closed m'U . With notations from [82] , section 2 we have a
commutative diagram
¥ N -1
- db d ‘
P (£) LA -p (o ((J o (dD)))
, P(g)
A A
t |
W —————
Yd
where D:aP(iMX)‘;: P(?f_), we still denoted by :‘:d the morphism of schemes induced
= N -1 )
by the D- -polynomial map 'd x->U ; ) ‘%}dD is the natural rational map defined
- N ,~1 N~
by the linear system {le and U . womeiy P - is defined by (U],—n,UN ,_,]>1~>
: d
< g i . o - L fen . . cecion for dw»0 so t
i”"“'UT"”'uNdwi)‘ By |8, (2.1), ¥y is @ closed immersion for d%20 so to
check that “;7 (x) is strongly A -closed for d»0 it is sufficient to check that
Y] . . .
the composed map he ~;w-.-~~>>’ —5 P(E) has a A -closed image . But this map is

/

a section of the projection Jr P (E ) —» X, Now h corresponds to a morphism of

o

0 OO . ¢ ¥ WO NN e 2
P-schemes h X Ty }}’(E;) * which ‘is a section of i :\P(E,) = X% & Since
o : . - :.J o
T is separated (indeed LP(@) MY P(c ) is affine hence scparnuﬁcie )(Q)w;

_—
; e oo ! P o e e
—» Spec Y s separated hence P (E)% 5 Spec U is separated hence so is

X7 ‘. ; le'e) .
) belongs to the image of h, if and

[

T ) and since an U -point of Pg

only if it lies in the pull-back of the diaqonal ofPRE )T A PLENT ),

X(= A
. . s R NN . N PR e
Jié the mhephism Rdxh. ar. @£ ) | =~ y (P (T ) “xyas pL%) W)"L “one._immediately
"y U
Lo Wi [0 v




&=

gets that the image of h is A—closed..

Let®s prove the assertion about ‘non-hyperelliptic curves
J

,OF A-rank Gwe [ E

By [BZ] (2,5) for any such X, \le separates points and tanaent veg=
tors o PLE )N D for d3 3. | f pelP| £)\D, q€D then clearly ldD ]separates

p and g.

Claims. [F:d 23 then 1) for any p,qéD,
PEQ, !dD{ separates p and g and 2) for any p& D and any teT D there exists

Ee\le passing through p such that térT E. To check thIS note first that
A
i
=
-1)p)—= (O (dd) = CQD(dD) 50 we get (identifying D with X via 7 ) an exact

(D)~ i 3 indeed for d21 a lyin T, to the exact sequence 0 = (_,V (d-
g pplying

sequence

0 s87le 5 5% 50 (40)os R e, Dlla-110)=0

A P e
hence L“D(D)=Coker (s:(¥->¢ ); but the latter is o Consequently‘LJD(dD) i

:u!; is very ample for d3l and to check our Claim it is sufficient to checbk
that for d 33 all sections of ( D(dD) 1ift to sections of (7(dD). But this fol-
Jows fr.om the fact that H1(Cﬁ((d—1)D))=H1(Sd_‘g )=0, cf fsz(Z.B);and our
Claim follows. :

To conclude the proof of (3.2) we must prove that if d23 then o

any pi:D and any t "TDD((' 6% TDD there exists

E- 4% sUvtiliigity &)

A ! , i . o i T iy sl s )
£ 2 vdDa sueh that tel Eoib s cufficient to ring Fa{:;(ﬂ‘]‘)l‘f with D’«‘J‘;SUDD F
- Y i : i

A

lear from the Claim above. So assume d=3. By 21 (2.3) we ha-
7 \.-
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© i) - o w &) Lul©)= %

and Ker3=Ker(>)X:H°(W§2) - U ) where )\Xé‘HO(W%)O is the element cor-

responding to the Kodaira-Spencer class Jﬂx(é“)e’-H‘.(b\z‘;(])(J’X:Der-u»H1 (w;(]))

via Serre duality. Now we can consider the non-complete linear system

lKerh ' contained in the complete linear system WX I Clearly an F as

above can be found if we can prove that lKer A l is base point free.
Let V=H (w® ) and let b VxU—> 3  be the non-degenerate bilinear map indu-

ced by WV - HC (W For any subspace WeV (reSpecfively for any -

element x¢ V) we let W c: V (respectively v e V) be the orthogonal with
respect to b. Now for any pe X let Vp be the space of all vgV which vanish
at p and choose v, £V such that v 4\/J'and v 4_\/"L . Moreover choose
V26V1 such that v é:V . Then the sectlon v,@v, €H (w®) does not vanish
at p and belongs to Ker >’X' This proves the fact that 'Kerb } is base point

free and cleses the proof of our Theorem.
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