INSTITUTUL
DE
MATEMATICA

INSTITUTUL NATIONAL PENTRU CREATIE STIINTIFICA SI TEHNICA

ISSN 0250 3638

GEOMETRY OF DIFFERENTIAL POLYNOMIAL

FUNCTIONS, III.

by

A. BUIUM

PREPRINT SERIES IN MATHEMATICS

No. 27/1990

GEOMETRY OF DIFFERENTIAL POLYNOMIAL FUNCTIONS, III.

by

A. BUIUM*)

April 1990

^{*)} Institute of Mathematics, Bd. Pacii 220, 79622 Bucharest, Romania.

GEOMETRY OF DIFFERENTIAL POLYNOMIAL FUNCTIONS, III

A. Buium

Introduction.

This paper is a direct continuation of $\begin{bmatrix} B_1 \end{bmatrix} \begin{bmatrix} B_2 \end{bmatrix}$ from where we borrow terminology and notations.

In section 1 we discuss some further properties of Δ -polynomial functions and apply these properties to make a rough discussion of Δ -polynomial functions on algebraic surfaces.

In section 2 we prove a theorem which implies in particular that the order of any Δ -polynomial character of the Jacobian of a curve does not decrease by restriction to the curve.

In section 3 we introduce a new concept (having no analogue in the "non-differential" algebraic geometry): a Δ -closed subset Σ of \mathcal{U}^N will be called strongly Δ -closed if it remains Δ -closed in \mathbb{P}^N (where we view \mathcal{U}^N embedded in \mathbb{P}^N via $(x_1,\ldots,x_N) \mapsto (1:x_1:\ldots:x_N)$). We shall prove that for X a smooth complete curve of genus $g \geqslant 3$ which is Δ -generic in the moduli space \mathcal{U}_g , the image of the Δ -pluricanonical map $f_3:X \longrightarrow \mathcal{U}^{8g-8}$ which is known from $[B_2]$ to be Δ -closed is in fact strongly Δ -closed.

1. Further properties of Δ -polynomial functions

(1.1) Start by recalling a basic fact from [J] p.183. Assume $(f, \mathcal{E}): X \to Y$ is a smooth kernel and $(\hat{f}, \hat{\mathcal{E}}): P \to X$ its canonical prolongation. Then we have a natural isomorphism:

$$\bar{\Phi} = \bar{\Phi}_{X/Y} : \hat{f}^* \Omega_{X/Y} \longrightarrow \Omega_{P/X}$$

Here naturality of $\Phi_{X/Y}$ means compatibility in the obvious sense with morphisms between kernels. Recall for convenience how Φ is defined (cf.[J]). The composition

$$\mathcal{O}_{X} \xrightarrow{\widetilde{S}} \widetilde{f}_{*} \mathcal{O}_{P} \xrightarrow{\widetilde{f}_{*} d_{P}/X} \widetilde{f}_{*} \Omega_{P/X}$$

is an \mathcal{O}_{Y} - derivation hence provides an \mathcal{O}_{X} -linear map $\Omega_{X/Y} \to f_{*}\Omega_{P/X}$ hence an \mathcal{O}_{P} -linear map $\overline{\Phi}$ as above. It is easy to see (using for instance the fact that P has a natural of principal homogeneous space for $\mathbb{V}(T_{X/Y})$ or simply using [J] p.183) that $\overline{\Phi}$ is an isomorphism.

In particular if X is a smooth \mathcal{U} -variety and $(X^n)_n$ its associated infinite prolongation sequence $\left[B_1\right](3.1)$ then we have natural isomorphisms $\mathbb{V}(T_X^n/X^{n-1}) \cong X^n \times TX$ where TX denotes as usual the tangent bundle of X. Now let $(f, \mathcal{E}) : X_0 \to X_{-1}$ and $(g, \mathcal{E}) : Y_0 \to Y_{-1}$ be two smooth kernels and $(u_0, u_{-1}) : (f, \mathcal{E}) \to (g, \mathcal{E})$ be a morphism of kernels. Let moreover $X_1 = P(f, \mathcal{E}) \to X_0$ and $Y_1 = P(g, \mathcal{E}) \to Y_0$ be the canonical prolongations. Then using the functors that X_1 and Y_1 represent one immediately checks that the natural morphism $u_1 : X_1 \to Y_1$ induced by (u_0, u_{-1}) is equivariant (in the obvious sense) with respect to the natural map $\mathbb{V}(T_{X_1/X_{-1}}) \to \mathbb{V}(T_{Y_0/Y_{-1}})$.

In particular, if we start with a morphism of smooth \mathcal{U} -varieties $u:X\to Y$ and if $u^n:X^n\to Y^n$ is the associated morphism of infinite prolongation sequen $u^{n+1}:X^{n+1}\to Y^{n+1} \text{ is equivariant with respect to the map}$

$$u^{n} \times Tu : X^{n} \times_{X} TX \longrightarrow Y^{n} \times_{Y} TY$$

where Tu:TX -> TY is the "tangent" map of u.

Here is a quick but remarkable application of (1.1) above. Let's introduce a notation. For X a smooth projective \mathcal{U} -variety and $I=(i_1,\dots,i_k)$, $i_1\geqslant 0$, $k\geqslant 1$ any multiindex we put

$$q_1(x) = \dim_{\mathcal{U}} H^{\circ}(x, s^{i_1}\Omega_{x/\mathcal{U}} \otimes ... \otimes s^{i_k}\Omega_{x/\mathcal{U}})$$

These are birational invariants of X. We put |I| = k. Note that the invariants q_1 for |I| = 1 have been studied by Sakai [Sak]. We have the following:

(1.2) PROPOSITION. Assume q_(X)=0 for $I\neq 0$, $|I|\leq n$. Then $\mathcal{O}^{(n)}(X)=$ = \mathcal{U} . In particular, if q_(X)=0 for all $I\neq 0$ then $\mathcal{O}^{\triangle}(X)=\mathcal{U}$.

To prove (1.2) let's make one more definition. A morphism of schemes $f:X\to Y$ will said to have property P_n if the map $H^O(\mathcal{O}_Y)\to H^O(\mathcal{O}_X)$ is an isomorphism and for any multiindex $I\ne 0$ with $|I|\le n$ we have $H^O(X,S^1\mathcal{O}_{X/Y}\otimes\ldots\otimes S^1\mathcal{O}_{X/Y})=0$. Then (1.2) follows by induction applying the Lemma below to the infinite prolongation sequence $(f^n,S^n):X^n\to X^{n-1}$ associated to X.

(1.3) LEMMA. Assume $(f, \widehat{C}): X \longrightarrow Y$ is a smooth kernel and $(\widehat{f}, \widehat{C}): P \longrightarrow X$ its canonical prolongation. If f has property P_{n+1} then \widehat{f} has property P_n .

Proof. For any multiindex $I=(i_1,\ldots,i_k)$, $i_j\geqslant 0$, $k\leqslant n$ we have by (2.1):

$$H^{\circ}(P,S^{i}_{1}\Omega_{P/X}^{\circ}...\otimes S^{i}_{K}\Omega_{P/K}^{\circ})=H^{\circ}(P,f^{*}(S^{i}_{1}\Omega_{X/Y}^{\circ})...\otimes S^{i}_{K}\Omega_{X/Y}^{\circ})=$$

$$=H^{\circ}(X,S^{i}_{1}\Omega_{X/Y}^{\circ}...\otimes S^{i}_{K}\Omega_{X/Y}^{\circ}\otimes f_{*}^{\circ}\mathcal{O}_{P}^{\circ})$$

But by $\left[\mathbf{B}_2 \right]$ (1.2) $\mathbf{f}_{\mathbf{X}} \mathcal{O}_{\mathbf{P}}$ has a filtration whose associated graded algebra is $\mathbf{S}(\Omega_{\mathbf{X}/\mathbf{Y}})$. This immediately implies that \mathbf{f} has property $\mathbf{P}_{\mathbf{n}}$.

- (1.4) Remarks. 1) One immediately checks that $q_1(\mathbb{P}^1)^N)=0$ for $l\neq 0$ and $N\geqslant 1$. So $q_1(X)=0$ for $l\neq 0$ and any unirational smooth projective X; this reproves the fact that for any such X, $\mathcal{C}^{\Delta}(X)=\mathcal{U}(cf, \mathbb{F}_1)$ (6.3)).
- 2) By [Sak] it follows that for any smooth projective surface X which is either K3 or Enriques or a hypersurface in [P] we have $q_1(X)=0$ for $I\neq 0$, |I|=1; so for any such X, $\mathcal{O}^{(1)}(X)=\mathcal{U}$. One might conjecture in fact that for any such X, $q_1(X)=0$ for all $I\neq 0$ hence in particular that $\mathcal{O}^{\Delta}(X)=\mathcal{U}$.
- (1,5) Let's investigate in what follows the behaviour of \triangle -polynomial functions with respect to Galois coverings (i.e. finite Galois morphisms). Assume X \Rightarrow Y is a Galois covering with group G, X and Y being smooth (non necessarily projective) $\mathcal U$ -varieties. As well known $\mathcal O(Y)=\mathcal O(X)^G$. But in general we have the curious fact that $\mathcal O^{\triangle}(Y)\neq\mathcal O(X)^G$. Indeed, let $f:X\to Y$ be a Galois covering of smooth projective curves with group G such that $g(X)\geqslant 1$ and g(Y)=0, so $Y=P^1$. Then by $A \cap Y=0$ and $A \cap Y=0$ and $A \cap Y=0$ hence $A \cap Y=0$ cannot coincide with $A \cap Y=0$. Nevertheless we have the following
- (1.6) PROPOSITION. Let $u:X \longrightarrow Y$ be an étale covering of smooth $\mathcal U$ -varieties. Then:
 - 1) If u is Galois with aroup G we have $\mathcal{O}^{(n)}(Y) = \mathcal{O}^{(n)}(X)^G$ hence $\mathcal{O}^{\triangle}(Y) = \mathcal{O}^{\triangle}(X)^G$.
- 2) u is a closed map for the Δ -topologies (we will say simply that u is Δ -closed).

Proof. Let $u^n: X^n \to Y^n$ be the natural morphisms induced by u between the infinite prolongation sequences associated to X and Y. We prove by induction on n that u^n is an étale covering which is falois if u is so and this will close the proof of 1). Now by (1.1) u^{n+1} is equivariant with respect to the map $u^n \times Tu: X^n \times_X TX \to Y^n \times_Y TY$. Since u is étale we have a natural isomorphism $TX \cong X \times_Y TY$ hence $u^n \times Tu$ identifies with the map $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times id: X^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY$. Since $u^n \times_Y TY \to Y^n \times_Y TY \to Y^n \times_Y TY$.

To prove 2) we may assume X and Y affine. Let $u^{\infty}: X^{\infty} \to Y^{\infty}$ be the morphism of D-scheme induced by u, $u^{\infty}=\lim_{n \to \infty} u^n$. Since $\mathcal{O}(X^n)$ is finite over $\mathcal{O}(Y^n)$, we get that $\mathcal{O}(X^{\infty})$ is integral over $\mathcal{O}(Y^{\infty})$ hence u^{∞} is closed for the Zariski topology. This (and the "differential Nullstellensatz") immediately imply that u is Δ -closed.

- (1.7) Remarks. 1) The Δ -closedness of étale coverings implies for instance that if $(\mathcal{A}_g)_{reg}$ is the smooth locus of the moduli space of principally polarized abelian \mathcal{U} -varieties of dimension g then the locus of all points in $(\mathcal{A}_g)_{reg}$ corresponding to abelian \mathcal{U} -varieties of Δ -rank g is Δ -closed for all g (6.8).
- 2) Any Δ -closed immersion of smooth $\mathcal U$ -varieties (in the sense of $\lceil B_2 \rceil$ (1.6)) hence in particular any closed immersion of smooth $\mathcal U$ -varieties is Δ -closed in the sense of (1.6).
- 3) If $u:X\to Y$ is a Galois covering of smooth $\mathcal U$ -varieties with group G ramified along the divisor D=Y and if $Y\in\mathcal O^\Delta(X)^G$ then the function $Y:Y\to \mathcal U$ induced by $\mathcal Y$ (which is well defined set theoretically but which is not in general Δ -polynomial on Y of (1.5)) is nevertheless Δ -polynomial on $Y\setminus D$. Here is a typical example. Let $u:X=A^1\to Y=A^1$ be the Galois covering defined by $u(y)=y^a$, $a\geqslant 2$ an interger and consider the Δ -polynomial function $\psi:X\to \mathcal U$, $\psi(y)=(y^a)^a$. Clearly ψ is invariant with respect to the Galois group of u and we have $\psi=\psi\circ u$ where $\psi:Y\setminus \{0\}\to \mathcal U$ is defined by $\psi(y)=a-y^a=(y^a)^a$.

We see that ψ is Δ -polynomial on Y\\0\\1 (embed Y\\0\\1)into \mathcal{U}^2 via $y\mapsto (y,$

 y^{-1}) and then ψ is given by the Δ -polynomial a^{-2} w_2^{a-1} $(w_1)^{a-1}$ where (w_1, w_2) are coordinate on \mathcal{U}^2) and not Δ -polynomial on Y. So ψ may be viewed as having a "singularity" at $0 \in Y$ which can be "resolved" by composing with a finite covering of Y ramified at 0. The study of such "singularities" of Δ -polynomial functions deserves further investigation.

(1.8) PROPOSITION. Let X be a smooth \mathcal{U} -variety and UC X a Zariski open subset whose complement has codimension $\geqslant 2$. Then the restriction maps $\mathcal{O}^{(n)}(X) \to \mathcal{O}^{(n)}(U)$, $\mathcal{O}^{\Delta}(X) \to \mathcal{O}^{\Delta}(U)$ are isomorphisms. In particular $\mathcal{O}^{(n)}(X)$, $\mathcal{O}^{\Delta}(X)$ are birational invariants of the smooth projective variety X.

Proof. If (U^n) , (X^n) are the infinite prolongation sequences associated to U and X then U^n is the preimage of U via the projection $X^n \to X$ hence $X^n \setminus U^n$ has codimension $\geqslant 2$ in X^n and we are done.

(1.9) LEMMA. Let X and Y be smooth $\mathcal U$ -varieties and $(X^n), (Y^n),$ " $((XxY)^n)$ be the infinite prolongation sequences associated to X,Y and XxY. Then we have natural isomorphisms

$$(x \times Y)^n \simeq X^n \times Y^n$$

compatible with the corresponding structure maps of the two prolongation sequences $((X\times Y)^n)$ and $((X^n)\times (Y^n))$.

Proof. It is a formal consequence of the fact that a functor admitting a left adjoint commutes with products.

(1.10) PROPOSITION. Let X and Y be smooth $\mathcal U$ -varieties. Then we have natural isomorphisms $\mathcal O^{(n)}(\mathsf{X}\mathsf{x}\mathsf{Y}) \cong \mathcal O^{(n)}(\mathsf{X}) \otimes \mathcal O^{(n)}(\mathsf{Y})$, $\mathcal O^{\Delta}(\mathsf{X}\mathsf{x}\mathsf{Y}) \cong \mathcal O^{\Delta}(\mathsf{X}) \otimes \mathcal O^{\Delta}(\mathsf{Y})$.

$\mathcal{O}^{(n)}(\mathsf{X} \times \mathsf{Y})_{\cong} \mathcal{O}((\mathsf{X} \times \mathsf{Y})^n)_{\cong} \mathcal{O}(\mathsf{X}^n \times \mathsf{Y}^n)_{\cong} \mathcal{O}(\mathsf{X}^n)_{\otimes} \mathcal{O}(\mathsf{Y}^n)_{\cong} \mathcal{O}^{(n)}(\mathsf{X})_{\otimes} \mathcal{O}^{(n)}(\mathsf{Y})_{*}.$

(1.11) COROLLARY. Let X be a smooth $\,\mathcal U\,$ -variety and E a vector bundle on X. Then we have a natural isomorphish

$$\mathcal{O}^{\Delta}(\mathbb{P}(E)) \simeq \mathcal{O}^{\Delta}(X)$$

Proof. The question is local on X (for the Zariski topology). So we may assume E is trivial. Then we conclude by (1.9) and (1.4).

(1.12) PROPOSITION. Let X be a smooth $\mathcal U$ -variety with $\mathcal O(X)=\mathcal U$, assume we are given a structure of D-scheme on X and let X_D be the subset of X consisting of all points $x\in X$ such that the maximal ideal of $\mathcal O_{X_*X}$ is a Δ -ideal. Then any Δ -polynomial function on X is constant on X_D .

Proof. We shall denote by X^* the D-scheme X so $X=X^{*!}$. Let $\mathcal{X}: X^{\infty !} \to X$ be the canonical projection. By adjunction the identity $\mathbb{I}_X \in \mathcal{X} \to \mathbb{I}_X$ be the canonical projection. By adjunction the identity $\mathbb{I}_X \in \mathcal{X} \to \mathbb{I}_X$ be the canonical projection. By adjunction the identity $\mathbb{I}_X \in \mathcal{X} \to \mathbb{I}_X$ be the canonical projection. By adjunction the identity $\mathbb{I}_X \in \mathcal{X} \to \mathbb{I}_X$ be the canonical projection. By adjunction the identity $\mathbb{I}_X \in \mathcal{X} \to \mathbb{I}_X$ so $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction the identity $\mathbb{I}_X \in \mathbb{I}_X$ be the canonical projection. By adjunction to $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction the identity $\mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction $\mathbb{I}_X \to \mathbb{I}_X \to \mathbb{I}_X$ be the canonical projection. By adjunction the identity $\mathbb{I}_X \to \mathbb{I}_X \to$

(1.13) COROLLARY. Let X be a smooth $\mathcal U$ -variety with $\mathcal O$ (X)= $\mathcal X$ and assume X descends to $\mathcal K$. Then any Δ -polynomial function on X is constant on $\mathcal X_{\mathcal K}$.

"split" D-scheme structure obtained by lifting $\mathcal S$ from $\mathcal U$ to $X \otimes \mathcal U$; in this case $X_D = X_K$ and we are done.

- (1.14) Remarks. 1) Proposition (1.12) can be useful also in the case when X does not descent to \mathcal{K} . For instance if X is the universal extension of an abelian \mathcal{U} -variety A then $\mathcal{U}(X)=\mathcal{U}$ and \mathcal{L} lifts from \mathcal{U} to X (cf. $[B_3]$, Chapter 3 section 2; the latter is also a consequence of Grothen-dieck's theorem that X is "crystalline in nature"). On the other hand if A dose not descend to \mathcal{K} the same will hold for X!.
- 2) Assume X is a smooth \mathcal{U} -variety which descends to \mathcal{K} with $(\mathcal{O}(X) = \mathcal{U})$ and assume that for any $X \notin X$ there exists $\sigma \in A$ and $X \in \mathcal{K}$ such that $X \in \sigma(X_{\mathcal{K}})$ and $\sigma(X_{\mathcal{K}}) \cap X_{\mathcal{K}} \neq \emptyset$. Then any Δ -polynomial function on X is constant (indeed any $Y \in \mathcal{O}(X)$ is constant on any set of the form $\sigma(X_{\mathcal{K}})$ with $\sigma \in A$ and $\sigma(X_{\mathcal{K}})$. This gives in particular one more proof of the that $\mathcal{O}^{\Delta}(\mathbb{P}^N) = \mathcal{U}(cf, [B_1])$ (6.3) or (1.4) of the present paper):

(1.16) The above remarks can be used to make a rough discussion of Δ -polynomial functions on algebraic surfaces. We expect a deener discussion could be done if more results along the work of Sakai [Sak] could be obtained. Let X be a smooth projective surface over $\mathcal U$. By (1.8) we have $\partial^{\Delta}(X) \cong \partial^{\Delta}(X_1)$ where X_1 is a minimal model. So we may assume X itself is a minimal model. Then according to the classification of surfaces X is in one of the following situations:

- 1) X is rational. Then $\mathcal{O}^{\Delta}(X) = \mathcal{U} \text{ cf.}(1.4)$
- 2) X is ruled irrational. If X \rightarrow B is the rulling then $\mathcal{O}^{\Delta}(X) \simeq \mathcal{O}^{\Delta}(B)$ cf.(1.11)
 - 3) X is a K3 surface. Then $\mathcal{O}^{(1)}(X) = \mathcal{U}$ cf. (1.4).
 - 4) X is an Enriques surface. Then $\mathcal{O}^{(1)}(X) = \mathcal{U}$ cf.(1.4).
- 5) X is an abelian surface. Then $\mathcal{O}^{\Delta}(X)$ is a Hopf Δ - \mathcal{U} -algebra generated as an algebra by its space of primitives, which is a finitely generated D-module (cf. $\begin{bmatrix} B_1 \end{bmatrix}$ (6.1) for additional information).
- 6) X is a bielliptic surface, $X=(E_1\times E_2)/G$ where E_1 are elliptic curves, $G\subset E_1$ is a finite subgroup acting on E_1 by translations and on E_2 by algebraic group automorphisms. Then $\mathcal{O}^{\Delta}(X)=(\mathcal{O}^{\Delta}(E_1)\otimes\mathcal{O}^{\Delta}(E_2))^G$ cf.(1.10) and (1.6). Now $\mathcal{O}^{\Delta}(E)=\mathcal{U}_{YY}$ (= Δ -polynomial algebra in one variable) for any elliptic curve, cf. $\begin{bmatrix} B_1 \end{bmatrix}$ (1.6); if rank Δ E=0, y corresponds to an element of order 1 while if rank Δ E=1, y corresponds to an element of order 2. So $\mathcal{O}^{\Delta}(X)=\mathcal{U}_{Y1}^2,Y_2$ with Y_1,Y_2 Δ -indeterminates and Y_1 is fixed by G.

Moreover there is a character $\chi: \mathcal{G} \to \mathcal{U}$ such that $\mathrm{gy}_2 = \chi(\mathrm{g}) \mathrm{y}_2$; indeed G acts on $\mathcal{O}^\Delta(\mathrm{E}_2)$ via its action on $\mathrm{Ch}_\Delta(\mathrm{E}_2)$ and this action is compatible with the filtration by orders so G invariates the subspace $\mathcal{U}\mathrm{y}_2$ of $\mathcal{U}\mathrm{y}_2$.

Consequently $\mathcal{O}^{\Delta}(X) = \mathcal{U}\{y_2\}^G \{y_1\}$ while $\mathcal{U}\{y_2\}^G$ can be computed in an obvious way.

⁷⁾ X is an elliptic surface with Kodaïra dimension 1.

8) X has Kodaira dimension 2.

In cases 7) and 8) very different things can happen. For instance in case 8) if X is a hypersurface in \mathbb{P}^3 , $\mathcal{O}^{(4)}(x) = \mathcal{U}$ cf.(1.4) while if $X = C_1 \times C_2$ where C_1 are curves of genus $\geqslant 2$ then by (1.10) $\mathcal{O}^{\Delta}(x) = \mathcal{O}^{\Delta}(c_1) \otimes \mathcal{O}^{\Delta}(c_2)$. In the latter case if C_1 do not descend to \mathcal{K} then there exist $\mathcal{V}_1, \ldots, \mathcal{V}_N \in \mathcal{O}^{(1)}(x)$ providing a Δ -closed embedding $X \to \mathcal{U}^N$ (because by (1.9) $x^1 = c_1^1 \times c_2^1$ hence x^1 is affine cf $x \in \mathbb{F}_1$ (2.1).

2. Non-degeneracy of characters

Let $u:X \longrightarrow Y$ be a morphism of smooth $\mathcal U$ -varieties. For any Δ -polynomial function $\mathcal V$ on Y we have

where "ord(φ)" means "order of φ " cf. $[B_1]$ (3.3). We shall say that φ is non-degenerate with respect to u if equality ord(φ , u)=ord(φ) holds. The aim of this section is to prove the following:

- (2.1) THEOREM. Let $u:X \to G$ be a morphism from a smooth $\mathcal U$ -variety to a commutative algebraic $\mathcal U$ -group such that $0 \not\in u(X)$ and u(X) generates G. Then all Δ -polynomial characters of G are non-degenerate with respect to u. We need a preparation

 $\begin{array}{l} u_N(x_1,\ldots,x_N) = \sum\limits_{i=1}^N u(x_i) \text{ is dominant. Hence there exists a noint } x=(x_1,\ldots,x_N) \\ \dots,x_N) \text{ such that the tangent map } T_xu_N:T_x(Xx\ldots,xX) \longrightarrow T_{u_N(x)}G \text{ is surjective} \\ \text{hence the map } \bigoplus\limits_{i=1}^N T_i X \longrightarrow L(G) \text{ defined by } (t_1,\ldots,t_N) \longmapsto \sum\limits_{i=1}^N (T_{x_i}(L_{u(x_i)},u^u))(t_i) \\ \text{is surjective and we are done.} \end{array}$

(2.3) Let G be as in (2.1), let B its linear part i.e. its maximum connected subgroup and A=G/B. Then we claim that there is an exact sequence

$$0 \to X_{a}(G) \xrightarrow{res} X_{a}(B) \xrightarrow{a} H^{1}(\mathcal{O}_{A})$$

where a is the "defining map" of the extension $0 \to B \to G \to A \to 0$ according to Serre's description of Ext(A,B) (cf. $\left[B_1\right](2,3)$ for notitions). To check this, recall that we have $G \cong B_1 \times G_1$ where B_1 is an algebraic vector group and $\mathcal{O}(G_1) = \mathcal{U}(G \cap B_3)$, Chapter 3, section 2) so if B_2 is the linear part of G_1 we have induced isomorphisms $B \cong B_1 \times B_2$, $X_a(G) \cong X_a(B_1)$, $X_a(B) \cong X_a(B_1) \oplus X_a(B_2)$, the induced map $X_a(B_2) \to H^1(\mathcal{O}_A)$ is injective and $X_a(B_1) \to H^1(\mathcal{O}_A)$ is the zero map. This checks our claim.

 $(2.4) \ \text{Let G be as in } (2.1) \ \text{and } (\mathfrak{S}^n) \ \text{its in_finite prolongation}$ sequence. Let $\text{Ch}_n(\mathfrak{G}) = \text{Ch}_{\triangle}(\mathfrak{S}) \wedge \mathcal{O}^{(n)}(\mathfrak{S})$. By $[B_1]$ section 3, $\text{Ch}_n(\mathfrak{G})$ identifies with $X_a(\mathfrak{S}^n)$. We claim there is an exact sequence

$$0 \rightarrow X_a(g^{n-1}) \xrightarrow{\alpha} X_a(g^n) \xrightarrow{\beta_n} L(g)^o$$

where α_n is induced by the natural projection $\widehat{\pi}_n \colon \mathbb{G}^n \to \mathbb{G}^{n-1}$ while \mathcal{J}_n is induced by restriction (we identify L(G) with ker $\widehat{\pi}_n$ of $[B_1]$ (2.2)). Indeed if \mathbb{B}^n is the linear part of \mathbb{G}^n and $A = \mathbb{G}^n/\mathbb{B}^n$ then we have an exact sequence of algebraic groups $0 \to L(\mathbb{G}) \to \mathbb{B}^n \to \mathbb{B}^{n-1} \to 0$ hence an induced exact sequence $0 \to X_a(\mathbb{B}^{n-1}) \xrightarrow{\beta_n} X_a(\mathbb{B}^n) \to L(\mathbb{G})^0$. Now looking at the diagram with exact rows (cf. (2.3) above):

we get that coker α_n is contained in coker β_n and our claim is proved.

(2.3) Proof of (2.1). Let $Y \in Ch_n(G) \setminus Ch_{n-1}(G)$. We must prove that $Y \circ u \notin O^{(n-1)}(X)$. By (2.4) $Y \circ Corresponds$ to an element (still denoted by) $Y \in X_a(G^n)$ whose restriction to L(G) is a non-zero functional on L(G). Let G^{n-1}_O be an open Zariski neighbourhood of 0 in G^{n-1} on which the L(G)-torsor $G^n \to G^{n-1}$ has a section $S: G^{n-1}_O \to G^n$ and let G^n_O be the preimage of G^{n-1}_O in G^n ; let moreover $G^n \to G^n$ be any open subset of $G^n \to G^n$ over which the G^n to $G^n \to G^n$ has a section $G^n \to G^n$ has a section $G^n \to G^n$ and let G^n be the preimage of $G^n \to G^n$ and let $G^n \to G^n$ over which the $G^n \to G^n$ in G^n consider now the diagram

$$X_{o}^{n} \xrightarrow{u^{n}} G_{o}^{n} \subset G^{n} \xrightarrow{\varphi} G_{a}$$

$$\uparrow \sigma \qquad \qquad \uparrow \sigma$$

$$X_{o}^{n-1} \times_{X} TX \xrightarrow{v^{n}} G_{o}^{n-1} \times L(G)$$

where $\psi=\psi\circ\sigma$, $\sigma(g_{n-1},\theta)=s(g_{n-1})+\theta$, $g_{n-1}\in G_0^{n-1}$, $\theta\in L(r)$ (the sum "+" is taken in the group G^n) and where $v^n:=\sigma^{-1}$ in τ , $\tau(x_{n-1},\theta)=t(x_{n-1})+\theta$, $(x_{n-1},\theta)\in X_0^{n-1}\times TX$ (the sum "+" here indicates the torsor operation). With notations above we have

$$(*) \quad \psi(g_{n-1},\theta) = \psi(s(g_{n-1}) + \theta) = \psi(s(g_{n-1})) + \psi(\theta)$$

By (1.1) u^n is equivariant with respect to the map

$$u^{n-1} \times Tu : X_o^{n-1} \times_{\chi} TX \longrightarrow G_o^{n-1} \times_{G} TG = G_o^{n-1} \times L(G)$$

hence we have

$$v^{n}(x_{n-1}, \theta) = (u^{n-1}(x_{n-1}), \overline{v}^{n}(x_{n-1}) + (T_{x}(L_{u(x)-4}, u))(\theta)$$

where xEX is the image of $x_{n-1} \in X_0^{n-1}$ and $\bar{v}^n : X_0^{n-1} \longrightarrow L(G)$ is the composition

$$X_o^{n-1} \xrightarrow{t} X_o^n \xrightarrow{u^n} G_o^n \xrightarrow{\sigma^{-1}} XL(G) \xrightarrow{proj} L(G)$$

Let $\pi: X_0^{n-1} \times_X TX \to X_0^{n-1}$ be the first projection. Then for $x_{n-1} \in X_0^{n-1}$ the image of $\pi^{-1}(x_{n-1})$ via v^n equals

$$\left\{u^{n-1}(\times_{n-1})\right\}\times(\bar{\operatorname{v}}^n(\times_{n-1})+\mathcal{F}(\times))$$

where $f(x)=(T_x(L_{u(x)}^{-1} \circ u))(T_x X) \subset L(G)$. Consequently by equality (**) above $\psi(v_n(\pi^{-1}(x_{n-1})))$ equals

$$(**) \ \forall (s(u^{n-1}(x_{n-1}))) + \forall (\vec{v}^{n}(x_{n-1})) + \forall (\vec{v}^{n}(x_{n-1}$$

Let $\mathfrak{T}_n: X^n \to X^{n-1}$ be the canonical projection. Then the image of $\mathfrak{T}_n^{-1}(x_{n-1})$ via $\varphi \circ u^n$ equals (**) too. Since $\Psi(L(G)) \neq 0$, by (2.2) we have $Y(x) \not = \varphi$ Ker Y for x_{n-1} generic in X_0^{n-1} . So for such an x_{n-1} the set (***) does not reduce to a point; consequently $\varphi \circ u^n$ does not factor through \mathfrak{T}_n and our Theorem is proved.

(2.6) The most interesting case in our Theorem above is when X is a smooth projective curve and $u:X\to \mathbb{C}$ is its canonical map into its Jacobian G=J(X). It happens in this case that there are plenty of Δ -polynomial functions on G which are degenerate with respect to u. So the non-degeneracy property in (2.1) is specific to characters! For instance if X descends to X

the map $u^1:X^1 \to G^1$ identifies with the tangent map $Tu:TX \to TG=G\times L(G)$ and as well known the image of the composition

$$TX \longrightarrow GxL(G) \longrightarrow proj L(G)$$

is the cone over the canonical image of X into $\mathbb{P}(H^0(\omega_X))$. So any hypersurface in $\mathbb{P}(H^0(\omega_X))$ containing this image will provide a non-zero form in \triangle -polynomial characters of G which vanishes on X hence is degenerate with respect to $u: X \to G$.

(2.7) Let us see what Theorem (2.1) gives in case $G=G_a^N=\mathcal{H}^N$ and X a closed subvariety of \mathcal{H}^N containing $O=(0,\ldots,0)$ and not contained in any hyperplane passing through 0. If J is the ideal of X in $\mathcal{U}[y_1,\ldots,y_N]$ then (2.1) says that the ideal $[J]\subset\mathcal{U}\{y_1,\ldots,y_N\}$ does not contain Δ -polynomials of the form L+F with L a homogeneous non-zero linear Δ -polynomial of order n and F a Δ -polynomial of order \leq n-1. We expect that the latter statement can be proved "directly" using the usual theory Δ -ideals in the ring of Δ -polynomials (characteristic sets, a.s.o).

3. Strongly Δ -closed sets

 $(3.1) \text{ Let } \Sigma \text{ be a } \Delta\text{-closed subset of } \mathcal{U}^N. \text{ We will say that } \Sigma \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if, upon embedding } \mathcal{U}^N \text{ into } \mathbb{P}^N \text{ via } (x_1,\ldots,x_N) \mapsto (1:x_1:\ldots:x_N), \ \Sigma \text{ remains } \Delta\text{-closed in } \mathbb{P}^N. \text{ Note that } \mathcal{U}^N \text{ and } \mathbb{K}^N \text{ are not strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ (although they are of course } \Delta\text{-closed}). \text{ It is easy to check the following invariance property of the notion defined above. Let } \alpha:\mathcal{U}^N \to \mathcal{U}^M \text{ be an affine morphisms (i.e. the composition of a translation with a linear map); then a subset } \Sigma \text{ of } \mathcal{U}^N \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ if and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ is and only if } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ is any } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ is any } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ is any } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ is any } \alpha:\mathbb{Z} \text{ is strongly } \Delta\text{-closed in } \mathcal{U}^N \text{ is any } \alpha:\mathbb{Z} \text{ is any } \alpha:\mathbb$

(3.2) THEOREM. Assume X is a smooth projective curve over $\mathcal U$ of genus $g \geqslant 2$ which does not descend to $\mathcal K$ and let $\mathcal V_d: X \to \mathcal U$ be the Δ -pluricanonical map of degree d cf. $\left[B_1\right]$. Then for d $\gg 0$, $\left[\mathcal V_d(X)\right]$ is strongly Δ -closed in $\mathcal U^N$ d. Moreover if X is non-hyperellintic and rank Δ (X)=g then $\left[\mathcal V_d(X)\right]$ is strongly Δ -closed for d $\gg 3$.

Proof. We may assume the first component of Ψ_d is 1 and denote by $\overline{\Psi}_d: X \to \mathcal{U}^{N_d-1}$ the composition of Ψ_d with the projection $\mathcal{U}^{N_d} \to \mathcal{U}^{N_d-1}$ onto the last N_d-1 components. By (3.1) it is sufficient to prove that $\overline{\Psi}_d(X)$ is strongly Δ -closed in \mathcal{U}^{N_d-1} . With notations from $\left[B_2\right]$, section 2 we have a commutative diagram

$$\mathbb{P}(\mathcal{E}) \xrightarrow{\Psi_{dD}} \mathbb{P}^{N_{d}-1} = \mathbb{P}(\mathbb{H}^{O}(\mathcal{O}_{\mathbb{P}}(\mathcal{E})^{(dD)}))$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow N_{d}-1$$

$$\chi^{1} \xrightarrow{\Psi_{d}} \mathbb{Q}^{N_{d}-1} \qquad \qquad \vdots$$

where D=P($\omega_{\rm X}$) \in P(£), we still denoted by $\Upsilon_{\rm d}$ the morphism of schemes induced by the Δ -polynomial map $\Upsilon_{\rm d}: {\rm X} \to {\mathcal U}^{\rm d-1}$, $\Upsilon_{\rm dD}$ is the natural rational map defined by the linear system $|{\rm dD}|$ and ${\mathcal U}^{\rm d-1} \to {\mathbb P}^{\rm d}$ is defined by $({\rm u}_1, \dots, {\rm u}_{{\rm N}_{\rm d}-1}) \vdash \to {\rm val}(1:{\rm u}_1:\dots:{\rm u}_{{\rm N}_{\rm d}-1})$. By $[{\rm B}_2]$ (2.1), $\Upsilon_{\rm dD}$ is a closed immersion for ${\rm d} \gg 0$ so to check that $\Upsilon_{\rm d}({\rm X})$ is strongly Δ -closed for ${\rm d} \gg 0$ it is sufficient to check that the composed map ${\rm h}:{\rm X} \xrightarrow{\nabla_{\rm d}} {\rm X}^1 \to {\rm P}(E)$ has a Δ -closed image. But this map is a section of the projection ${\rm T}:{\rm P}(E) \to {\rm X}.$ Now h corresponds to a morphism of ${\rm D}$ -schemes ${\rm h}^\infty:{\rm X}^\infty \to {\rm P}(E)^\infty$ which is a section of ${\rm T}^\infty:{\rm P}(E)^\infty \to {\rm X}^\infty$. Since ${\rm T}^\infty$ is separated (indeed ${\rm P}(E)^\infty! \to {\rm P}(E)$ is affine hence separated, ${\rm P}(E) \to {\rm Spec} \ {\mathcal U}$ is separated hence ${\rm P}(E)^\infty! \to {\rm Spec} \ {\mathcal U}$ is separated hence so is ${\rm T}^\infty$) and since an ${\mathcal U}$ -point of ${\rm P}(E)$ of belongs to the image of ${\rm h}^\infty_{\mathcal U}$ if and only if it lies in the pull-back of the diagonal of $({\rm P}(E)^\infty \times {\rm V}_{\rm D}(E)^\infty)$ one immediately via the morphism ${\rm id}{\rm xh}^\infty$ of ${\rm h}^\infty$ and ${\rm P}(E)^\infty$ one immediately

gets that the image of h is Δ -closed.

Let's prove the assertion about non-hyperelliptic curves of \triangle -rank g.

By $[B_2]$ (2.5) for any such X, |dD| separates points and tangent vectors on $\mathbb{P}(\mathcal{E})\setminus D$ for $d\geqslant 3$. If $p\in\mathbb{P}(\mathcal{E})\setminus D$, $q\in D$ then clearly |dD| separates p and q.

Claim. If $d \geqslant 3$ then 1) for any $p, q \in D$, $p \neq q$, |dD| separates p and q a

$$0 \to S^{d-1} \mathcal{E} \xrightarrow{S} S^{d} \mathcal{E} \to \mathcal{O}_{D}(dD) \to R^{1} \mathcal{F}_{*} \mathcal{O}((d-1)D) = 0$$

hence $\mathcal{O}_D(D) = \text{Coker } (s: \mathcal{O} \to \mathcal{E})$; but the latter is \mathcal{W}_D . Consequently $\mathcal{O}_D(dD) = \mathcal{O}_D(dD)$ is very ample for d>1 and to check our Claim it is sufficient to check that for d 3 all sections of $\mathcal{O}_D(dD)$ lift to sections of $\mathcal{O}(dD)$. But this follows from the fact that $H^1(\mathcal{O}((d-1)D)) = H^1(S^{d-1}\mathcal{E}) = 0$, cf $[B_2](2.3)$, and our Claim follows.

To conclude the proof of (3.2) we must prove that if $d \geqslant 3$ then $\frac{2}{3}$

any $p \in D$ and any $t \in T_p P(\mathcal{E}) \setminus T_p D$ there exists $E \in \left| dD \right|$ such that $t \notin T_p E$. It is sufficient to find $F \in \left| (d-1)D \right|$ with $p \notin Supp F$ because then we may take E = D + F.

If d>4 this is clear from the Claim above. So assume d=3. By $[B_2]$ (2.3) we have an exact sequence

$$\mathrm{H}^{\mathrm{O}}(\mathcal{Q}(\mathrm{2D})) \to \mathrm{H}^{\mathrm{O}}(\mathrm{W}_{\mathrm{D}}^{\otimes 2}) \xrightarrow{\partial} \mathrm{H}^{1}(\xi) = \mathcal{U}$$

and Ker $\partial_X : H^0(\omega_X^{\otimes 2}) \to \mathcal{U}$) where $\partial_X \in H^0(\omega_X^{\otimes 2})^0$ is the element corresponding to the Kodaira-Spencer class $\int_X (\partial_x) \in H^1(\omega_X^{-1}) (\int_X : \operatorname{Der} \mathcal{U} \to H^1(\omega_X^{-1}))$ via Serre duality. Now we can consider the non-complete linear system $|W_X^{\otimes 2}|$. Clearly an F as above can be found if we can prove that $|Ker|\partial_X|$ is base point free. Let $V = H^0(\omega_X^{\otimes 2})$ and let $b: V \times V \to \mathcal{U}$ be the non-degenerate bilinear map induced by $V \otimes V \to H^0(\omega_X^{\otimes 2}) \xrightarrow{\partial_X} \mathcal{U}$. For any subspace $W \subset V$ (respectively for any element $x \in V$) we let $W \subset V$ (respectively $v \in V$) be the orthogonal with respect to b. Now for any $p \in X$ let V_p be the space of all $v \in V$ which vanish at p and choose $v_1 \in V$ such that $v_1 \notin V_p$ and $v_1 \notin V_p$. Moreover choose $v_2 \in v_1$ such that $v_2 \notin V_p$. Then the section $v_1 \otimes v_2 \in H^0(\omega_X^{\otimes 2})$ does not vanish at p and belongs to $Ker \partial_X$. This proves the fact that $|Ker \partial_X|$ is base point free and closes the proof of our Theorem.

References

- $\begin{bmatrix} B_1 \end{bmatrix}$ A.Buium, Geometry of differential polynomial functions I: algebraic groups, Preprint INCREST, 55/1989.
- B₂] A.Buium, Geometry of differential polynomial functions II: algebraic curves, Preprint INCREST, 1/1990.
- $\begin{bmatrix} B_3 \end{bmatrix}$ A.Buium, Algebraic D-groups and Differential algebraic groups, to appear.
- [J] J.Johnson, Prolongation of integral domains, J.Algebra 94-1(1985), 173-211.
- [Sak] F.Sakai, Symmetric powers of the tangent bundle and classification of algebraic varieties, in: Algebraic Geometry,

 Copenhagen 1978, L.N.732, Springer 1979.