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These notes are an extended version of the author's

survey "Jordan algebras with applications" (Preprint INCI REST,
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ITTI. Jordan algebras in différential geometry. |
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VI. JordanA%riple systpms and Jordan pairs in Bﬂalyul
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JORDAN STRUCTURES WITH APPLICATIONS, I.

‘

Radu LORDANESCU

The early\thirtjes witnessed the pubbklication of Pascuai
JORDAN's papers from which Jerdan algebras emerged, For fifty
five years since the creation of Jordan algebras, various kinds
of Jordan structures (&lgéﬁrasg triple systems, pairs) have been
intensively studied, end a large number of importent results have
been obtained. At the same time an impressive vériety of applica-
tions have been explored with several surprising connections.

The study of Jordan structures énd their applications is at pre-
sent a wide-ranging field of mathematical research.

Broadly speeking, the aim of these notes is to present the
most important applications of Jordén structures (algebras,triple
systems, and pairs), with due emphasis on geometrical applica-

tions, Many cpen proolems and comuents are givene.
The close connection betwsen Jordan and Lie structures is

not examined in detail, as it may find its due place in a proper
treatment of Jordan structures. Let us mention in this respect
McCrimmon*sgremark that "... if you open up a Lie algebra and
look inside, 9 times out .of 10 there is a Jordan algebra (or pair)
which makes it work® {see McCRIMUON [ 71e]) ‘end Zel'manov's con-
tention that M... Lie algebras with finite grading may be‘righte«
ously included into the Jdrdan theory® (see ZEL'MANOV [110 hj)@
We shall present in the four sections below the defini-
tions and besic properties which are needed 1o understand the
applications. For an intrinsic treatement of Jordan structures

the reader is referred to the excellent books by BRAUN and
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KOEGIER [18], (see also KOECLER [59 b]), JACOBSON [47 a,d], LOOS
[66’5,&], MEYBERG [77 e], ZHEVLAKOV, SLIN'KO, SHESTAKOV, SHIRSHOV
[115]. For a comprehensive surveys on this topic, sa@[jllg 59y
7j.ej@ In Section 5 some of the connections between Jordan end
Lie structures that have become classical references together
with some recent developments are briefly recalled. In Section 6
some of the moét important results of Russian school at Novogi-
birsk are presented.

Included is a recent rather extensive bibliography giving

additional references to work not covered by the text.

§ L. Jordan algebras

Jordan algebras emerged in the early thirties with JORDAN's
papera[:4g a,b,c] on the algebraic formulation of quantum mecha-
nics. The name "Jordan algebras" was given by Albert in 1946.

Definition. Let J be a vector space over a field IF with -

characteristic different from two., Let ¢: JXJ —>J be an F-bi-
linear map, denoied by ¢: (x,y) — xy, satisfying the following
conditions: .

Xy = yx and xg(yx) = (xzy)x for all x,y€ J,

Then J together with the product defined-by ¢ is called a Jordan

par S

IE

; lgéhgg over F .

Example, If & is an. associative algebra over [, and we
define a new productéf(x,y) 4 % (x¢y+yex),'whéra the dot denotes
the assogiative product of 4, we obtain-a Jordan slgebra, It is
denoted by A(+),

v Remark 1. Jordan was the first who studied the properties
of the product xy from the above example iﬁ the case when [F is

the field of reals. He proved a number of properties of this pro-
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duct, and showed that these were all consequences of the two
identities above.
Remark 2. Recently, Zel‘menov obtained interesting results

for infinite dimensional Jordan algebras. A good account of

7ol ‘manov's work as well as of McCrimmon‘s extensi@n to quadratic
Jordan algebras, can be found in E47’d] and f71 ij}(see also
{110 n)) ena § 6.

Comments. In [59 g] KOECHER conoldcred commutative nonas-
sociative algebras over unital (commutative and associative)

rings of scalars and defined the Jordanator)ja,b,c;dj := (ab}(cd)+

+ (ac)(ba) + (be)(ad) - a((be)d) - b((ac)d) - ¢((ab)d) to measure
how far these algebras are from being Jordan. Such an algebra is

Jordan if and only if all Jordanators are Zero.

" Remark, A Jorden algebra J is power-associative, i.e.

& - i -

&P = P pop any xedJ and a@ll myne 7, mynzl (the powers are
. . . n+

defined inductively by x* 1= x, x° L= W .

I—E'9—395”3:@"755"~5-3~~I~1~“‘4Cm a Jordan algebra J consider the left multie
plication L given by L(x)y := Xy, X,JE€J.

Remark. In general L (xy) # L(x)L(y) for x,y from a Jordan
algebra (which is not associative). This holds for, €.8.y J = Af'

for noncommutatave 4,

Definition. The map P deflpedby P(x) 35 2 LZ(X) - L(xz),

x€J, is called the quadratic repxemvntatlon of J., When'd = A(+)

it assumes the form P(x)y = meay@‘

Proposition l.l. Bor ﬁny iy ed the follow1nv fundamenual :

formula hold: P(P(x)y) = P(x)P(y)P(x).,

Remark 1. For P(x,y) given by P(x,y) o= 2(L(x)L(y) +
+ L(y}L(x) - L{xy)) we have P(xty) = P(x) +‘P(X,y) + P(y) ,x,y€J.
: Remark 2, In general, P(xy) # P(x)P(y), x,y¢ J (as can

T = &('5’) )'

easily be seen for J

o
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Proposition 1.2, Suppose that J has a unit element e and

let x be an element of J, Then P(x) is an automorphism of J if
- and only if x° = e, If P(x) is an avtomorphism of J, then it is
involutive,

Definition, 4n element xedJ is called invertible if the

map P(x) is bijective. In this case the inverse of x is given
by x 1= (P(x)“x. (In case J = é+>9 this is the usual inverse
in the associative algebra & ),

Remark 1, We have ()™t = P(x"l)y XEJ,

Remark 2. 4n element x is invertible with inverse y if

y o
and only 1f xy e, x* ¥y = x,

Definition. Let £ be an element of J., Dafine a new product
on the vector space J by
xdy as 2lyf) + ylxf) - (x)L.
The vector space J together with this product is called the muta-~

tion (homotope) of J with respect to f and is denoted by J, peo LIf

J = A€+% then Jf = (Af)(+) where Af is the assqciative mutation
o' % y 1= xcfey)el

Proposition 1.3.Any mutation Jf of J, fe€J, is a Jordan

algebra and its quadratic representation Pf is given by Pf(x) =
= P(x)P(L)., | 2

Proposition 1.4, The algebra Jey £€J, has a unit element

if and only if £ is invertible in J; in this case the unit ele-
ment of Jp 1s f “l, In this situation we call Je the f-isotope

of J.
Remark. If f is invertible in J, then the set of invertible

. elements of J coincides with the set of invertible elements of er
Note. From this point on m&ny of ‘the results requlre that
J be finite~dimensional.

Notation. Denote by
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e,

Tdemp (J) u={c!céd} 02‘“0}9

H

ﬁwol(J):mgwhNGngz

i

. the set of involutivey respectively idempotent (zerc included),
elements of J. Here J is supposed to contain & unit element e,
Remark. The map Idemp (J) => Invol (J) given by ¢ —% 2c-e
is a bijection, |
For en element ¢ of Idemp (J) we have:
L{c) (L(c)~Id) (2L(x)-Id) = O

This leads to the Peirce decomposition of J with respect to the

idempotent ¢ §

J s JO(C) ® Jl/e(c) @ Jl(c),

where
Jdm)::{xhéchxxdx},ﬁm A= 0,1/2,1.
Theoremn 1&5; Jo(c) and Jl(c)lare subalgebras of J, énd
we have -
F,e)d;(e) ={0], () 4p(e)C 3y sole), for V= 0,1,
and

Jl/z(c) Jl/z(c)c;Jo(c) €9Ji(c)@

Definition. Let ¢ be an idempotent of J, ¢ # e. Then the
map P(2 c-e), which by virtue of Proposition 1.1, is an automor- -

phism-of J, is called the Peirce reflection with respect to the

1dempotenﬁ o) of Jde

Notation., Idemp, (J) {c)cg}lﬁemp (J), dim Jl(c) # 1}0

Definition. The dimension of Jl(c)‘is called the rank of
the idempotent c., |

Definition. An idempotent ¢ of J is called Qgigigﬁve if it

cannot be decomposed as sum cyte, of two orthogonal (i.e, ¢ =)

1%

idempotents ¢ and c,, 0y 70 - (11,2,
Remark. Ivery element of Idemp,(J) is primitive. The con-

verse is not true in general.
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Definition. & Jorden algebra over the reals is called

formally real if, for any two of its elements x and y, xz+y2 = Q

implies that x = y = Q.

Propesition 1,6. A primitive idempotent of a formally

real finite-dimensional Jordsn algebra is of rank one.

Proposition 1.7, The set [ (J) of bijective linear maps W
| there L e %
on J for whichiexists a bijective linear map W on J such that

P(Wx) = WP(x)W" for all x&J is a linear algebraic group.

Note. The notation W* is justified by the fact that if

J is real semi-simple and A denotes the trace form on J (i.e.
% _
Ax,y) i= Ir Llxy), x,5¢dJ), then for wel(d), W coincides with

the adjoint of W with respect to M .

Definition (KOECHER [ 59 al). The (linear algebraic) group

[ (J), from Proposition 1.7 is called the structure group of J,

Remark. The fundemental formila (see Proposition l.1)
implieg that P(x)E [(J) vwhenever x is an invertible element of
J. &lso, every automorphism of J belongs tofA(J)a Indeed, the
automorphism group &ut(J) is just the set of elements Wel (J)
fixing the unit element e of J, We = e;

Comments. It would be interesting to reconsider GHIKA's
results E32 agg] on so~called “field«liﬁe“ algebras (i.e, alge-
bras generated by their groups of invertible elements) in this
Jordan algebra setting. . Ms

Formally real Jordan algebras have been classified (in

the finite-dimensional case) by JORDAN, von NEUMANN and WIGNER

[49]:

Theorem 1.8. Every formally real finite-dimensional Jor-
dan algebra is a direct sum of the following algebras

3 (+) (+) y (F) (+)
_(J.G:L) Hp(lR)- ,Hp(q‘,} ,Hp(bi) ,»H’.S(&) R £ ()
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Here HP(W)(+) denotes the algebra of Hermitian (pxp)-matrices
with eﬁt ies inF (F =R, €, H or @)l), the multiplication in
H (F)( ) is given by xy := % (xey + yox) (x.y denotes the usual
~matrxx prodgct)?,amd J(Q) =@ 1 ® X where Q ispdefined on X an&

fhe —

multiplication is given by a real-valued quadratic forn

s= Q(x,y) 1, lex = %1 = x, 1.1 = 1 for x,y&X,

Remark. &n gssociative Jorden algebra is formally real if

and only if it is isomorphic to a product of copies of R with
componentwise multiplication.

Definition. A Jordan algebra J is called specigl if it

can be embedded in an associative algebra 80 that xy= w(x»y+y«x)g
where the dot denotes the multiplication in the associative al-
gebra (i.e, if J is isomoﬁphic to a (Jordan) subalgebra of some
al®) for A associtgive).

Remark,. The first three algebras in (1.1) clearly lie in
associative matrix algebras, and the fifth algebra can be embed-
ded in the Clifford algebra of Q. The fourth algebra HB(@)(+)
not special (it cannot be embedded in any associative algebra);

that is why it is called exceptional. Recently, an éxciting work

of Zel'menov has shown that this is essentislly the only well-
behaved exceptional algebra.

Proposition 1.9. 4 Jordan algebra ig formally real if and

only if its trace form is positive definite,
Notation., Suppose that J has unit element e. Then we set

g . xD
X :ae,GMBX:ﬁEWMEWg mm(mpJ:x{emyﬂer}o
nz7o : . . : j

Proposition 1,10, If J is a formally real Jordan algebra,

then it possesses a unit element and exp J =-{X21x invertible iﬂd}

4
N

1) Throughout these notes R, €, H and & denote the set of reals,

complex numbers, quaternions, and ectonions (Cayley numbers),
res prw%1v<*yg
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Theorem 1.1ll. Suppose thet J is a formally real Jordahn

algebra endowed with thevnﬁtural topology of ﬁh « Then the iden-
tity component of the set of invertible elements of J coincides
with exp J and the map x =3 exp x is bijective.

Recall that an algebra ( over a field [ is called central

simple if it is central and simple, i.e. it has a unit element
e, its centre clcé i (ca)b = c(ab), (ac)b = a(cb) for all
a,b & 5?} coincides with We, and it has no proper ideals.

The determination of simple Jordan algebra can be reduced
to that of central simple algebras, and for these &LBERT}?E:IpTOM
ved the existence of a finite~dimensional field Srof the underly-
ing field (Jacobson extended this result to any field of char —

\

cteristic # 2) such that the scalar extensions {? are cointai-

ned in the following list of split algebras:

# : + ; et Sl
A. the algebrs Mn(¥)( ) of (nxn) - matricesover #+ rela-
tive to the Jordan multiplication xy : = % (xey + y+x), where

x«y denotes the usual matrix product;

2

°

B. the subalgebra of Mn of simmetric matrices;
N : s gy b ' & 5
C. the subalgebra of mn(f)< ), n = 2m, of symplectic ma=~
trices, i.e. of matrices that are symmetric relative to the in~

volution X:m%»qml x'q, where x' denotes the transposed of x;

0 Id '
q = o s and Idm is the (mxm)-identity matrix;

-Id, O ' : ‘ ;

D. the algebra with basis {eogelgaa.ﬁan}’anﬁ multiplica~
. tab 3. = @ s @ @. €. = 1 :
tion table e e; = e;, ef = e , 830y -= 0, (i#3) ;

E. the algebra of Hermitian (3% 3)-matrices with entries |
in an octonioh algebra relative to the multiplication xy : =
= %& (xey + yox)o : ' !

Remark, KANTOR‘[54»b has obtained a classification of

the real simple Jordan algebras by means of transitive differen-

&



tial groups.

Commentts 1, LORDANESCU and POPOVICI [4¢ Jeonstructed and
‘studied all (matrix) representations of Jorden algebras of the
types A-D, including the new class of quasi-irreducible represen-
tetions, which were previcusly defined and studied in some parti-
cular cases by IORDANESCU {45‘a3§]e It would be interesting to
find the "quasiwirreducible“'representatians for other classes of
Jordan structures.

Comments 2. Recently, JACOBSON [47 gi}determimed the or-

bit under the orthogonal group of Jordsn algebras of real symme-
tpic matrices. His resulis are an outgrowth of an agf firmative
enswer that he gave to the following quesfion of Malley: Can every
Jordan algebra R 1 §X of a positive definite symmetric bilinear
form.be realized as a Jordan algebra of real matrices? Malley was
inﬁerestéd in this question for application to gtatistics (nemely,
optimal.ﬁnbased estimation of variance components). Melley also
showed by a method different from JACOBSON's that the Jordan al-

. gebra R 1 @ X can be embedded in a dJordan aigebra of real sym- .
metric matrices.

Albert, Jacobson &and others extended the above mentioned -
classification to nonsplit algebras: Any finite~-dimensional simpla
Jordan algsbra over a field of characteristic # 2 is isomorphic
to either : ' _ ‘ .

(4) Gﬁfz for & simple associative algebra 06;

(B~C) H(T, * ), the Subalgebfa of 0G consisting of all
# - gymunetric elements x* = ¥, where 06 is a simple
_aésociative algebra with involution * 3
(D) J(Q) for a nondegenerate quaératic form Q; orto

(E) an exceptional simple algebra of dimension 27 over iis’
. . + :

centre {(which becomes 33(@}( ) over & euitable exten-

sion field).

Boa

IEm————————ERE AR
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Remark. These Albert slgebrag cen be constructed using a

cubic norm form N as J(N) by the Freudenthal ~Springer-T

structions.

Commentg. For a surprising connection of Moore-Penrcse in-

verse with Jordan algebras see KOECHER [ 5571-1],,

24 Quadratic Jordan ﬁlgabras

In 1966 McCRXMﬁO&I?Tl q] extended thﬁ theory of Jordan
algebras to the case of an arbitrary commutative unital underly-
ing ring. So, instead of considering a Jordan algebra as a vec-
tor space with a nonassoclative bilinear composition satisfying
certain identities, McCrimmon considered it as a module oﬁer a
ring together with a quadratic representation satisfying a num-
ber of conditions. In this way one gets unital quadratic Jordan
algebras, which for the case that the underlying ring is a field
of characﬁeristic.different from two (or any underlying ring
containing 1/2) turn out to be the well-known Jordan algebras’
considered from a different point of view.

In 1971 McCRIMMON E?J.b} defined the concept of (nét ném
cessarily unital)} quedratic Jordan algebra 7 as a module over a
(commuéative uniﬁal) ring together with two quadratic mapg9
U:wam% End(]) and J mmw?J (souar nW), satisfying certain

identities.

s

Iﬁﬂ:&)be a commutative assoclative ring with a unit element

and let X be a unital- w~module&

Definition. & map U : X — mﬂzam), denoted by U : x — e

such that U,y z<x2U and U y 7 UQ*V =g U& is bilinear for
5 <

all°«:35 and x,y&X, is called a gquadratic. representetion on X.

Notation. If Uis a quﬂdxatlc representation on K then

there exi°”s a tflltnoﬁf composl {xy&l}:: 4 \hxch is sym-

//
P
P
/

b
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metric in x and z., We define V by V Z :“{ xyz},
9

XY A
Definition. & unital quadratic Jorden algebra ]?z (X,U,e)

%

conasists of a unital iBWmQﬂwle X together with aquadratic repre-

sentation U and a distinguished element e such that the following

idant&tlﬁs hold under arbitrary scalar extension :
Ue = 1d,
Ube = U Uy Ux’
Ux V&g Vx,y Ux = UU,Y

!

Lxenmle@ Let a.bu an associative unital algebra over é&e
Then, denoting by 4. the unit element of ¢ and defining U : ({ —>
—3 End(d } by Ub := aibea; a,b € ({, it can be easily seen that
(A, U,41) ~denoted by Cz(q) for the sake of brevity - is a uni-

tal quadratic Jordan algebra,

Definitiono‘ A unitsl quadratic Jordan sglgebra j'is called

special if it is a subalgebra of(](q) for some associative unital

algebra Clﬂ otherwise ? is said to be excentional.

Notations, Given a unital quadratic Jordan algebra

g-z (X,U,e) we can introduce a guadratic composition x“ := Uxe,

which permits us to define the powers inductively x° := e, xt = %

n+2 n ; P i
X = Uy x7, and a symmetric bilinear composition xesy :=

=U,__.e =,xey(. We 8 J o=
‘ U, e @ p: y} e set \x_ nye,
Definition. An element ¢ of 21= (X;Use) is called idempo-

2

tent if c™ = Co Two idempotents cydé?jfare called orthogonal if

hence VX Yy = yoxX,

¢ =U,d=ceds0.

Renarh, Lct’j be QPGC ial. It 1mmudlafe]y follows that

[§)

c¢d = dc = O, and thus ¢ and d are orthogonal in the usual asso=-
ciative sensee

Theorem 2.1. (Peirce docomao>¢t'o . Let j {(X,U,e) be a @n;t&
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quadratic Jordan algebra end let ¢ be one of its idempotents,

| 4= go @'71 u jl/zz
where ?0 2= (Id -%f Ucmva}g = Zjemcjﬁ ;Z = ;f and }IJ/P i

» (V -2 U )? = s j If e = E; sy is a sum of pairwise or=

$
- ' 2 4
8, Lhenal @g s where; o= . ’jy iF],
iJ i cl’cg

c
Th@g@ﬂdl idempotent

j-e = U ?a
i * .
i cs

Definition, 4n element x of ZZ= (X,U,e) is ,called inveﬁw

tible if U, is invertible. In this case the element (U ) 1 is
. ; -1 |
called the inverse of x and is denoted by x .

Remark 1, One can show that (Ux)ml = U e

Remark 2, The element x ld 1nvevt1b79 with 3nverse y if
and only if Uy = x and ny

Definition, Let a be an invertible eloment of 5f-(x Use).

Thﬂn,(y(a); U<m) (a) }, where X (a) o= X, U(d) 1= Uan’ and
e(a) t= a"l, can be shown to be a unital quadratic Jordan qlgebragf
It is called the a- 1lsotope of g

Definition, & subspace of a guadratic Jordan algebra which

1& closed under the map U is called an inner ideal of that al-

\

gebra.

Remark., The role of inner ideals in the theory of quadra-
£ichordan algebras is analogous to that playéd by the one-sided
1d84151n the associative ﬁﬁ@oryg

| Ve now give th@'copatruction'o? two t?pes of uhiﬁal'qua~
dratic Jordan a)gebrau,ci>and X being as above, (See, for 1n>tan~ .
ce, FAULhLJRfZXa]) B

Let Q be a 'quadratic form on X and let e € X with Q(e) =
Set T(y) = Qly,e), y g T(y)*yy'and Uy o= QUx,¥)x - Q(x)§,_where )
Q(X,y) 2= Qlxty) = Q(x) - Q(y). Then (X,U,e) is a unital gquadratic
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Jordan algebra, called the (unital) gquadratic Jordan slgebra of

the guadratic form Q with base point e (denoted by ?(Q,@))«.

Suppose th C@amé‘ X are as above, Recall that a map
Q + X —>X is called guadratic if Qfox) zsz(X), forde qu y XX,

and if Q(x,y) = Qlxty) - Q(x)=Q(y} is bilinear in x,yeX. If

QX w%%) then Q is called a qua_ratic form and Q(x,y) is cal~

led the associated bilinear forme A map N § X —> @togetnag,« with

a map 3N : Xx X —> such that ?N(x,y) is linear in x and qua=-
dratic in y
N(dx) = o ? N(x)
ON(x,x) = 3 N(x)
N(x+y) = N(x) + oN(x,y) +2 N(y,x) + N(y)
IN(x,y} is linear in x end quadratic in y,

for «e @ end x,ye¢ X is called a cubic form on X. Consider a

cubic form N on X, a symmetric bilinear form T on X, a quadratic

map # on X, and ee X such that

T(}:#,y) = d N(y,x),

e = €o
Define exy := T(y)e-y, where T(y) := T(y,e) and
x %y = (xty) x 7 #,

ond.
‘suppose that the deVG relations hold unde arbltrary %ala:f:

-ext@nnon of Cb
: ¥#
Uy = T(x,y)% = X X Y
Thei:w. (X,U,e) ig a unitsl quadratic Jordan algebra; it is 'denom
“ted by F (N, #, e).
Definition, Let Zf j(N, #i ¢) and 7 j(N’ # e’) be

defined over fields F and [F', respectively. Assume thet
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2 { dim j d¢m25< /> and that T and T* are nondegenerate. Let
$ be an isomo rphlsm of I onto ¥, Let W be a bijective s-semi-

/
linear wap of j onto ﬁ satisfying
(2.2) N (Wx) = § s(N(x)) for all x € J,
where ¢ # O is fixed in ', and satisfying (2.2) for sll field

5/

. T s T ' i
extensions fbef F and ¢ of * such thet s csn be extended to ¥

/
Then W is called en $-semisimilarity of j.onto 2 and ¢ is called

the multiplier of W,

’ : /
Hotation. Let W be an s-semisimilarity of gvanﬁo j‘. Dgw

s « 3 , b 9
note by W*¥ the s 1nsemlllnear map of ? Qnta<j defined by
_ / ;
S(T(Wx',y)) = 10", W), x'e ', ye ] .

Definition, If W is an s-gemisimilarity for s = Id, then

W is called gimilarity,

Definition, If W is a similarity and ¢ =1, then W is cal-

led 8 noram-pr erving transformation,

Hotation. The group of all semisimilarities of gignto it
self’ will be denoted bJ [ = f} j), the group of similarities of
j.onﬁo itself will be denoted by G = G(j), and the group of norﬁw
preserving transformations of g onto itself will be. denoted by
s = s({). | |

Remark, F’(é} coincides with the stéueture group as defi-
ned by.Koecherg cam%istingiaf those bijective W for which a W
exists s )uzsfylnw the P@l&bl@ﬁ.l%fr = Wu_ W,

Theorem 2.2, . Every uow101mmle quadratic Jordan algebrd

which is finite~dimensional over a field (of arbitrary charag-
teristic) is a direct sum of simple Jdcals and every Smele ideal
is isomorphic to either

.

(a) og{@ Tor a simple associative algebra J7;
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(B-C) gn emple outer ideal in H(0G,*}, i.e., consisting of
the gymm t?lc elements of a simple associative al-
gebra@@ under an involution * ;

(D) an ample outer idegl in the algﬁbrazﬁ(Qge) determined
by a nondegenerate quadratic form Q with base point
ey ‘

(E) :j(N,q%E e) determined Py a nondegenerate cuﬁim

form N, -

=4
O
g_‘+

D
M
-3
-y
{ T
o
=
o
=]
N
E

2; a subspace K< Jis an guter ideal

if it is invariant under multiplications, Uj;KcK, and is gmple

if it conteinsd ; when 1/2&[F, the only ample outer ideal is K={.
Remark, The condition of finite diménsionaﬁ@éaﬂ be weak-

ened to having the descending chain condition (d.c.c.) for inner

ideals,
§ 3, Jordan triple systems’

In the‘gtudy of the Koecher~Tits construction of Lie alge-
bras from Jordan algebras in a general setting (see KOECHER ["5?31

TITS [ 105 a,b] and § 5), MEYBERG [ 77 b,c] defined Jorden triple

systemns as modules with a trilinear composition gxyz} satisfying
the following. identities:
o {wrle el ‘
'ﬁw uwﬁ}m{uvsmmﬁ ﬂ{}@u}vz {u{yﬂﬁz}
Remark. As was noticed by KOECHER [59 h] a glimps of
Jordan triple systems was given by uibﬁa (18?9 1901) as early as
1881 (COiL‘ ted Vorhﬁ, vol.II, p.18) in a dliferent seitlnga
4 connectisn between Jordan triple systems and Jordan

algebras was proved by MEYBERG f7?’b]

. Theorem 5.1, If T is a Jordan triplé system and & an element
of .T, then T together with the product (x,y)~w% {xay} becomes &

Jordan algebra, denoted by Ta* Conversely, a'Jerdan algebra indu-
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cegs a Jordan triple systém in the seme vector space by setting
{xyz} = P(z,2)y.

Cdmmenﬁﬁw It would be interesting to reconsider the results
due to BRANZED 3{] and CREANGA and TAMAS }j21 a, 22] on ternary

structures in this Jordan triple systen setting.

In 1972, MEYBERG [77 e] defined guadratic Jordan trinle
syslems over an arbitrary (commutative unital) ring ¢>0f scalars
by enalogy with McCrimmon's concept of quadratic Jordan algebras

{

based on.the quadratic operator P(x) (see the definition below),

Definition, Let T be aéﬁmmodule with a quadratic map
P: T —=>End (T) suchvthat the following identities hold in all
scalar extensions
L(x,y)P(x) = P(x)L{y,x),
L(P(x)y,y) xiL(x,P(y)X),
P(P(x)y) P(x)}P(y)P(x),
where L(x,y)z := P(x,z)y := P(x+z)y = P(xX)y = P(z)yg Then T is

it

called a gquadratic Jordan triple system over 4’6

Remark. Every quedratic Jordan algebra can be considered
as a quadratic Jordan triple system by setting P(x) := Uy,

There exists a hosts of results concerning the classificae
tion theory of Jordan triple systéms. The cia&smficaﬁion of
_smmple finite~dimensional Jorden triple sy tems‘over an algebraic-
ally closed field of characteristic different from two can be
found in Léé'a}@ For the classification of various types of Jop-
dan tplplc systems ovérlR, &ee_NEHERI:78 a?b.@]@ ZEL'MANOV clas-.
sified Jordan triple systems in genersal (oharcb # 3, but with no
finite conditicns) [170 m] NEHER showed [73 c}’(see also [73 é]).
that for large subhlasues of Jordan and Lie triple systeuws,there

exists a bijection between the forms of the simple objects, This
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bijection was used to classify forme of certain exceptional Jor-
dan triple systems. SCHWARZ [94 d} used the known classification
of Jorden pairs to obtain a classification of Jordan triple sys~
tems by éla ssifying involutions of Jorden pairs.
As is well-knowsn, the coordinatization theorem of Jacobson
for Jordan algebras asserts that a Jordan algebra with suppl€e
mentary femily of (nxn)-Jordan matrix units for nz?3 is isomor-
phic to a Jordan matrix glg«b?a H (D, DO) of Hermitian (nxnj)-
-matrices with coordinates in an alternative algebra D, with
nuclear involution, which is associative if nz 4. This theorem
not only is fundamental in classifying the simple Jordan algebras
but also immediately describes their unital bimodules. McCRIMMON
and MEYBERG E72{(developed a similar coordinstization fer Jordan
triple systems: there are three distinct cases, the rectangular
(p><q)~matrines,Mpgq(D), the symplectic (nx n)-matrices S (D),
and - the (n>rn)~Hermitian matrices H (D,D +d) over D, They sho-_
wed that a Jordan triple system with' (px q)-rectangular grid
(pta73), (nx n)«-»symplectic grid (nz 4), or (nxn)-Hermitian
grid (n7 %) is a rectengular, symplectic, or Hermitian matrix
system whose coordinate algebra is associative if ptq 24 in the
rectangular case or ny 4 in the Hermitien case, and commutative
- associative in the symplectic caseé if n74. (Grlds are gpecial
families on tripotents in.Jo rdan trmple systema)g The key ig the
fdact that ang two GOlllﬂG&? tripote nts are'cobrdinatized by an
alternative algebra w;th 3nvolutton@ MeCrimmon and Meyberg ap=- ;
plied their coordinatization results to the claggification of
rigidly unitai bimodules for matrix systems,
The theory of grids, including their classification and

-

N T ' L
coordinatization of their cover, is presented by NEHER in ffg k

-7

&

&
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Among the -applications given by him, there are: 1) classifica-
tion of simple Jordan triple systems covered by a grid, reprov-

)

ing and extending wmost of the xnown classification theorems for

Jorden élgab?aa and Jordan pairs, and 20} a Jordan~theoretic ine

t@fﬁret&tian of the geometry. of the 27 lines on & cubic surface,
Finally, we mention the result of NEHERZ:Tg f] by which

a central nondegenerate Jorden triple system over a field of

characteristic different from two has a nonzero centre if and

only if it is scalar isomafphic to a Jordan algebra, 4s an ap-

plication, Neher classified Jordan triple forms of Jordan algebras,

§ 4. Jordan pairs

In 1969, MEYBERG introduced [77 b} the “"verbundene Paare®
(connected $airs), which corre3pond in Loos! tefminology to the
linear Jordan pairs (see the definition below). Such comnected
pairs first arose in KCECHER's work on Lie algebras. In 1974,
LOOS introduced the notion of guadratic Jordan pair (see the
definition below) and gave [B6'bj the m&im‘reéults‘af a structure
theory of quadrafic Jordan pairs, which ia'analogous to Jacob-
son's and MeCrimmon's structure theory of quadratic Jordan al-
gebras with chain conditions. & detailed development of Loog’
results [65‘bj7was given by L00S [66”Q]@
| Quadratic Jordan #airs are preferable to quadratic bew
den algebras or triple s‘stems,beéause they admit a n&tural\way
of defining inner automorphisms and, on the other hend, they
always contéin sufficiently many “idempotents. Let us mention al-
so that qﬁadratic Jordan peirs arise naturally in the Koecher-
Tits construction of Lie algebras and the‘associéteé algebraic

£roups.,
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As wag shown by Loos, the quadratic Jordan paire provide
a unifying framework for both the theory of quedratic Jordan al-

»

gebras and Jordan triple systeums: the category of Jordan pairs

with involution is equivalent to the category of Jordan triple
systems, and the category of Jéré&n pairs with invertible elements
is equivalent to the category of Jorden algebras up to iﬂOtQp#a
v

KUHN [62.&] shew&&}%he theory of Jordan pairs can be de-
rived from quasi-inversion as a basic algebralec operation (as
SPRINGERi:l@l and McCRIMMON E7l.d:3derived Joraan algebfas from
inversion). We shall return to this on more detail in § 5.

MCCRIMUON [71 GQPQGZi] remarked that "a Jordan triple sys-
tem is just a Jordan algebra with the unit thrown away® and "a
Jordan pair is just a pair of spaces acting on each other like
Jordan triple systems”. On the other hand, “the study of graded
Lie algebras leads naturally to Jordan pairs (including triple
systems-and algebras)", So, MQCRIMMONZ:Tl e§p9622] concluded
that “from,several points Uf'view, Jordan pairs are the most na-
tural Jordan structures", .

Definition. Let K be a unital commutative ring such that

2 ig invertible in K. &ssume all K-modules to be unital and to
possess no B»tcfsian (L. Do nonzero elements x sﬁch that
3% = 0), A pair V= (V+, V") of K-modules endowed with two tri-
linecar maps V'x V% Vaiméqu; written as (%,5,2) “ﬁwgzyz}b,;

¢ = + , satisfying the identities

{xya]_ = {ayx],

g}%y'_g‘uv.z}f}« - guv {}:yz}(gjo; = %{xyu‘!‘r vz}q_m %u}yxv}mwz.}o,

for ¢ =+ , is called a linear Jordan pair over K,

Remark, Jordan algebras can be regarded as a generaliza-

tion of symmetric matrices, while the linear Jordan triple struc-
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tirles (systems or pairs) can be regarded as a generalization of
rectangular matrices.,

We shall give now examples and essential properties of 1li-
near Jordan pairs needed in the theory of Jorden menifolds pre-
sented in §§ 3,4 from JSA VII, Hence, WATSON [108,I | was used.

)

Convention., For the sake of simplicity we shall omit the
) o

word "linear”,
Notations. Define, for 0 = + , the bilinear map
Dyt Vix V' —>End (V') by
- D, (x,y)z :mﬂygjzkoﬂa

The map D(x,y) is called the differential determined by the pair

-6
(}:J)evoﬂx V . Define, for 9 = + , the quadratic map Q: T e
o 4 @ O :
o = L)
Quixly + = ?%WX}V’
so that the associated bilinear map is given by Qd‘(x,z)y = JZ Xyz} .
) o

The map Q (x) is called guadratic representation of x.

Definition. Let V = (V"P,V”) and W = (’\éﬁ,W") be two Jorden

pairs over K. & homomorphi sn h s V—>Wisapairh=(h -, k)
of K-linear maps ho.“ : Vrm?* W” such that

hel {xyz},) = {h@.(x)s h (y), hg(z)}g\ 5
for all i;,zg‘.’o; ygvhd; 0=+ .
ey Notation, The set of homomdrpﬁisms h ¢V —> W is denoted
by F‘(V,W); and the set of U-components %ho,lh(—‘; FZV,W) \}'is denoe
ted by rc,( v,W), -

Remark. Isomorphisms and automorphisms are defined in the

abvious way.

Definition. & pair of K-modules U =, (U+, U7) is called a

. ’ ¢ Co,o s
subpair of & Jordan pair V if U. is & submodule of V and

- 8
[\U¢ .U O’UO"}U‘CU fOZ‘t (f‘.:; -ﬁ ”

& -
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Definition, & ﬂubp& r U of a Jordan pair V is called an

i
5 . s ~<" ,f . M R s
ideal of V if Jv° cu and ?’ V U WCU g = 4,
SR - -
Definition, & Jordan pair V is called gimple if it has

. L . - 2 A e I's ~ » 2O = T’?,I
only the trivial ideals V and O and if {V V V 57 0.
Remark. The direct sum of two Jordan pairs V and W over

% : I SR S - . e
s defined as VO W := (Ve W, V & W), with componentwise

operations,

£

Definition. If V is a Jordan pair over K, then the gppo-

essmsce
/

\{ sos Joend{ , ).

Brn‘ ke The : symmetry between V" and V™ is one of the es

site Vﬁrof V is the Jordan pair (V" V ) with the trilinear maps

sential features of the theory of Jordan pairs.

- Convention, The indices ¢ and ¢ will always assume the

value + and - . They will be omitted whenever no embiguities
are possible. [F will denocte a field of characteristic different
from twe or three, and all Jordan pairs will be assumed %o be
finite-dimensional.

e T , e O
Definition. For (x,y)e V x V™, define By(x,y)e< End(V )

by Belx,y) := ldvm = Do(x,y) + Q(x) Q_;(y). The map B(x,y) is

called the Bergmann trnsformation determined by the pair

e g

(ng)é-vc; ¥ .

Let V :A(V+, V') be a Jcrq n pair over ¥ and let v be an
el@meht of V© » Define the bilinear product {(a,b) —>% {&y@; on
the [F-module V . With this product, V become a Jordan algebra,
denoted by V « The quadratic op@r tor in Vo is UX5Q+(X) Q (¥}

I J
Definition, 4 pair (y,y)c'v = (V' ,V7) is called quasi~

: : . A ¢ 3 T TN i @
invertible if x is quasi-invertible in Vy (i, l=x is inver-

tible in the unital Jordan algebra F 1 0 V;)., In this case there

» . + ‘ - '
exists & unique zeV such that (l-x) L 1 + 23 the element 2

is called the quasi-inverse of (x,y) and is denoted by o
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Remark. & pair (x,y) eV is quasi~-invertible if and only if
B(x,y) is invertible; in this case x = B~ “(xgy) (x - Q(x)y).

Examples of Jordan pairs. a) Let Mp qQF) be the vector

b
space of (p X q)-matrices over the field F. Then Mp qGF) ¢ =
H
= CM@ q(E‘}S mp (F)) is @ Jordan pair over F with Q(x) y o= xytx,
N
where y' denotes the transpose of y. The quaesi-inverse of (4,y)

in M OL} is given Qy
5’
2 = x(eq -yt = (?p‘“ xy') "x

where ¢q @nd e, are the identity (q xq)- and (pxp)~- matrices,
respectively.

The next three examples are subpairs of M (F) := n nﬁ«}

a) A (F) := (4 (@), & (1)), where A, (F) is the gpace Of

skewsymmetric (nx n)-matrices over: F;

ay) S (F) = (8, @), S, ()}, where S,(F} is the space of
symmetrie (nx n)-matrices over F;

a3} (U

triangular (nxn)-matrices over P,

n"Ln) where U (Ln) 1s the space of upper {lower)
b) Let X be an n-dimensional vector space over |F, equipﬁed
with a symmetric bilnear form {x,y) « Then X := (X,X) is a Jordan
pair over IF with Qxdy:i= 2 x50 % = (%,XY ¥,
The quasi-inverse of (x,y) in X is'given by
' : -1
= (X <X9X >:Yr) (L=2 ‘{'Xsy>"" {X?X> < ?/35'> )
¢) Consider now [F = [R, €, or M, Let{R~ ~GF) denote the set
of (py p)wmatrlces ovorlb, cons 160 red as & real vector &paﬂee
Then R ) = (R £y, R ')) is a Jordan pair over R with
Mﬁgq( ) (I p’q( ); ‘p,q( )) a p
Qx)y := zy'x. The quasi-inverse of (x,y) is as in a).
Set B (F) &= By nl), R () :=mR_ (), and let x* denote
_ =11 ‘ i 0,0 :
the COHjUg&t@_tfanngoerOi xeﬂfﬂ(W); For P =R, x* = x', The next

two examples are subpair of R (F).
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) SH () 3= (SH_ (@), SHH([F))9 where SH (F) is ithe space.

2
ey
1]
By
@
i
Pt
HE
D

lermitian matrices (x¥ = -x} in (G&)w
(F) := (H ( "), b \h))ﬁ where Hnﬁ&) is the space of
Hermitian matrices (x¥= z) in R, () o

d) Let

e

Jd be a Jukéwa algebra avov{? and let S ¢ J‘m%-End(X}‘
be an associative Sp@cializaﬁiqn of Jd into the endomorphisms of
the-mwvecio¢ space X, That is, we have a linear map S with the
property S(ab) = % (S(a) 8(b) + S(b) S(a)) for all a;bed, Hénceg
J ®X becomes a Jordan algebra with (atx) (bty) = ab + %'(S(a)y+
+8(b)x) and Pla) x = 0, for all a,b&J and x,ye X. Following the
Remark on page 24 , we have & Jordan pair (J @ X, J @© X} with

(J @fX, J) es subpair.

Comments. As was noticed by ?ILGNER [io4 e] the formulaA
for the quasi-inverse ¥ in the above exemple b) appears also in
/electrodﬁnamics as the formula for special conformal transforma-
tions,.Z , 7 being replaced Wy ~ { ;7 (see, for insteance,
TILGNER [1o4 d]). Given the large number of results already obtai~
ned in the theory of Jordan pairs, TILGNER’? remark could be
froitfully used in modelling some facts in electrodanamics.

onvention. If X end Y are finite-dimensional vector spa-

ces over an infinite fialdi? then the vectﬂ? gpace of rational
t5¢, . )

maps X —> ¥ is denoted b;y Rat (X,Y) (see LOOS - 18.7]).

Remark 1. Every fe;Raz(&?Y) has a reduced expression
-1
b4

f = gh vhere g is a polynomial map £ =¥, h is a polynomial

function X “%!F; and the cbmponenté of g (with respeéﬁ to a ba-
sis of Y) and h have no noncons stent common divisorn

Egﬁgggwge Since © is Lﬂilﬁltey one can consider £ to be
a partial map X =Y from its domﬂin of definition Dom f =

={X€X1 hix) # O}mnoY (hes%m‘ﬂmt £ is defined at x if

x &Don £,



Defin onﬁ If X,¥,7 are fT“ltOwdlmenﬁloﬂ&l vector spaces

over.F and fIESRat(ng); fggiﬁat(xgz) with reduced expressions
m—! ~
Ly = gjhi ~y then the raticnal maps £y and f? are called compo~

'z

sable 1

L

there exists an x & Dom £y such that h, (f (x)) #
Notation. The compesite of £y and £, is an element of
Rat (¥,2) and is denoted by £, oLy .
Let V be a Jorden pair over W, For ye VG; define

T (y) := (I, (y), T (y)) by

a . -7 - g7
T (y)z 1= z+y, Tf:(r(y)x :mx:y, for~zev;r xeV .

[
Then T°(y) €Rat (V,V) and Tg(¥)& Rat (VE VF). Note .that
T7 (y)0'= 0 for all ye V',

- . a «
Definition. The transformations T (y), yeV , T = + |

\

and the automorphisms of V generate a group, 2: (V), of bira-

tional transformations of V, called the group of linear fractic-

nal transformations of V.

Notation, E: (V) denotes the group of G-components f

where £ = (£ ,f ) is an element of Ez-(v),

Definition. let V and W be Jorden pairs over [Fo Thenvthe

set z: (V,W) of linear functional maps from V to W is the set

of £ = goh€&Rat (V,W), where géz_ (W) and he rZV,,‘J.') are compo-
sable,

' Dﬂfiniﬁinn@ The set L F.(V,W) of 1in@ar fractional maps

from V" to W is the set of £xgo h ¢Rat(V,W"), where ge S (-
and hé?ﬁ;V'J) are composableo

Remark 1. The Jordan pairs over F form a quaszmcateﬂo o3
‘E: , with Mor(V,w) }: (V,W) eand with ¢ for cowposition of mor-
phisms,

Remark 2, The ¢-spaces Vdﬂof Jordan pairs V over IF also

Pttt e L PR

form a quasi-c t’uu”J L rf, w1th mOP(V Y =13 V,%), In L Fo,
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5 o

e ) : o . . ,
the objects are the vector spaces V equipped with the structure

of a Jordan pair V, and as such they should be denoted by (V s V)3

.

4 G
whenever confusion is impossible, we shall eimply write V s Dow-
ever,

Notation, If V is a Jordan pair, then we denote by G(V)
et
of V

the group of automorphisms in L F,
(5 = “t

Definition, Let V be a Jordan pair over F and put

-
(x,¥) is quasi-invertible for all ye V .}w

Rmiv¢:x{XéV¢
Then Rad V := (Rad V+, Rad V™) is called the radical of V.

Eemafk@ Rad V is an ideal of V,

Definition@. & Jordan pair V # 0 is called semiwgimﬁla if
Raﬁ V = 0, |

Remark, 4 Jordan pair luSQMl“Slmple if and omly if it-is
a direct sum of simple Jorden p%xrsﬁ

Definition. & Jordan pair V is called radical if V= Rad V,
P Faodlea.n

PP I )
Definition. Let V = (V ,V7) be a Jordan pair. Then an ele-
6 o . ) . il .. .
menL ueV is called invertible if Qelu) ¢ V7 =V’ is inverti-

, - ' e
ble, and, in this case, the inverse of u is the element u lé |
defined by

s Q (w L

Remark 1. Note that i & Rat(V7, vV °),

riglud = ou

: : - a . w o3

. Remark 2. For invertible u eV we have Q(u) Ls Q. fu .
- -»l""lw, e ) .
and (u )~ = u; henée i ce°de = Idye .

) ° ° . .'}..
Deflnltlon@ & Jordan peir V is called unlidl if V (e ¥

contains an 1nvort1ble eiemante

R@centlyg POPUTA was stimulated by [45'qj to define

[88 L ,é} a special kind of Jordan pairs called Jordan duals.
. . ‘ + e . i
- These objects are Jordan pairs (L ;Lo ) of & linear space and its

dual over a field of characteristic different from two or three,



the operaiions«{ } , 0=+, being defined as follows

¢
{xyz}+ = y(x)z + ylz)x, and {xyz}m := x(y)e + z(y)x,

2.

+ -
where L := L, L~ = L",

Then he  studied LSS ;"’51 the derivations of Jordan
dusls and defined |88 . 933 Iie algebras associated with Jorden

duals.

Definition. & guadratic Jordan pair over a unital commuta-

tive ring K is a palr V = (Vﬁ,V“) of K-modules endowed with two

. o =07, . )
quadratic maps Q .: V' =—>Hom(V ,V), 0=+ ,| satisfying the

ow ®
identities T
Lelx,y)Qe(x) = QUL _[(y,2),
LO.(QGA(X).}',,;Y) = La(x,Q_J(¥)x),

Q(Q(x)y) = ¢ (XA (y)Q(x),
) | . - o ‘
in all scalar extensions, where Ly ¢ V x V.  =—>End(V ) are the
bilinear maps defined by L (x,y)z := Q(x,2)y, where Q (x,z) :=

=Q¢Dﬁz)~ Q(x) ~ Q(2).

A pair (x,y)e V is called an idempotent if x = Q. (x)y and
y = Q_(y)x.
“ By analogy with the theory of quadratic Jordan algebras

(see § 2) one can define the Peirce decompof/siticn of a Jorden

pair with respect to an idempotent (x,y). Then, we heve
¢ 0 o a
V7%®%@%M’ .

a 4 P ; y 6 a- o

where V  := (IdaLcﬁxyy) + QUIX)Q"@{y))V s V= QI AV,
Y o O ; ; : . ‘ :

and Vys, i= (Lolx,y) - ZQQ,(X}Q,@F(Q))VG;

Let us note here LOOS'basic result [65"é}7concerning the
classification of quadratic Jordan péips: a seni-simple Jordan
pair with d.c.c. on inner ideals is a direct sum of simple pairs

which are either
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(0} Jordan division pairs;
(I) sets of rectangular matrice (W (ID)9 Mnim(n)) for
an associative division algebra D |
(IT) sets of alternating matrices (&n(k}? &n(k)) Tor an
extension field k;
(III) sets of Hermitian matrices(H (D, D )9 H (D,D, Y):
(IV) sets of ample outer ideals in the Jordan algebra
é(g,o) of a nondegenerate quadratic form Q;
(V) sets of (1%2)-Cayley maances(ml (k), M 2(k));

ov
(VI) sets of Hermitian % X3 Cayley mdtTXC@S(Hr(k) H (K)),

The last two pairs, of dimension 16 and 27 over ihelr

centres, are the only pairs which are exceptional in the sensge

that they cannot be embedded in associative systems..
Concerning Jordan uuporalrebras, let us mention that KATS

[56], generalizcd KANTOR's method [ 54a,b | and applied it to the

clas saflcatlon of the ﬂJmalG Jordan superalgebrags (il.e.; 2%“?Pa“
ded algebras J = @3J“ with an operation ¢ fnich satisfies

asb = (~1) @ba&(mﬁ (Wf B.aab)ﬁﬂcﬂ IU &Abec)14d1~%
+ (=1) ﬁ[@xCO al L(b)] = 0 for a€d,, b6dy, ceJy and where [ , ]
are the brackets in the Lie superalgebra End J l))m K[hN’fG H]
gave a partial classification of central.31mple Jordan @upgralw

,gebfas; BARS and GUNAYDIN ‘.5 33] introeduced superternary algebras,

involving Bose and Fermi vari iables. Following the classification
of .Jordan sujg eralaebﬁas given by K&TSZSQ:L Bars and Gunaydin con-
szrucied Jordan supertcrnary alf“brda corresponding to certain

Jordan superalgebras, and .speculated on their possible physical

1) Bysetting Ind J :::)La[ae End J, a(Jﬂ)Cdegwe obtain an

associative superalgebra End J = End J; ® End Jy ; the bra-

ckets [é;b] t= gb = (~1) 5 ba make End J into a Lie superal-
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epplications (see [13, pp.1990-1991]). Tn (36, GUNAYDIN used
the ternary elgebraic technique to define the d@rivaticn9 atruge
ture and Tits-~Koecher algebras of Jordan superalgebras, hxrlxci
Tforms of these algebras were listed for the simple Jordan s up;rm
algebras and than & suggestion made to extend Koecher‘s theory

of linnear fractional groups defined by Jorden algebras to the
case of Jordan superalgebras,

‘Qgggggggg Some identities which are now used in the study
of Lie and Jordan superalgebras were given by ION as early as
1965 in a different setting. He establish@d.[44-a~d:fesaential
properties of the structure constants of Jordan algebras of the
types A-E and obtained, for their roots and weights, properties
~enalogous to those of roots and weights of semisimple Lie alge-
bras, Such results may be useful in quantum physics.

Finally, let us comment on the work of NhHhRJ??Z otfabou+
involutive gradlnﬁs of Jordan structures,

Involutive automorphisms of Jordan pairs (i.e. automor-
phisms of order two) have different properties in charavterlbt
different from two and in characteristic two, This mainly comes
from the fact that ih characteristic different from two the pair
can be deccomposed into the @igeﬁgpacas of the eigenvalues l’and
~1 which is impossible in characteristic two. In-the latter case
there are on the other hand meny .exaaples of décompositiéns which
behave like the eigenspace éecompssitions in characteristic dif-
ferent from twdo ThisAguggests tha follewing procedura: throw

away ihe involutive &UuOWOTDhlum, keep only their eigenspace dew
composition and -study these decompoultmonq, called involutive
gradings (see defihition below), for Jordan-pairs aver an arbit-
rary ring of scalars, This includes a study of involutive auto-

morphisms for characteristic different from two,

s e
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Definition. &n involutive gradine of a Jordan pair

5 - : . . i
V=A(V,V") is a decomposition V = V, @V_-into subpairs Vi %

% i yony P ._°‘§“’ o g8 4
= (V,,V) and V_ := (V', V") such that

e ’
6 - @ : [ o~ a) . @

¥ - and ol £V

Q(v,;‘;)\/”/,L c“,.yw and l‘? ‘vg \;& }C\/ﬂ‘
for G”,E//u:i ¥

Importent examples of involutive gradingsof a Jorden air

p g p

V can'be constructed by means of idempotents, If V = VO(C) ®

. o

@ V,le) ® Vo(c) is a Peirce decomposition relative an idempotent
¢ of V, then V=V, @ V_ with V, = V(e & Vo(c) end V_ = v, (e)

is an involutive grading of V. In fact, every abstract decompo-

sition V = v @V, @V, which satisfies the seme multiplication

rules as a Peirce decomposition induces an involutive grading of V.

|
0
|

These decompositionsare called Peirce gradings. In general not
every Peirce grading comes from g Peirce deccmpesitiém relative
to an idempotent,However NEHER[~78 c] showed that this is the case
for a special class of Jordan pairs including the Jordan pairs

of symmetric matrices over a field,

Another result due to NEHER [72 c] is the following struc-
ture theorem for involutive gradings: if V is a simple and sewi-

simple Jordan pair which has d.c.c. and 8.CeC, On principal inner

(D

£

ideals, then there are two possibilities for an involutive grading

V=V, 0OV_ withV, #0, either : ; :
1) V, is simple, ' 3

or .

2) V,_ is the direct sum of two simple ideals VO and V, and

V=V @V, @BV, (V, =V ) is a Peirce grading., .

Q l 2 .1. - [b“
NEHER [78 c] proved that the structure theorem involutive

gradings is also true for Jordan triple systems and Jordan algebras.

§ 5. J=-structures and Q-structures

In order to give an exposition of a part of the theory of
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finite~dimensional Jordan algebras using linear algebraic groups

SPRINGER [161] introduced the concept of J-structure, based on

¥

the notion of inverse. So, stress is laid on the role of dlge-

braic groups in the theory of Jordan algebras,., The structure
groups, first introduced for a Jordan algebra by KORCHER [‘53&i]
(see also KOECHER [ 59 d] and BRAUN end KOECHER[ 18, p;?sﬂ ), is
now incorporated in the definition of J-structure, In this al-
gebraic group approach, the classification of simple Jordan al-
gebras, for instance, is derived from the Cartan-Chevalley theory |
of semisimple limear algebraic groups and their representations |
(saé]lelp &8 12?13]). We shall give here the notion of J-struc-
ture, together with some comments (see SPRINGLR {lOl])@

Let V be & finite-dimensional vector space over an alge-
braically closed field F. E

Notation, Denote by F[Vj the symmetric algebra on the duali
V¥ of V. (Recall that F[V] can be defined as the quotient of the
tensor algebra T(V¥) on v by the two-sided ideal generated by !
elements x @y -~ ¥ ® X, %, ¥V¢ v*.) | |
‘ Consider a basis {ai}? i=1,4eeshy Of V and let{ Xig’
iﬁl;agggn, be the dual baisis of V. The %, are identified with
their cenonicel images in F[V], Then we have Fv] = Effxlﬁawagmélﬁ
The n elements %, are algebraically independent over (F, hence
X5 w@PXi define an iSOmorbhism of.W[VK onto the polynomial oL~

gebra W‘[Xig;aoﬁxnl‘in n indatérmin&tes-%xi}g izl ees,yne Lot

s ll in
f = Z _— aj’@o@i X-L eooxn
llyewegl,rl.?)o ”l h ) 5

be an element of ®[V]. Identify £ with the function on V as fol-
n '

3

“lows : if x =/ . as; e;¢[F, then
f:‘jf’ i 4
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s n
(5.1) £(x) ZW,W 83 L. 8 eeer)
T Jreeesi 0 1 n

Since by infiniteness of Fy, £{x) = Q for all xe F if ang only if
f = Q, #[V] can be identiri ed with an algebra of functions on [F
(viz., the functions given by an expression (5.1)). The elements

. functions on V,

Remark, If W[V]h denotes the subspace of (V] consisti ng .
of the polynomial functions which are homogeneous of degree Ty

then F[V] = @ FLV" is a grading,
nyo ' A

Definition, IfV and W are two flﬁleMdlmOnuJOuﬁT vector

spaces over Iy, then a map Lf: V-—>W is celled a polynomial map

it

£ the coordinates of P (x) are polynomial functions of x eV
wifh respect to some basis of We

Bemark. The polynomial maps form a vector spacslﬁ[&,ﬁ]
which is a free W[ijmodule, isomorphic to m[v] & E Yo

Definition. Let (F(V) denote the quotient field oféFZVI@

The elements of F(V) are called rational functions on V,

For an £¢ F(V), there exist g,h e F{V] such that h#0 and

(5.2) £ = gh™t,
bﬂceuﬂe of the isomorphisums &[ﬂ]”’?[ﬁl,ea»,xn s there is
unique factorization in &ZVJ At follows that there exists an ex-

pression (5.2) such that g and h have no common factor of stric-

tly positive degree. This _expression is called a reduced expres-

sion of T, g is called a numerator of £, and h is called a deno~

minator of f, Note that these g,h are unique up to a nonzero sca-
lar factor: a denominator of £ is a polyﬂomial functxon h of mi-
nimal degree such that (5.2) holds.

Consider now & nonempty open subset U of V and let‘wfuj be

the ring of functions £ on U such that there exist g,he¢ @[V] with

\
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e
)

)mlg xe U, W(V) can be

h(x) # O for all x¢U and £(x) = g{x)h(x
identified with the inductive lim ind W[ﬁ& (see BO?E.2_169 § 8,

pe35| ). Hence rational functions on V can be viewed as ordinary

functions defined in open subsets of V. One says that feF(V) is.

defined at x or regular at x if there exists &an expression (5.2)
. » a =l
with h(x) # 0, and one writes £(x} = g(x)h(x) ~,

Definition. If V and W are twe finite-dimensional vector

gpaces over [, then the elements of P(V,W) := E(V)é@% f?fVﬁﬂ
F v

are called rational maps of V into W.

Remark, W(V,W) is a finite-dimensional vector space over
F(V}, isomorphic to F(V) (X)IF W

Definition. If ¢e[F(V,W), then there exists a polynocmial

map Ye ®[V,W] and an he F V] such that Y= h”l\f’ « &n h of mini~
b .

mal degree is called a denominator of ¥ , and Y is called a nu-
merator of ¢ , One says that ¢ is defined at x or reguler at x

if h(x) # 0, and one writes Y(x) = h(X)ml‘F(X)e

If V,W,Z are three finite-dimensional vector spaces over ®

:

then there exists a composition map (TQY)'F%%QFOVJ of F(W,2) X

X E(V,W) to F(V,Z2), defined in the obvious way. In particular,

one can compose rational maps of V into V. 4 map PeF(V,V) is cal-

led birational if there exists a\Yé B(V,V) such that%a?rﬁf&ynléaf

Let § : V~>1V be a rational map, and denote by H the
subset of GL(V) X GL(V) cmmsistimg of the pairs (g,h) such that
geJ = joh. Denote by 7 : GL(V) X GL(V) = GL(V) the projection
on th@ fiést factor. Then 7 (H) is a closed subgroup of GL(V),

called the structure group of Jj.

Definition. A J-gtructure is a triple (V,j,e), where V is

a finite~dimensional vector space over ', j a birational map of

H
¢

Vy, and e a nonzero element of V, satisfying the following axioms:

\



1) iie w homogensous birationsl map of V of degree

=1, and ' j = i

g ‘
(i1) J is regular at e, and j(e) = e;
2) if x eV is such that J is regular at o é+x9 and
e + j(x), then Jletx) + jle+tj(x)) = e; |
3} the orbit of e under the structure group of j is
Zariski open in V. 1
Remark 1, The notion of a J-structure contains an axio-
matization of the notion of inverse. Axioms 1) and 2) are then
obvious reqrirements; the importance of axiom 3) was fifst rea-
lized by BRAUN and KOECHERZ:lByp@lSZJ, who showed that propen-

ties of this nature can be used to characterize Jordan algebras

in the case of characteristic not tWo .

Remark 2. The algebraic group which is central in the
theory, the structure group (first defined for g Jordan algebra
in a somewhat different manner by KOECHER K a,p,?éay [;Sﬁ d};
see also BRAUN ang KOEC??RETLQF pa79]vand § 1), is already ig-

cluded in the definition of J-structure,

Remark %, If char {f # 2 “then a J-structure is essentially
Lottt B 9 o

the same as a Jordsn algebra,
Remark 4, The notion of J-structure offers the advantage

that the case char F = 2, at least in the élementary theory,

needs no special treatment, This 'does not hold in Jordan algebra

theory, where the case char IF = 2 needs guadratic Jordan algebras., |

KUAN {62 a | generalized SPRINGER's results [101] for fini-

te-dimensional (quadratic) Jordan pairs over a field. for thig,

1) Recall that the Zapiski topology on V is the topology whose
closed sets are the algebraic subsets of V, i.,e,, sets such
that there exists a set flgfegafd‘of polynaﬁial functions onV

such that S :{x lxéV, £1x) == Talx) = 0}.



Kiibn introduced the concept of Q-structure based on the notion ,
of gquasi~inverse, McCRIMMON's r&smlt&}j?l d] on Hestructures
can be slso deduced from Kihn's results on Q-structures.

Consider a finite-dimensional (quadratic) Jordan pair

S, ) . L& .
V= (V,V) over a field ¥, Let x¢ V  denote the quasi-inverse

.o . ‘ Ry :
of a quasi~invertible pair (x,y)e V x V , The rational maps
Qe (%) ~> 3V satisfy the relations:

qofxgo) = X,

i

q{xytu) = q (qelx,y) ),

o ag(x*z,y) = q (x,5) + B (x,y)q.{2z,q_4{x,7)),
aglx,5) =g (x,4y), « scalar,

wvhere Ho(x,y) is the inverse of the Bergmann transformation
B {x,y) defined in the foregoing section.,

Let V+3V" be finite-dimensional vector spaces over a
field I, / .

Notation. If M is a countably infinite set of algebrai-
cally imdepeﬁdeﬂt elements of I, then we put Vo) ;= v'® (M),
where F(M) is the quotient field of the polynomial ringyin Me

Assumingthat x is a generic element of V' and vy is a
generic element of V7, let q,(x,y), q_(¥,x) be rational maps
with values in V+(M), V7 (1), respectively, and let H2,(x,y),
H_(y,x) be rational maps with values in End (V+(M))? End (V7 (10))
respeetively., We put V := (V+,V“), q := (g, , q), and

H:= (H, , H). | |

Definition. & triple (V,q,H) with V,q,H as defined above |
is called & Q-gtructure if, for x,zc Vokm), ysueaVidzm) and dx?kgg
the identities (5,3) hold; | | f

Remark, As was shown by KUHN [62a], there exists a uni- |

- Y © - N ’ + s ‘ 5 » N
que quadratic Jordan pair structure on (V' ,V7) whose quasi-in-

verse is given by q_.
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§ 6, Connections with Lie structures

-

As was already mentiened, the close ccnnectiong between
Jordan and Lie structure have their due place in an intrinsic
treatment, However, taking into account that some of these cone

b £

nections have b@cam@ classical references in.the field, we shall

briefly recall them here together with some recent developments,
Note. The close relations between Jordan algebras, Lie

ot

algebras, Jordan triple systems and the enveloping algebras of

Jordan and Lie algebras are cleerly presented and the histori-
ge P

cal rcots of these theories are disclosed by KOECHER[:59 h]m

It is well-known that the exceptional Lie algebras G, may

o

i

be obtained as the derivation algebras of Cayley-Dickson algabras,

the Lie algebras F4 nay be obtain@d as the derivation algebras
of Jordan algebras H§ (€) and tneLr forms, ¢ being Cayley-Dick=-
son algebras over a field of characteristic different from two,
TS {109 a 61 usod Jordan algebras to construct models for ex-
ceptional Lie algebras Bg yEqy Bge KOECHER [59 cj and KANIOR [54@J
jmbedded an arbitrary linear Jordan algebra J into the Z-graded
Lie algebra .
k@ =1 =7,8Z @Jf . Zp =0 for |il>1.
Conversely, in any Z-graded Lie algebra ?/w (E 2% &9;f

. operations

fi
Y
5,___3.

(f(y? -{)__"(rgs :’-\/@) 7 '(Eiﬁugb»a-pc@) e o S-[cia.y ....(3«] 1
are very close to a Jordan triple prcductn

Freudenthel-Tits magic square (see Llo; b] and ako 147 B]

[29 é]) Let k‘ B be compo sition algerbas over a commutative
field K of characteristic zero, and let J be the Jordan algebra
H3(?D)e Denote by T the trace bilinear form on J, by t the analo-

gous form on;& s and by ﬁb (respb. JO) the space of elements of
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A

trace zero in JAr (resp.d) .,' Define & product ¥ on 14’0 (resp. JQB by
pro ting the usual product with respect to the decomposition
}I K160 f@ (resp. J =K L ®J ). Define D, - per}  end
C Der J by
=1L, ] + [ TRy { [ RgsRy | 808 Dy w[ ReoRy s
where Ra (resp. La) denotes the right (resp.left) multiplication

bv a. Consider the K-vector space
24

%(}J/%';J) 1= Der \74 &, {74‘0@ JO) & Der J

endowed with the product
(1) [i '),] the usual Lie product in Dﬁ:t:*d‘} GB Der J ;
(i) [u @ K, ME] aD® xta ® xB, for aCJZ} $ xeJd o
’ Dgi)erﬁ‘ E ebex J;

(iid) [&@ X, b® y] = -w T(x{?y) D, , + 8 % b®x + y +
+ % t(a,b) D, for a,,beﬁg, %, 7€ o

Thusgf(;ﬁ y J)A becomes a Lie algebra. 4s ﬂ andB vary over the .

possible composi‘tion algebras, the resulting algebras are those

gisplayed in the following "nagic square"

divn
K g(%) 1 2 4 . 8
l—.—‘- e 2
|
110 O A:L f&z 05- F4
e e e
A )
":K 2“ O | ﬁ A.Z “‘2 @ !.*.2 AS L6
(6.1) % T o @h ) 0
. _% 4‘ 13 @!1& 1' 03 ;‘Lrj LG Lr7 :
o — b e - :

tiong for aycopuonal Lie algebras can be found in the above

table (6.1)y as follows:

e e AT ST T A R e

|
|
|

Remz’w}:ﬁ see [?9 :1) . A number of other well-known contruc-
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g) Der J occurs in row 1, column 6, while the derivation

algebra of the octonion algebra occurs in row 4, co~

Jumn 1

2
e
g

b) the earlier construction of Er?,, due to TITS [105
ﬁ = (Z} & J) & Der

where ,{3 is a simple three-dimensional Lie algebra, occurs in

i
i
!
H
I
{
A

row 3, column 6 (libﬁfiﬂ?l@” De Pf} wi*-:,hol/ G BN

¢} the KOECHER construction [;9 jwﬂ 1?_{.
SN

S ,

Z-s070 W, |

(‘“

o

where J is exceptional simple Jordan and

‘Z(J) ;::);Rvﬁ D] XEJ, DéDez"J},

- ®

éccu s in row 3, column 6 ifan( is spli L3

d) the Eg construction (see FAULKHER [ 28 d]),

)
72w 0w ) ® Gehre o
for J éxcewtional simple Jordan, B s three-dimensional vector
space over [, Lh,g the algebra of transformations of ilrace zero

in 75 J?) the nomfdm'ad}.er module to «B; this appears in row 4,
column 6,

ATSUY A u’&[ ) | gave a construction of all compact real
simple Lie algebras. In the case of the excepticnal algebras, he
described an isomorphism from his models onto those constructed
by TI75] 105 b,

Definition <(see HE U\ )9 ] ALLISON (Ej}e 4 vector space

&

Wmth L,ullmear COmpOul tion satisfying

(1) L, o =L, =R, o =R,

- 9'
0,V VU U,V ]

(ll) [RV9\"‘0’3

R j = R + R :
Zsy Vnyy’w v w}’iy 4

for all X,y,z,ugvgwéw, where

L ] ‘ - FAE ] & = ~
a,v X = uvx and Ru,v L e L
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o e

is called a J-ternary algebra.

c 1. The name J-ternary arises since by (i) and (ii)

combined, the trans sformation <u,v) = Ru ™ Rvgu gpan a Jore
dan mUb gebra J Of (Eﬂ;WWi)( ) 80 1h&t)¢(1 a specisl J-modules

Note.For the structure of reduced Jwtefrmrv algebras, see
HEIN [ 39 bye].

ggkgwk 2. A king of structure closeély linked to J-ternary
algebras are the so-called vpreudenthal triple systems", studied
and classified by MEYBERG ([ 77 ,ﬂ In 1978, KANTOR and SKOPETS
[5)] established a one-to~one correspondence between Freudenthal
triple systems (as defined by Meyberg except that the associated
quartic form is allowed to be zero) over an algebraically closed
field of characteristic zero and simple Lie algebraé, in a way
very similar to the construction of F&ULKNER[jEB b] (see also
FERRAR [ 30 ]) .

‘J~ternary algebras have been used in another construction
of exceptional Lie algebras similar to that of KOECHER[TB? é]
and MEYBERG [77 ,c}, It W is a J-ternary algebra and J spanned

{[u9ﬁ>l u;veYM} is a simple Jordan algebra,
(u,b) ~> ( % us, ob)y &, ¢ (a,b) = (uvw, { v,bw”

%¥

for a,b€d, v?w,uéWu then one forms T oem oy T

z(d‘ WK)' =T OME ;{O@W( ® g
(A, 7-5paD. 0L Wl . J, W copies of J,/M) with product de-
0T 4 by w » ‘ !

fA BK usval Lie prodmet in Zi

[a'%v,b*?wj v2 LYW s Ya-wg b'%—w:( o= (v W} a,béﬁf
Ew--v,A] := (atv)d, [aﬁv A] (dw)!\ X;g gf\

0.
[g+v? E:@jg:; 2 Ry.p~ Z{TRa’ij * Ry T bv

§

A

S

Ot
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where &: & =4 ~ 2 ReA and a is the identity of J, Th@,&lgebra'
ﬂf(J??ﬁ) is a Lie algebra which in most cases is simple (see ALLI-
son [ 2]). '
For a p&?iiculmr'h{(@aa PAULKNER [28 cjg snd slso FAULKNER
- and FERRAR ) 29 a}} with ¢ exceptional simple one o %ainé the al-
gebra B, {see FAULKNER [28 bl) as it was first introduced by

PREUDENTHAL] 31].

Note.Let us mention here the constructions of Lie algebras

from J-ternary algebras given by {ANTOR[:Eécil X&MAGUTIE 109 %S?
HET [)9 j and ALLISON Y?j which have as common origin that
given by FREUDENTIAL for exceptional Lie ﬂl*ebﬂe from Jorden al-
gebras [5i§& KAZ$Cui.[>O sroved that all simple Lie algebras
(except for those of type aly over an algebraically closed rield
can be constructed from a Jntefpary algebra, For "ﬂunuftarrary
algebras, see Comments 1, § 4, as well as BARS Llé]

MEY.BERG E77 dj generalized the Koecher-Tits construction
end studied certain Lie algebras ﬁhich are constructed from the
(~1)-eigenspaces of an involu ion of a Jordan algebra, He gave
necessary conditions in terms of the Jordan algebras for the Lie
algebras to be simple. If the (-l)-spaces are Peirce - % - O
ponemts,'th@p as was noted by Meyberg there existS a8 close rela-~

. tion between the Lie algebras under coﬁsidératien and the struc-

ture algﬁbr s of Jordan algebras. Finally, he gave a list of

construction énd among these &re‘the Lie algebras of type Eé
and E?“

KUHN and ROSENDAHL{?65] generalized the Koecher-~Tits con-
struction to Jordan pairs (and, in a similar manner, to Jordan

triples). The functor obtained goes from Jordan pairs (or Jordan

triples) to Lie algebras. Xoecher's remark that Levi's theorem



]

for Lie algebras of cheracteristic zero implies, vis the functor,

(55

the Wedderburn principal theorem for Jorden algebras is extended

H

cterig=-

H
o

to Jordan pairs (and Jordan triples) over a field of char
tic zero,

Bach simple Koecher-Tits construction of a Lie algebra
from semisimple complex Jordan triple systems may be characteri-
zed by the existence of nontrivial elements u with (&cm)’5 = adu,

" However, real formsof such algebras are. not in each case Koecher-
Tits constructions as this is well-known from compact real forms.
S0, RENOW}:9i] asked for a new method for constructing real Lie
‘algebras characterized by the existence of elements u #.Q wigp
(adu)3 =K adu (K€ R), Let J be a finite~dimensional real Jor-
dan triple and let W be a two-dimensional simple Jordan triplé
over IR which is given by

&mmk:z(my>z+(ygﬂw:—<x¢7y,
{ , Ybeing a nonéegenefate syumetric bilinear form on W, By di-
rect calculation, one can see that %J@?J‘tog@ther with the com-
ponentwise product is again a Jorden triple, from which Rinow
got a Lie briple by alternation of the first two arguments, The
subject became the standard embedding Lie algebra L(W?J) of the
Lie triple W®J and it turned out that a real finite-dimensional
simple Lie algebra is a construction L{W,J) if and only if can
fiﬁd an element u # 0 with (adu)3 =0 -adis .

HIRZEBRUCH [4@ a]’éescribed a generalization of TITSqQOHM
struction of Lie algebras from Jordan algebras ElQB,aj to a con-
struction of Lie algebras from Jordan triple systems, This gene-
ralization imcorporateé MEYBERG's construction of Lie algebras
by Jordan triple systems [77 ez in the same way as Tits construc-.

tion incorporates KANTOR's [54 ai{anﬁ KOECHER's LBQ cj, and as
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g Tits' construction it has the advantage that it allows us 40
obtain different forms of a Lie algebra starting with the, seme
Jordan triple system.

8] showed that HIRZLBRUCH's construc-
‘or & more general structure, namely,

e

lized Jorden triples of second order in the sense of KAN-

,._
el
[}
fa
=
&
Jred
4
o
i

iKE%[ﬁw dl, This construction involves a two-dimensional space

with bilinear form <, ; in the case when the field of definition

is algebraically closed and { ,7 is non-degenerate, the construc-
tion is essentially that given by RA;YOR[~94 d] A& Tie algebra
construction analogous to that of Asano~Yeamaguti was given by
K&KIICHI [ bj and genera 1lized by himself to graded structu-
res [;Q bl

KOECHER [59 é} pointed out how algebraic constructions of
Lie algébras by means of Jordan algebras of Jordan triple sys-
tems, the study of holomorphic vector fields, and other methods

and results in the domain of nonassociative algebras, can be

linked by a general concept. Koecher's f ? iental ideas are the
followings

Let X be a left K-module, K being an associative and com-
mutative ring with unity. Consider the K-module : .

Alg X = Homg (X, Endp ) e

To each element & of Alg X there belongs an dlgebra KA on X defi-

ned by (u,v) =2 udv i= v with &

5 €8nd K and u,ve X. In Alg X a

bt

product which depends on ué ¥ is defined as follows: if 4, B
are elements of X, then

(6+2) x(AuB)y := (ulx)By + xB(udy) - uA(xBy),

and one gets an algebra denoted by Alg, &

Alg X together with the product (6,2) can be considered

N R Y R SR T T R

—

s A A T R R T T e SR B



as an algebra of algebras 4lg, ¥, If TeEnd Xy, Ae blg X, then

ideal “IWHX“ and "T.McM for gll T of End X" are equi&alante
If K is a field and u # 0, then Alg, X is simple and all
algebras are mutually is O&OPQ%LC,
The principal idea is to consider the so-called standard

?‘T £ ebra

bsrhesmeene s

Stand X = X @PEng 1 B Alg X

in which the product of the elements P = u ® T @ A and

V' =v®s 6B is defined by (§,¥) u@>E? W1 with
[r,8]) := 1s-s7, [T,0) := T4, [7,4]
(4,07 := 8, [0,v3=0, [4,87 =0,

for u,veX, T,5¢End X, A,Be€ Alg X

= Tea,

ea

§
i

{45, ]

Stand X is an anticommutative algebra in which the Lie sub=
algebras are of special interest. Various new results were deri- é
ved and well-known ones were put in a new context. KOECHER L 59 éﬁ
also gave a study of the connection between the Lie ubalgeupﬁh
of Stand X (in ‘which X is finite~dimensional) and a group of bi~ L
rational mappings of X, ' , ; | ?
| Let us uwntlon now the following hOMCBLh construction [}9 £
of Jordan a algebras given a LQW years later: For a unitary commue
tative ring K, a K-module X and a Lie alfcbr as T of endomorphisms

off X, let M(T) denote the submcduie of End X consisting of all

[K~linear mappings B : K —> BEngd Xy u =2 Bu, such that BueT for

st

u€ X, Suppose that there exists a commutative (nonassociative)

st o .

algebra A on X such that the alvubraa defined on X via (u,v) —>

-¢~Buv, Be M(T), are matations of A, Then one can congtruc a



(o

Jordan algebras of &, Let M+ X ~>[K be a nondegenerate rational
map of the finite-dimensional veector space X over a field K. De-

ret
)

note by Ty the Lie algebra of the Yinvariance group of Y " and by

éwltha commutative algebra associated with'n and let ee X. Then
i . s A S
the assumptions are satisfied and one obtains a Jordan algebra
of ﬁ% .
As is well known, the notion of the gtructure group intro-
duced by KOECHER [59 a| (see § 1) provides a useful tool for the

e

theory of Jordan algebras, JACOBSON's paper [ﬁ? cL]aim& gt de-
termining this group as exXplicitly as possible for the Jordan al-
gebra of syumetric elements in an associative algebra with invo-

lution, &fter defining the basic concepts asgsociated with qua-

dratic Jordan algebras, Jacobson presents the main idea of his

paper: given a special quadratic Jordan algebra J, the elements
of the structure group being just the isomorphisms of J onto its
various isotopes induce certain automorphisms of the special uni-

versal envelope of J, and the group of these automorphisms can

be explicitly described., The structure group of any Jordan al=-

gebra J gives rise, by the standard pattern via dual nuabers, to

its associated Lie algebra, called the structure algebra of J,

In the final section of the na er | 47 ¢ JACOBSON showed how his
pap L. 4 :

_results about the structure group imply corresponding results

aboﬁt the structure algebra, ) .

GORDON [34 a}eﬁetermimed the components’ of the automor-
phisms group and of ihe structure group of é'semisimﬁle Jordan
&1gebra‘J over én algebraically closed field of characteristic
zero, as well as the action of these on J. The results thﬁé'obm‘
tained are highly elaborated but are modeled dn the corresponding
results for Lie algebras; ind@@dﬁ the main procedure is to work 7

with the Lie algebras of derivations, the structure Lie algebra,
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P

am& the Koecher-Tits algebra, In [ GORDON proocdoa from a
complex, semisimple, finite-dimensional Jordan algebra J with the
structure Lie ?1gebra;£ end Koecher-Tits %1g@bra~32£;2éte prove
that a suitable selected Chevalley ba forH%zyielda simulta-
neous intggral bases for J and Z?g Then, Gﬁﬁﬂﬁﬁﬂiﬁé cigundért@ak
& thorough-going study of the structure group of a aplit semie
simple Jordan algebra,
FAULKNER and FERRAR |29 b) defined the concept of an snti-

Jordan pair which differs from the concept of a Jordan pair only

by the sign in the second identity. However, this difference
induces a connection between anti-Jordan pairs and graded con-
sistent Lie superalgebras instead of the known caﬁnecticn b@twgen
Jordan pairs and graded Lie algebras.

ZEL ' ANOV [110 h} remarxed that "...under certain restric-
tions on the characteristic of the ground field, the theory of
Lie algebras with finite grading turned out to be « parallel™ to
the Jordean the@fyn This parallalism is not formal: the most im-
portant notions and methods of‘the theory of Jordan algebras ad-
mit thée natural analogoues Tor Lie algebras with f&nx%c grading
That is why the Lie algebras with finite grading may be right-
fully included into the Jordan théory as its most general (up
today). object. This ideclogy made it possible to classify the
simple (infinite-dimens ional) Lie algebras with finite grading"
(see Theorem 6,1 below).

Theorem 6.1 (ZEL'MANOV [[110 £];. see also [110 h]). Let

S

ol Weh 2f be a 31Lwlo Z-graded Lie algebra over a field of
A= =D

characteristic . py 4n+l (or zero), z ;{ # 0., Then one of the
: 1;0 -

following assertions is valid :
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1) there exists a simple Z-graded associative algebra
n..
T R. such that T ~Tp atl /= T e DN
B o= L.j SUGH N8y R Ll\.?.u VA RN ) waere £ Ls a cent

T 9

3 =y

2 b 4
of the commutant [Rﬁﬁj ;
2) there exists a simple Z-graded associative algebra

n
R =‘>, R:. with involution # : R —» R, Ri = R., such that
1= en

Cf[SiéI !%{[S§SJ)51R0§ where S=3(R,¥*) ;ﬁ%

L+
m
P
;EJ*

i

§
{0

[N

Feta
&0

a Lie algebra * -gkew-symmetric elements;
%) ;? is isomorphic to a Koecher-Kantor-Tits construction
E

of a Jordan algebra of symmetric bilinear form over gsome exten-—

sion of the ground field;

4);£ 18 of one of the types GZ’ F4, E6’ E7, Eag D4o : i

A

Comments. As ZEL'MANOV [110 Q] observed, one may consider

an even more general situation, nemely, when /\ is a torsione

/) oz
¥, X - “4 -4 ' e ,,' ¥
free abelian group, / = g “Zi i1s a /l~graded Lie algebra, and e
LEA

the set{ )hé'/\} ;{; # O} is finite. Then, under certain restric-
tions on the characteristic of the ground field, an'anaiogue of
the Theorem 6.1 above can be proved,

Let us finallquentian some of the advances made in view
of applications in physics.

If we t@ke the totally.symmetrizéd monomials in g and p
as a basis in the Weyl algebra, which is the associative algebra
generaﬁed by p and g mudui@ the émnonical comnutation relations,
the polyn@miaié of the first and second degree can be glven Lie
and Jordan algebra structures théﬁ are isomorphic to well-known é
matrix algebras. As an application, the relation between formally !
real Jordan algebras, domain of posiﬁivitys and symmetric spaces
was used by TILGIER [104 ¢ | to give a classification of the se-

cond-degree Hamiltonians that are invarisnt under invertible 1i-
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near tz\u' ormations of q and p and has sowe influence on the
rapraa&ntatian theory of the solvable spectrun gencrating groupa
of these Hamiltonians which were €arlier described by TILGHNLR

7[164 u,bjﬂ In the final pert of his paper liOi e

R s §

y T Luu(“uu{ Lava

s

ARl

the relation of tha Weyl algebra to the Clifford algebra over
an orthogonal vector spasce, and discussed tho minimal imbedding
of an arbitrary Lie algebra into the Weyl algebra.

nu{?l?j described the role of ternary (super) algebras
as building blocks for all Lie (super) algebras. This mathemati-
cal construction is tentatively applied to the physical gauge
theory in Lagrangian formulation,

Every involution g defines, by X (X) = -X, the elements of
one of the classical Lie algebras ¢ (n, €) and sp (2n,C) over ¢,
and ¢ (p,q), sp(2n, R), ulp,q), &*(2n), and sp(2p,2q) over iR,
also defines;{~ﬂyﬁmetr1c matrices ¥ =« (¥) spanning the classical
Jordan algebras. PATERA nad Roussmufsa] gave an explicit de-
scription of all perturbations of K -symmetric matrices, congide-
red up to equivalence, under the action of'the'corresponding
classical Lie group. Such exhaustive perturbations are called
versal deformations,

GUNRAYDIN, SIERRA and TOWNSEND {37] derived the magic square
from the geometiry of a sncclal class of N = 2 iaxwell-kinstein |
.supergravity theories. Thﬁy also showed that ocach of these theo-
ries is thainublﬁ by'truncatiom of N =8 xuni“yIHVAt{ theorics

W

in various ¢ ACutl 9 dimensions 4, uvxcept for an "oxceptional
&

: -4 ; g ; ; ey
b3 - . - s pe % /3 2T P e £ e # R R
Bubclass, unique Ior -4 given d, wilch 18 aapociated wiih the

V()
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Hadronie Pross, Inc, Honautum, Mass, volg.l-4, 1984-1986,

§ 7. Russisn school in Jordan structuroes

In this gection we shall briefly recall some of the most
important result obtained by the Novosibirsk school of the lata
Professor Shi?shov, particularly Zel'manov®s results concorning
the infinite-dimensional case, These advances essentially complete
the general structure theory for linear Jordan algebras, Thege
results are expected to bear largely on the applications of Jor-
dag structures as they become better known. For a detailed de~
scription of the recent breakthrough of the Russian school in
Novosibirsk, the reader is referred to ZEL'MANOV\[IIO h] and
McCRLIZON [ 71 4],

Note. For Russian contributions to geometrical applications
of Jordan structures, see §§ 2,5 in JSA.III, and § 1 in JSA,1V,
while to analytical applications, see § % in JSA.V,

SHIRSHOV [96 a] proved by combinatorial methods that any
special Jordan algebra which satisfies the identity x® = 0 is lo~-
cally‘nilpotent. alore generally, he proved that the Burnside-like
problem (or the Kurosh problem cf, [64]) has p031t1ve solution
in the class of special Jordan algebrag which satisfies an essen-
tial polynomial identity (see SHIRSHOV 90 a] and also [llé} ¥i
Froa his result raised the follow1np

Qgggggon (u‘nu.'yvlgd aK gee also {115}). Is there any .
“Jordan nil-aly n‘ra of bounded de;rce that is locally nilpotent 7

The above-mentioned qucstion is equivalent to the follow-
ing: Does the Mclrimmon radical of a Jordan algebra always lie
in its locally nilpotent radical 7

Suppose thu; a lincar Jordan algoebra J is generated by its

absolute zero divisors (an ele;ent aofdJd, a# 0, is called an

e 5 1 I T AN PN 7 s o AR 47 eS8 AR Bt S T et o bt s
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r X . 2
absolute zero divisor of J 3f‘§a,b,m7$:2 (ab)a+a(ba}ba2 = 0 for

all b from J), Let us consider its Koecher-Tita construction

2 ol it ah
usan Al

wy

i §
L d

o,

K(3) = 303 @ K(3) & K(J)y. ZEL'HANOV [110 b,d

Elli'a techniques féi} &nd the Jordan origin of the Lie algebra

K(J) to prove its nilpotence which is equivalent 1o the local

nilpotence of J (see Theorems 7.1 and T.2 below). This solved in
Shivshovs

the affirmative . question.,

Theorem 7.1, MeCrimmon's radlcal of a Jordan algebra lies

&

in its locally nilpotent radicgl.

Theorem 7.2, Any Jordan nil algebra of bounded degree is
localLy nxlpotent

The Burn31de like problem in the class of Jordan PI~a1~
gebras has also positive solution as is shown in

Theorem 7,3 (ZEL'MANOV {110 ¢]). &ny algebraic Jordan

PI-algebra is locally finite-dimensional.

Comnents. SLIN'KO | 200 b | showed that a special Jordan
algebra with minimum condition on inner ideals inside a quasi-
invertible ideal I has I nilpotent, and if a special algebra was
generated by a finite number of absolute zero-divisors, then its
special universal envelope is nilpotent. (For Jordan algebras :
over an arbltrary ring of scalars, see SHOUYRMKITQQS( ) SLIN' RO
and ZEL'LANOV [ll@ extended thls result to arbitrary algebras.
By 1ntrcduc1ng the iwportant notion of annihilator l), zxL';axov
fllo a} wag able to handle 1multqneouslv both the minimum and
the maximun cOnditioh; A | 2 i e 543 7

Remark 1, From ZEL'MANOV's [110 c| the conclusions of one

o i A
statezent due to OSZ2ORN and RACINE "J 2,b | follow easil;

~

Remark 2. In order to develop a module theory Zore pro=-

1) txtended to quadrsat lc Jordan al.ebras by  YeCRIN O I 7L

. R N L-‘u i i




perly. suited to the study of the structure theory of nonassoci e

-

tive algebras {primarily alternative, flexible and Jordan ale

: PRI o P . g e
gebras), OSIORN iwi 0} presented two module theories and deve-

e T n D & b o T < N 5. (S b % ”
X H d 4

loped t “ing siruclure theory. These theories were

also indépeuduntly discovered by ZHEVI &KOV[_llBJ‘

2
‘S

Note. For results on radicals of Jordan algebras, the:

reader is referred to SLIN'KO [ 100 a,c |, ZIEVLAKOV and SHESTA-

KOV [114], NIKITIN [ 30 a,b], ZHELYABIN [112] ana zgL: MANOV [110 1),

Let us recall now three othar results due to ZEL'LANOV
[110 e] (see also [ilo g]) concerning the classification of

simple or prime (i.e. have no orthogonal ideals) Jordan algebras

(see Theorem 7,4, 7.5 and 7.6 below),

Theorem 7.4, Any simple Jordan algebra is isomophic to

one of the following algebras:

1) r{) there R is a simple associative algebra;
? ]

2) H(R,* ) := gxesR( )} x¥* = Xﬂ% where R is a simple asso-

ciative algebra with the involution * : R = R

3) a Jordan algebra J(Q) of & nondegehefate symmetfic bi~‘
linear form Q in a vector space V over some.extension
of the basic field, dim;.V.>l;

4) the simple exceptional Jordan algebra which is 27-di~
mensional over its centre.,

Remark, This im iportant result completely clasifies simplé

algebras withqqﬁ7ggthinitpnesawcpnditiana; RSN S A

Comnents, Using a special -case of Theorea 7.4 one can
(dawe

s s M
classify the Jordan divigion algebras by ZEL'LANOV 1110 ¢t in
J &

1979 by wore complicated uatbods).

Theoren 7, %« A prime Dox‘efﬁ““rute Jordan algebra is eithor

4

gpectral or an Albert rins {4

§ : St i : Lo p L -5 aeE e
8 «€¢ 8 prize Jordan dl;ﬂqu‘u ¥ which

. hag its centre Z(J) different from zero end its central clos

+

S A2 A I b ot s b e



%(J)"ld ias a simple mmgogtif wl algebra of dimension 27 over its
O PO v f ¢ -1 5 00
center MU}) T, ) ) @«

Theorem T,6. Let J be a special nondegenerate Jordan al-

gebra, Then one of the following gtatements is valid:

I} the centre #(J) is nonzere and the central closure
%(J)“lé ie a Jordan algebra of a nondegenerate gymmetric bilinear
form over the field 2 (J)"IZ(J);

II) J contains the nonzero ideal I which is invariant un-
der all automorphisms and derivations of J and either;

IIl) I‘ﬁiR<+), R is a prime associative algebra_R(+L2(I§
CLQ(R)(+), where Q(R) is a Martindale quotient ring of R
(cf. [64}), or |

II,) I = H(R, %), R is a prime associative albebra with
involﬁtion and H(R,*)=s J < H(Q(R), %) .

Remark. Theorems 7.5 and 7.6 above (see ZEL'MANOV [110 2
Ii]) are improved versions of the earlier prlme theorem given by
zELANOV [110 g,I] in 1979,

In refs [71 i} UcCRIMUON listed several fundamental ques-
tioné raised inz:léﬁ, {71 (8- 5 Two on these questions are: Can
one develop a theofy of Jordan algebras satisfying polynomial
identities? Are the J(Q)'s the only simple PI-algebras which are
infinite—ndimenbional over their centres! The following thoorem‘
due to ZEL'LANOV filo-v, Iij answers thess lwo questions.

Theorem T,7.-Each nonzo“orldaal of a nondege nerate Jordan -

PI-al;-ebra has nonzero intersection with the centre (so if the
centre is a field the algebra is simple). The central closure of
a prize nondegenrate Pl-algebra is central simple., Any primitive
PIl-alzebra is sigple. sach simple PI-algebra dis either finito-

dicensional or an al,ebra J{g) over 1“J centre.,



Two other questions broached up by McCRIMUON in ref L/l ng
namely: Is the special universal envelope of a finitely generated
Jordan PI-algebra an associative PI-algebra? Are the J(Q)‘'s cssen-
tially the only examples of special Jordan Pl-algebras whose en-

velope is not PI ?,are given an answer in SHESTAKOV's EQS bf (see

Theorem 7.8 below)\

Theorem 7,8, If J is a apecial Jordan PI-algebra, then its
special universal envelope su (J) is locally finite: if J is fini-

tely generated, su (J) is an associative PI-algebra,

Theoren 7.9 (see ZEL'MANOV [110 g,I]). & semi-primitive
algebra will be i-gpecial (satisfies all s-identities) so soon as

it satisfies the s~identity 9%. Hence, the ideal s(X) of 'all

g-identities (for universal X) is quasi-invertible modulo the ideal

generated by Glennie's identity 98‘

Note, McCRIMMON extended Zel'manov's results to quadratic
Jordan algebras: for the nilpotence theoren, 8861:71 f] while
for the prime theorem, see | 71 h). ZELUANOV [110 8,11 showed
that any ideal in a strongly prime (i.e. prime ‘and with no trivial
elements) Jordan algebra is again strongly prime. McC ﬁIm,OV(:71 J]
extended this result to guadlratic Jordan stnuﬁuws (algebrag, tri-

ple systems, and paira).,

\

rin

viorth mentioning here is also SHESTAKOV's chwreucusxve
L
paper) 95 aj on some CIQJSGS of noneonqutatlva Jordan algebrss,

as well as those due to KSDVED’EV i a SLIN’HO 1100 4 Feill=
' ')y
=

- swsen N Y. o K : 3 : B - ¥
LIHICEV [01 JT and "SVERCHKOV L uZ byd| for results ot varietics
e ; 3

of Jor dan al\cu“as‘ For thorot

i

gebras, seé ARFANANCOV | 6 and OSZORN { 31 Qj-

ugh .studies on the varieties of al-

\

Y ke s o PR | _— S o 5
nesults on solvable Jordan alg zabrag {see [ 706),)19% ), and
& 7Tk P

\ . ; ey 1 X, ¥ ; Siim 5 Ch ) i 24

bimodule representations of Jordan alrebras (see ghd),;llw &)

: t E:
i o ey & ey iy L ISR R R TIRT A i WA il
were also obtained, 4 recent work of 2:L aalioy LlLO nj deala with

P )

3 ¥ Yooy o o g e ;
Goldie's theorems for Jordan alzebras,
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