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JORDAN STRUCTURES WITH APPLICATIONS - II
JORDAN ALGEBRAS IN PROJECTIVE GEOUETRY

Radu IORDANESCU

§ 1. Octonion planes

The first investigation of octonion planes dates from 1933
and is due to MOUE&&K}[47}KQ It consisted in the construction of
a projective plane coordinatized with an octonion division slgebrs.
In this Moufang plané, Desargues 'Theoren fails but the Harmoni
Point Theorem is valid.

Another approach to octonion planés was given in 1945 by
JORDAN [33} via the Jordan algebra d§%03, Recall the definition
of the exceptional Jordan algebra ﬁ? (5): Let HB(f) be the set
of all (3X3)-matrices with entries in an octonion algebra Oﬁand
which are symmetric with respect to the involution x —>%'. The
characteristic of the underlying field is supposed to differ from
two. On H3(03 we can define a Jordan algebra structure by meons
of the product xy := % (xey+y«x), where the dot means the usual
matrix product. The resulting Jordan algebra is denoted by ﬁ;%ésw
Jordan focussed on a real octonion division algebra 0 end used
the primitive idempotents in H;(G} to represent the points and
lines of & pro;j@étive‘plane° (Two years later, FREUDENTHAL [2?:]
obtained essentially the same construction)ly, ATSUYAMA used the
~embedding defined by YOKOTA [?4] to obtainz:é:} new results in
this direction. | o

The construction was extended in 1960 by SPRINGER{???%} who

considered O~as en octonion division algebra over a field of charac

~

1) For a recent systematic trecatise on applications of the real
algebra of Cayley numbers, we refer the reader to BRADA's Ph.D.



teristic different from two or three. In this more general setting
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elements of rank one (which are either non-zero multiples of* primi-

tive idempotents or nilpotents of inder two) are used to represent
{he points and lines of a projective plane, Springer proved the

fundamental theorem relating collinestions of the plane and norm
semisimilarities of the Jordan algebra. JACOBS)N{?34] showed that
the little projective group, i.e. the group generated by elations

(transvections) of these plaenes, is simple and isomorphic to the

D

nora-preserving group of the Jordan algebra modulo its centre,

SUH [é%]sﬁmmmdAthat any isomorphism between the little projective
groups of two planes is induced by a collineation or correlation
of the planes, SPRINGER and VELDKALP féé@}undertook a study of
Hermitian polarities of a projective octonion plane and the rela-
ted hyperbolic and eliptic planes, The unitary group of collihea-
tions commuting with a hyperbolic polarity was studied by VELD-
canp [ 6647,

SPRINGER and VELDKM&P[Gijconsidered plaﬂes associated
with split (i.e. not division) octonion algebras over a field of
c¢haracteristic different from two or three., These planes are not
projective. (For the study of these planes, see VELDKAMP[&&@A?)O

In 1970, FAULKER {194 extended the notion of octonion pla-
nes in another direction by removing the restriction that the
ch@racterisiic of the underlying field be different from two or
three, After McCRLEKﬂJ[&é&Khad introduced the notion  of quadra-
tic Jordan algebra and ﬁerifigd that 1£§03 possaéges such a struc-
ture for any characteristic, Jacobson suggested to Faulkner (see
ﬂgé:a, p.3)) that characteristic-two octonion planes could be ap-

. ﬁrcached in this way. As it turned out, in the setting

ES Fal

s, most of the results on octonion planes can
3 I

1]

tic Jordan algebr

fa §
£

be derived in a uniform manner, without referring to the charac-

JS"
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teristic or the type of an octonion algebra,

For collineation groups of projective planes over degene~
rate octaves or antioctaves, see PERSITS qua,b:}, :

DAVIES [Yé] studied bi-axial actions on projective planes
(incluging octonion planes), making use of their Jordan algebra
description,

BIXJ[94 ] has defined and studied octonion planes over
local rings. He generalized Faulkner's result on the simplicity
of PS (see for definition on page 6 ) of an octonion plane over
a field to octonion plenes over local rings, Those subgroups of
the collineation group of an octonion plane over a loecal ring
which are normalized by the little projective group have been
classified. This parallels results of KLINGENBERG and BASS, who
classified those subgroups of the general lineap group over & lo~
cal ring which are normalized by the special linear group.

:mzfﬁéj BIX proved two main theorems about octonion planes
over local rings. (see Theorems 2.16 and 2,17 below), .

Following FAULKNER [184]and BIX] 9 a,b,c], we shall present
here the octonion plane for an arbitrary octonion algebra over a
field of arbitrary characteristic (or over a local riﬁg, or over

1

an Huclidean domain),as well as its basic geometrical structure,

The (quadraetic) Jordan alﬂebravHB(ﬁlf), Let § be an octo-

nion'algebra over an arbitrary field}? (see SCHATER ljﬁ? yell I I E,
§ 4({). We have an involution a ~%*§,éié@v; a.trace t(a)élw,

a+ 3 = t(a),l;’d norm n(a)€ [, ad = Ha = n(a) 1; and a symmetric
nondegenerate bilinear form.n(a,ﬁ) 1= n(a;b) ~.n(a) « nth) .o Let
Tl,fz,f% be nonzero elements of I and let | = digg{ fi,{é,x%}'e
Let H3(U;{) be the subspace of matrices that.are symuetric under

the invelution Jg,of the (3 X 3) wmatrix algebra with entries in 7
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o ), e
given by .Jgg B ¥ :{“f « One can see that an element x of

HB(JZK) has the form:

5 = 7 .6 + ; 8. [jk] with £.€0, a. € O .
&y rd gl S

Here (i,J,k) is a cyclic permutation of (1,2,3);
L ¥ - - -
£ - s 3 6 o F » L
afij] QJa e 3 'fi 8 ey g £ 3,
in terms of the matrix units eij’ and
:L Ell] e T eii - ej_'

‘ » . . . a
Hg(ﬁzb) can be viewed as a unital quadratic Jordan algebra

Q{(N,¢¢ye) via the following definitions (see McCRIMMON’[éé bj ) e

If x is expressed as above and y = Ez—ﬁj@i +# z: bink] with FieﬂF,f

and bié-Oﬂthen set
N(x) ::t%lgzag «t%lféxg n(al) . NfXZY% n(az) -
= P1T%s nlag) +Y )5 tlajasas)
TCxy) 1= 2 X5+ L [l nlagsby)y
2" =) (5% = Tyl nlag)le; +
+ ZW ([i(ajak) "‘%iai) [jkj,

€r * g

Definition. &n element xe.HB(f,f) such that x # 0 and

e

x =0 is said to be of rank one,

ﬁgggiigg;-Let x,ye;HB(J;{§ and’set Tysx t= Id T'Vy,x~+
# UyUX (see KORCHER| 37, pf3,4.2]) . Let x,y,z be elements of rank
one in Hy(F,{) such that T(x,2) # 0 # T(y,z). Set w := T™2(¥,2)y~
- '3;‘“‘1(}(,2);\:‘ Note that T(w,z) = 0 and that T‘z,w belongs to
To: (D DI L R

Z23X,Y Z,W

=
W
o)
A"‘.
—
-
,_J
AL
} 3
o
Lot
%
L2

f 3 ',7 il i S % f, ) o
T,... . 18 called algebraic transvection on

R
g g




Hy(0,¥) (see SPRINGER [59 b], and also FAUKNIR 118 al),

Notation. The quadratic Jorcan algebra 11 (0,1) will be

fiw
dmm ed by d Denote by —}Ttm set of elements of rank one in «f

X & ZT et x, add x* be two copies of the set {X‘A)o{é Fo. ] Oﬂ

Definition, The octonion nlane \/ (lg) cou ists of points

Ky X &L | T and lines y ", v E I » under the following relations

PO v&,x e

b) xxmy” x, cermected to y¥, if T(x,y) = 0

: * . . . 5
a) x.xily » Xx  incident to y

to

)

c) Xy 2wy Xy comecled to Ye » if xX 720

d) X2 3%, 2% commected to y¥ , if xXy

i
(@
e

Remark, If the characteristic of I is different from two

then the above definition is equivalent to that of SPRING ER end- |

VELDKALT [604] | '

/ Y] |

' . ~ « |
Notation, Let W be a semisi imilarity of ¢ onto wf =B ([,3 I

D . D %
and define 'y” :t/(u!} --%&/(CZ) by W o(x%) ;= (V( )" s xev

'> Ry
Remark, "w'is a collineation ofJ () ontoJ (f}) (see the -

following definition).
~ -
J

~Definition. 4 bijective nap of the points () onto the

. . iy . . . o o \ 5
po:mts (lines) ord (wz) and of the lines of J(,J) on'co_ the lines

: Pl . oy .
(points) of Cog) preserving the incidence ang connectness rela-

tions is called g colloneation (correlation) of\/ (vj) QDLO‘/(@'

De fwmu 1on. A correlation of‘:p(,dr) onto itself is called

a du”?J%VG ¥ I \ :

L]
i)e:f‘in*i_jzion_-a 4 duality of order two is called a polarity,

1)Li11)1r¢ n. Let TIO be as follows:
-~ .)(. e
4ot Xy =——2x" x s XGW,

: 0 :
Then Ty is a polarity of (#), called the sta,ndax*d polarity,

Remark, 1T we consider 11, (0’2() and H, (A” ‘f ), then it can be

seen that thero exists a collineation of / (I (d Y)) onLoJ(hw(f B))
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Thus, the structure of the plane ?%H JIY)) depends only on the

octonion glgebra 0 , hence /(.J) will be denoted bykf(ﬁb

Definition.Three points Uyws Upxy Usgy form a_three-point
L B 4 % 3
if l(ul,u2><u3) # 0.

Definition. Four points form a four-point if each subget

of three points is a three-point.,

Remark, The elements €5, €y + LLJ] Y‘Y n(a)e are of
rank one and span iﬁ For every point there ext»ts a point. not
connected to it, Horeover, since T is nondegenerate, every pair
of uuconnected points can be embedded in a three-point.

Notations. Denote by Pr, PG, PS the image of [, G, S,
respectively, under the homomorphism W m%wrwq in the collineation
group. (For [, S, see § 2 of dSA.T ). |

Proposition 1.1, PS is transitive on points, pairs of

points that are not connected, and three- -points, respectively,
PG is transitive on four-points,

Proposition 1.2, If & chT wen there exists a ¢ G.Tr;

such that T(a,c) .T(b,c) # 0.
Corollary. If a, and by are points, then there is an alge-

. . gy
braic fransvection T such that T (a,) = By,

Proposition 1.3. If a, and b, are not connected, then
(ax b) " is the unique line incident to both ay and by ., We write
| . N : :
dxX by 1= (a%x b) , v M

. . ’ * "
then there is a line ¢ ineci-

Proposation 1.4, If a, ™Mb,
dent to both a, and b, .

" ; - *
Remark. For a, L)é'ﬂa [o implies that a,=™b .

Proposition 1.5. The following statements hold:h16163

Lo, . S 3 )
a) axob’ if and only if there exists a c*ib such that a,=c, ;

I ’X' ot ] :
b). if a,%b"; then for c*lb glther a,®e, or fare)l = b .
¥*




Wl'\g( b{/ﬁ? lué%x MZ* °

P o % .
J fixing all points Cy

that aygcy o
s " - . o - ‘&‘
Corollary 1, PS is transitive on pairs ay b .

’ | % . ; U E
Corollary 2. If %y, Yxtk2z and X,yy, then T, . 5 188
, 3%

Ui

»* gs its unique line of fixed points. This line is called the
. 2 1 '

gxig of - T s

o PN

Proposition 1,7. PS is transitive on pairs ay =Dy .

O .
Proposition 1.8, If ¢ is a collineation of S fixing

s ¥ * 3 *
ay , by , and all points on ¢ where 8y, Fby, ayFce and by¥c ,
then 6 is the identity.

Proposition 1.9, If aydby and if ¢ is a collineation of

* .
(aXb) such that either cydtay or

*
cxkby , then ¢ fixes all points incident to (axb) .

Theoren 1.10. (The Fundamental Theorem for octonion

planes). IfJ; = 041) Y(lb i=},2, and if ¢ is a collinea-

tion of 3)((T(])) ontouf(g(?))g then ¢ is induced by a semisimi-:

. i i
larity W of 33 ontoéj?; i.6, O = rW .

Definition. Let Ui, i:ﬁ ZD)Q ’Y,eff(,uf‘immjf& oF?{(f)wr}L M“’:’F Uy M,*lu“*x Hz% ¢

e | oy e 5 . g " " Ay
If there exist Vax , V,* such that uq* , us%, Vagxy Vg forn a
four-point end the incidence relations indicated in the figure
below are valid, then one says that the u;x, 12152 ,5,4, are. iR

harmonic position.
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Proposition 1,11, If ul%f%ug%‘and U |Uy# XUny 5 then

there exists a unique point Wy x| Uy % X Vo such that Uq s Uoyy U

P Uyx 8re in harmonic position, Moreover, u

EY
)

= u,, if and only

7%
.

4

if the characteristic of [ 1ig 2,

Remark. Note that in a projective plane, the uniqueness
of the fourth harmonic point in Proposition 1.11 is a consequence
of Desargues'theorem, more exactly, his weaker Little Theoren
(see, for instance, PICKERT [570, pp,190~19i]). Conversely,
although Desargues'Theorem is not valid for projective octonion
planes. (see, for instance, HAI&;[@L%, p0374]), the Little Theorem
of Desargues holds if the fourth harmonic point is unique and
distinct from the third harmonic point in a projective plane
(see PICKERT}?ﬁZ), p“l9ij)a Therefore, Proposition 1,11 implies
that Desargues'Little Theorem holds.in a projective octonion
_plane if the characteristic of [ is 2, For arbitrary characteris-
tic FAULKNER [4%2{Shas given a direct proof of a result true for
an arbitrery octonion plane, which reduces to Desargues‘Little»

Theorem in case the plane is projective (see Propesition 1l.12

below) .

Pronositjon 1.12. If ¢y, Pgy Tx, Gy form a four-point, if

u%[c*, u*#gp%,q% e — and if Vi Cx K Qg Ve C, X Ty, then the
’ ¥* * &

trreeé points x, := (p%x:r%)XLl,s%,gz-(((r%><q*)X'u Y X Vi) X (0, 5]
and t% ro= ((Ipeh ged A u%)X'v%)X (c, X py) are uniquely determined
and incident‘to a unique line,

Now consider (Quﬁdratic) Joramm'algebralﬂz(ﬁlf).x: CZ; J
is an octonion algebra which is a free module over a local ring
R with maximal ideal m. Let ] be the group of semilinear Rmﬁbdule

A
automorphisms %’of kJsatlsfylng the condition



for some gé:Rmm, and consider its subgroup

felgeo, o =10, =],

lotation. For any subgroup H of r‘and any ideal I of R put

il ::M}cgezz, P = x (woa L)), xe ],

proved

Sost
H)

BIX [?) a]

‘heorem 1.1%, A subgro H of i8 normalized by S if and
Theorem 1.] sul up H of Mis normalized by S if |

only 1f SIgﬂig(Rym) fﬂl for some ideal I of R,

1)

Remark. The collineation group of

~

(;:’g’) is isomophic *to
ry(Rmm), hence Theorem 1.1% classifiles the subgroups of the colli-
neation group which are normalized by the little proj@ctive group.

Recently, BIX Elﬁ ] fined octonion planes over Euclideen
domains as follows: Let U‘be an octonion algebra over an Buclidean
domein D containing 1/2 and suppose that ﬂyis split (i.e., -con-
tains a subalgebra that is a hyperbolic plane with respect to the
norm of‘a/). Denote by S the group of‘nbrm~preserviﬁg transforma-
tions of the Jordan algebra ﬁ?(ﬁ}. For any ideal I of D, let Sy
be the subgroup of -S éonsi%fing of elcz@ntu that induce the 1d 2 -
tity map on i (6)/ I I (G) and le- S; be Lhe subgroup of S con-
sisting of elements that induce scalar multiplication on
/1 B

PLA‘EQ@j proved the following:

Theoren 1,14, If N is a subgroup of S, then N equals S if

and only if N is normalized by S and N is not contained in ST
- (281

for any mﬁxxmal ideal m of D, If D consists of all rational num-

-

bers whose uenominators are powers of 2, then N is normalized by

(]

S if and only if SIC NC ul for some ideal I of D,

§ 2. Transvections and polarities

Since the structures pf(?({?), PG, P[ and PS depend only
on the octonion algsebra 0,’ throughout 'thig -se ctionff is assumed

to be dia {1 1 1}
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2.1. S is generated by algebraic transvections

i

Theorem

PS is a simple group.

Proposition 2.2. The following statements are equivalent
for?(g):

a) ax®b, implies that‘a% = Dy ;

b) a*x b* implies that a* = b¥* ;

c) ayab¥* implies that a,|b* ;

a) [T is a division algebra;

e) J?(53 is a projective plane.

Definition. Let;P(U) be a projective plane. & collinea-

tion.@‘ofi?(ﬁ) which fixes all points incident to a line y¥* and

all lines incident to a point x,|y* is'called a transvection

ax‘lo *

with centre x, and

Remark 1, 4 line y* and two points wy and z, not on y*

determine a unique transvection with axis y* and mapping wy to

Remark 2, If Ty,w » is an algebraic transvection, then
, £}
- 1. ) . 8 " : i .
Ly ow,z is a transvection with axis y* and mapping w, to z, .
y ¥Wye :

- FAULKNER [42 8, Pp.5l- 57} JHVGStl”atGQ involutions (i.e.

collineations of order two) in the group PG and proved that any

and

isomorphism between the groups PS (or PG) of two projective pla-

’ nesg>(g(l)) andja(ﬁ(z)) is deduced by a collineation or correla-

tion. These results

of I 22 or 3 by SUHI\égfgand VELDKALIP [52 ] The methods used

were established in case the characfcr1 stic

2 i tad 2 2 b 3 4 4
therejln also-apply for charjacterlstlc %y -bul Ter charlacter1$~

tic 2 the structure is essentially different. FAULKNER LLX%S gave

proofs only for characteristic 2 (see Proposition 2.%, 2.4 and
2.5 below),

Pronos

sition 2.%, If the field (f has characteristic two,
2 e - — X o AT -
then esvery wwolution of a projgective p]&lmJ (J? 18 either a
transvection or an involution with a fixed four-point,




o

Proposition 2.4, If € and T are transvectionsin a projec~ |

tive planasp(g) over a field of" characteristic two, then the é

0

following conditions are equivalent: ’ ?
(1) TT=%8
(ii) the centre of one lies on the axis of the other
viceversa;
(1ii) O¢is the identity or a transvection.

L

Proposition 2,5, If & is an 1uoworphi m of the group PS §

(or PG, respectively) of the projective plane\/(U(l)) to the ?
corresponding group of the projective planei?(giz)), both defi- ‘

ned over a field of characteristic two, 1=1,2, and if o~ is a

] D (s
transvection of J (01)) then* () is a transvection of\/(g'“)}

®

Theorem 2,6, If X is an isomorphism of the group PS5 (or

PG, respectively) of the projectiVelplaneJD(g(l)) to the corres-
ponding group of the proj jective plane j%U{Z)), both defined over
a field of characteristic two, then £ is given by ®(¢) = y“lc~§
for a‘gPS(G‘l))'(G éI%MU" )) respectively), where g is a colli
neation or a correlation Ol‘j<U( )) onLog/(Di?))
Note. Now assume that II' is of arbitra ary chearacteristic,
Notation, If 7 is a polarity Ofu/<é§), then PU(ﬁ) denotes

the subgroup of elenents of PG which con mnute WJth 7

Proposition 2,7, Let J be a polarnty o /(ﬂJ) Then

I S S i 2 ; I
a) §="7 N, 5 where T, is a t«S@m1Slmll@rlty of +¢ such
that t° = 14 and To=p,
r . . - .
b) "' € PU(T) if and only if Lzore eXists )¢ I .such that
*

STS" = LT; such a \ satisfies LX)
; i ' - o
¢) every element of PU(T) can be written as 3  where
* . ~ - . . . . 3
olS ~ =05, for. gueh g, gt(g) = 1, where S is a similarity with

multiplier 0w
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d) if t = Id, then every element of PU(#) can be written
as 7S? with srs* = T, where S has multiplier S 1l; such an S
; r.mT
is uniquely determined by S .

. . « - « b - - D, 2 b AP
Definition, Two polarities /! and J are called egulvalent

% -”, P nd . ~ I3 «
if =0 176 with ¢ a collineation,
=iy . , -, . .
Remark 1 ] Jis equivalent to / if and only 1f

N 2T — . T oS
7l=' slins £ ,00 for some S € | , where J = T J,.

n . I s
Remark 2. If 7 and 7' are equivalent, then PU(T’) & PUF),

Definition. A three-point Uyxs Upxs Ugy is called a polar

% . Gl
three-point 1L-H(u,%) (UJXIH) for i,Jj,k distinct,

liotation. Suppose that €4y

. ; cp o T \ .
point with respect to the polarity 7 =" T Jo , with T as in a)

i=1,2,3, form a polar three=~

of Proposition 2.7. We ‘then have m(o ) m‘kiei for some)\ié WM{O}o

Let I 3= 1T and put T Dl? 55 TpToi Ty

«&
‘jjk

D
o g ey . . s . . e
Definition, If / 1g.a polarity and x, 1s a point Ofu/(‘j)?

then x, is called weakly isotropic if x,~ #(x,), and x, is cal-

led isotropic if AX/ I(x,).

Dafinition. IL.?Roj) contains a (weakly) isotropic point,

thenja(fi) is said to be (Weak%x) hyperbolic,

Proposition 2.8, If %, ¥x

; - . cn T iV - » * '.
points relative to the polarity, if J = T j,, T = T", and if

. 3 ”T 3 b o
A ¢: F(Xy) $ Z)a?l: J (X*) s then VTT X . is an e¢lement of PU'( J ) .
. # . (‘}\-I g;y’Zl »
Notation. The group generated by all transvections
F- : o
T (}x) 5 "'" {T’Oﬂ" 13?01)0 )i‘tlon 208 iS denoted by %}T( J ) .
3V s

Eropositjon 2.9. If J is a hyperbolic polarity with two

isotropic points v, and w, with v,% J(w,), then 7 is equival
2 N ey rm_l 77 . o -1 3
to a polarity of the form T 7, , where T [3 1,1; -J,-d,d d | and

J is a t-semiautomorphism of‘U such that ¢ ="id,

L . o 5 ; . A
Definition. A polarity Jl is called linear if 71 = Cr #y




Remark. A polarity equivalent to a linear polarity

r
-

linear,
Note. Throughout the remainder of this section, F will be

1]

assumed to have characteristic two,
If 7 is a linear polarity satisfying the conditions of

Proposition 2.9, then either J = 7, or T=lpl s

sigS T i s 0N M Wy J] where J is an automorphism of(T’of order two,

First conoidor the case J =.7,.
PPODOu<thﬁ 2.10, If I is, the standard polarity, then the

TToUp PT(ﬂO)SZPU(ﬁg) 1s transitive on isotropic points. lioreover,

}.J.

e

T x4 1s an isotropic point and y* is any line through x, with
P x* = jb(X%>; then there exists an isotropic point z,ly*
with 2, Fx,. '
Propogition 2,11, PU(ﬁ;) is a faithful permutation group

of the set of isotropie¢ points,

Consider now polarities JI other than Je:

. S S iy P \ ' g
Proposition 2,12, If F="1 oy where T = | 1,1,1;3,3,d
and J is an automorphism of ( of order two, then there exists an

isotropic point w, and a line y* lw) with yk‘ﬁrﬂ W), such i?‘+

every isotropic point z,

v satisfies i W g

Corollary 1. If / is as in Proposition 2,12, then J is

not equivalent to 4o

s

Corollary 2. PU(J,) is trans itive on pairs of isotropic

points .v,, w, such. that vxf$VK : .

Ly 3

Coro]larv 5. PU(T) is transitive on pairs of points

Uy s Xy such that ulg, X%IV* for seme isotropic point v, . and

Uy FEe ¥V FUy 5 o .
« - - 8 ) o . - .
Recalling that an idempotent cé .§, ¢ # O, is_primitive

if the Peirce d-space with respect 46 ¢ has no idempotents other

than ¢ and 0, we give

) S [ O . : * ’
ekl Let vy, wy,z, be collinear isotronic
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points with respect to J, such that Vy F2¥, wy qz¥%, then

a) there exists a primitive idempotent c,such that c%[z%

b

b) if ¢ is a primitive idempotent such that c%]z*, then
Tzsv ol - xut\f/wc the set of automorphisms of‘i?:fiking S

Defir wition. If u, is a point such thatiﬁ(u%)‘contains an
isotropic point v, for which u,%v,, then u, is called an outer
point., '

Theorem 2,14, PT(Fe) is a simple group and is transitive
on outer points,

Theorenm 2,15, If F is a field of characteristic two, then
PI(J.) = PU(Jo). Hence, Aut «fis simple,

Remark. The simplicity of Aut;j was first proved by
. JONKER [323 for fields with at most two elements,

Consider now two (quadratic) Jordan algebras Hq(gﬂ“)y) =

: iy
=g J(l), 1212, where(y(l> are -octonion algebras over local rings
‘i[?éqf proved the following:.

Theorem 2,16, There is a collineation between J(”Kl>) and
?? ?£2))if and .only if there is a 1u5 1uomorphigﬁketwe01104lj
and U(E). | |

Faulkner's result, here given as Theorem 2,6, was genera-

zed by BIX [@ b:]us follows: .

Theoren 2.17. Let Pﬂ(l), i=1l,2, be subgroupsof the col-

lineation groups 'f‘/(’“(i)) con aihlnﬁ P5( &pi)), where‘gtt) 4

='H3kﬁ(i),f) with Uﬁi) defined over local rings which contain
1/2. Eebs b@ an isomorphism of Pﬂ(l) onLo PH(H) such that
@(P%('J1>)) PS "18)) Then there exists a coilanoatLon or a
.correlai-on‘ €3 ¥ (W(l)) ?»j(“iz)) such thaugb($) zg Yf_f for
all ¢ cpul),

Remark 1, The assumption that<9(PS(:§l))) - “°{’42)'

Theorem 2,17. can be removed if either:
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1) PH('),4iﬂl,29 are contained in Pf’(“ﬁj>),

, i=Ll,2, are fields.,

2y it

Remark 2, The octonion plane over the real local ring

algebra of dual numbers R(€) (with basis (1;2),2?

"rv

0) has been

i

consider ed by KUZNETSOVA [3?3‘

bslng concepts from valuation theory, CARTER and VU:“[ng

.

have given a characterization of all collinearity-preserving

functions from one affine or projective Desarguesian plane into
) [“rg"(‘e
another. Lineations (i.e. point functions £ from one plane ano-~

ther with the property that whenever X,y and z are collinear

L

points, f(x), f(y) and f(z) arc eollinear points) whose ranges

contain a quadrangle, called in {51 full linecations, have been

algebraically characterized in various s

('s)

tting by KLINGENBERG

( iﬁﬂ} s lincations from a Desarguesian plane onto another),
SKORNYAKOV ( [5 r],'linedtions from an arbitrary plane onto ano-
ther), RADO (f544] full lineations from g Desarvuesian plane
into another, the infinite-dimensional case being considered in
[EVfa] ¥ and GARINER ( [ZV] lineations from a Pappian coordi-

nate plene into another taking the reference guadrangle of one

e

plane to that of the other).

Carter's and Vogt's results allow one or both Dlanes Lo

be affine and include cases where the range contains a trlau@le

but no quadramgls° & key theorem is that, with the exception of

certain, embeddings defined on planes of

o

order 2 and %, every col-

linearity-preserving function from an affine Desar guesian plane

. ;..f.

into another can be extended to chlnearng ¢serving fune-
tion between the enveloping projective nlanes, Bull linestions

defined on finite-dimnensional affine spaces can also be extvended
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to the enveloping projective space (BREZULEANU and RADULESCU
r4%1).

FLULKNEh and EﬁH&uﬁi[?Ud]nas shown that, up to conjugation

T o

by collineations, there exists at most one surjective homomor-
phism from en octonion plene to a Moufang plane. They also esta-
blished the existence of proper homomophisms between octonion
planes and of homomorphisms from octonion planes onto Desargue-

2 sl LS

FERRAR end VELDEAMP [24] studied neighbour~preserving

homomophisms between projective ring planes (i.e., mappings pre-

gserving incidence and the neighbour rel atlon between points and

=t
H
=
9
0
-4
®

3
Ll
o
05}

ese are ganeralization of the homomophisms between
ordinary Desarguesian projective planes which have 'first been
studied by KLINGENBERG (3%] . on the other hand, in the context
of projective planes over rings of stable rank 2 as studied by
EELDKAMP[ééej, en obvious question to ask was, what mannln'“:

25
between such planes are induced by homomerphisms between coor-
dinatizing rings, f one requires that thé ring homomorphisns
carry 1 to 1, then they induce distant-preserving homomorphisns
which are mappings incidence and the negation of the n@ighbqur
relation between a point and a line. V?LDnAml[ééf]provad that
aﬁy distant~preserving homomorphish Y is induced by a ring homo-
orphisn carrying 1 to 1, provided the two Hlanes are coordi-
natezed with.respect to basic quacrangl;s Which correspond un-
der %1? VELDsz£fGéf] also studied hOmOWOth]SES betwéen'projequ
tive ring planes which only preserve incidence. They turn out
to be producté of a bijective neighbour-preserving hOmOmO)bluu

followed by an arbitrary distant-preserving homomorphisns.

.‘

In 1983, FAULKNER and FERRAR (195, utilizing methogs



il

similar to those of SA‘RMEALUV’Pgigjg extended the results of

KLINGENBERG [%T] from Desarguesian plenes to Moufang plenes,

L

Let us note in this respect thx a systematic study of places

of octonion algebras over discrete valuation rings has been car-

4%

g SN ‘ a yE r7 b
ried out by PETTRSSON [‘M] . Recently, BROZIKOVA BT | meilitia

use of previous results of H&VE&J[%J} and FPAULENER gnd FERRAR
E@ﬁh] , provided a Jordan-theoretic description of all homomor-
phisms between loufeng planes having the property that the points
identified via Springer's isomorphism (see QPQIJQ"T{)D747) with
(0,0), 0, (#°) and (1,1) are mapped to their analogues in the

inage plane. .

Open problem, It would be interesting to deal with topics

similar to those mentioned above in the case of octcnlon plenes.,

& %, DBarbilian structures

As is well known, BAIBlLl&} 5] was the first who m&dé
an axiomatic study of projective planes over arbitrary aessocia-
tive rings.

lle has proved[};ﬂ] that the rings that can be underlying
rings for proﬁective geometries are (with a few exceptions) ringé

with a unit element in which any on9~8ided inverse is a two- xidéd
in&érsee'BARBILIQE'{Eg:Z] calleé fhese rings ‘" Z-rings" (from

|3 X i |

awelsCJng singuléire Ringe") and gave a set of 11 axioms of

ﬁrojective-geometry'over 9 certain,tﬂve of Z-ring (see _fﬁ l])

cometry over an arbitrary

I
&

LEISSNE ’{[44a] as developed a plane

Z-ring R, in which a point is an element of RXR and a line

fte
[}
o

YJ\F 3 Qj:



- 18 -

3,

from RXR satisfying certain axiomsml)'RADé {57&] extended
Lh.SSNﬁR'" results [4&{]to affine DBarbilian planes over an ar-
bitrary ring with a unit element and investigated the corre espond.
ing affine Barbilian structures and translation Barbilian planes.

°

Carfw%non ding to the algebraic representation of affine Barbilisn
spaces as affine geometries over unitary free mo;ulea, LEISSNER
[44&1 has recently chafactériz d algebraic properties of the un-
derlying ring R, respectively module “R’ respectively Barbilian
domain BE:MR by geometric properties of the affine Bappiliam
space and viceversa,

VELDK&HP[@@@] s gave an axiomatic description of plane
geometries of the kind considered by BINGEN [%] « & most satism
factory situation is reached by extending the class of rings used
for coordinatization from semiprimary rings, which Bingen used,

to rings of stable rank 2. The

O

se rings havb played a role in al-
gebraic K-theory, and seem to form a natural Framework jor mnany
geometric problems.

Note. For simplicity VELDKALKP [égfzcoqfln himself to

P

+
et
bS]
¢8)
(@
o
63}
¢}
Q
=
@)
t
o
ot
.
D
5]

—~

called projective Barbilain planes), but a

generalization to higher dimensions is straighforward (see below

projective Barbilian spaces defined”also by Veldkamp). .

Veldkamp has chosen an approach somewhat along the 1ines
' of ARITIN [5t} rather than to follow Barbilieah.

The basic relations in the plane are incidence and the
neighbour reiﬂtion- The axions conéist of a number of axioms
expressing elementary relations Yetween points and lines such as,

8.8+ the existence of a unigue line joining any two non-neizh-

1) Let us mention in this context that LANTZ extended [ZOJ'BHNZ'
results[5Aj by showing that large classes of commutative

r

[

ngs admit only- one Darbilian domain,

=
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bouring points, and & couple of axioms ensuring the existence
of transvections and dilatations.

In 1987, VELDKAMP[ééﬂi}Gxtemded all this above mentioned
results to arbitrary finite dim@ngion,_B&sic‘oujects in the
axioms are points and hyperplanes, by analogy with the self-
dual set-up for clasical projective spaces over skew fields
given by ESSER [4?] , 4s basic relations again serve incidence
and the neighbour relation. The self-duel approach is quite na-
tural since incidence and the neighbour relation between points

and hyperplanes have a simple algebraic description in coordina-

o

1\

tes, Homomorphisms are more or lesg the same as in the plane

case, things becoming a bit more complicated because Veldkamp

<>

included homomophisms between spaces of unequal dimensilon.
Note. Veldkamp confine himself to full homomorphisms,
which .can ¢nly increase the dimension or leave it the same,

v

Thus he excluded homomorphisms which lower the dimension, an.

example of which was given by FRITSCH and PRESTEL [2%].
Recenﬁly,_FAULKNER Y(S{]dcfined andistudied the so-called

nggggggbwhich generalize the projective planes. Plenes conside-

red by BARBILIAN in the Zusatz to!}{ﬁ] are connected F-planes

in Faulkner's setting. Besides extending the class of. coordinate

)

rope

ring, FAULKNER's work§4zé} introduces some new concepts, tech-
\niqueS? and commgctioms with other areas. These include a theory
of covering.plﬁnes énd homotopy although there is no topology,

a theory of tangent bundle plaueﬁ and their scctions although
there is,né differential or algebraic g@om@try? a purely geome-
tric and coordinate-free construction of the Lie ring of the
group ?cher&fed . by transvections, 2nd comnections to the

7 of the coordinate ring



.
les

-he definition and the fundamental propert of projective Bar-

bilisgn

nrojective) Barbilian space of dim

1T

Sk ~) consist of

- *
1, or Barbilian n-space, P = (P,,P ,]? non-empty

T "X' 3, ks, ¢ &
sets Py and P, whose elements are called points and hyperplanes,
respectively, together with two relations x\h, incidence, end

%
which

% , neighbour, between Py and P satisfy the following
. 1
axions: )
1, If x|h, then xxh;

2. EE B 5eeeyly are independent points (1< k¢ n), then
there exists a hyperplane h By 5eens o This h is uni-
que if k=n, and is then denoted by h := alV qﬂ.V’an;
called the join of these points,

2, If wl,s*n,ﬂk are independent hyperplanes (1L k< o3
then there exists point a hl,..gghk. This a is uni-
que if k=n, and is then denoted by a :=»hlA ,.uﬂk%ﬂ

calles the meet of these hyperpls nesQ

5. If a is a point and hl7g,ﬁ,hn are ind@pendent hypsrpla-

54T I s - I
nes with d\bl,oya,hnml and haA cconh §éa, then aeéﬂ :
4, Tor any two poilnts x,x' there exists a hyperplane h

with hex, héx', ; ;

™0

1) For x]h and xah we shall also write hlxi&nd hax, respec¢ti=-.
vely, Characters a,b,c,x,¥,%,.s. denote elements of P,, while
hik,l,m. 0, ., dertote elements of P\"o Dualizing a statement
meéns interchanging "point" aud'"byh~rmi ne", We shall call

o

sh
€k

x and h distent if x % h, Points 895855 e 08y (1 n+;) are

called independent provided there exist hyperplenes hW,hhgaoa
EN “

e+ oyly_y such that aigdzil 8;,9r00018, for 1< id k-1, Inde-

pendent hyperplanes are defined in the dual manner, Points

8y, a, are gg;gm“g, a8y ¢ 2,5, if they are independent, eand

independent hy
2

ey

h :
1 ng M

perplanes

hl’ h, are

called dually distant :
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IR 81,8, 4 are independent points angd hm,hm_1 indepen-
o v anoae ot F e o 1 T ‘
dent hyperplanes such unau,alg.,,,xnmlj hn’ Qn+lﬂtnca

xth

1 hn+l and hgal,soa?a 1 imply xlh,

ples. Projective spaces P (R) iver a ring R of stable

as to add

=

rank 2 are, for n33, Barbilian n-spaces. For n=z2, one t

T e B

axioms on the existence of transvections, dilatations, and affine

.

Latations to characterize the ring planes P.(R)
(4

‘.J-
L...)

and dual affine di
(see VELDK&P [ £6e] ),

Proposition 3.1, Assume 815 ¢..,8 are independent points

in a Barbilian n-space. Then:

i) Any subrow of 81y e00,8y 18 independent too;

ii) a~(l),aa.9a](k) are independent for any permutation #

iii) For any other row bl”””pf of independent points
with { ¢ k there exist point b£+l,eee;bk, CyseeesCphyq g Such that
A - A.

bO'tIl Clgneagcl,l_}_lwl’{g &l;aoegak Urld Clﬁwo‘,crl_i‘l blyoscgbegaeo?bk:
are independent rows;

iv) If al,ag,,a 41 '@re independent points, and hy = 8V ..
v @ s \/q‘ V oov" A}""\‘ IS . ar 1T SEDIS e : 1"(‘-.
" b’lel 8547V . 841 then ”1’°“”hn+l are independent hy
perplanes,

: %
Lemma 3.2, For any three hyperplanes h, g 58, With h;éml,mq
o R <

o

there exists a point xlh such that x:é}m],m

2"
Convention. The notation ”al”°”ak inde p,z indep.
A

: b sy . 7 - ” - JEORE... RN i
hk+l’“°"hft means: 815 eeey8y are independent po¢nt5,hk+l,«.sgl(

ingependent hyperplanes and ai}hj Ton &1, i=lycial and el +l,,‘,f‘

Proposition %.,3. i) If aj,;.,,a1 inaen,}indep, bk+l’°°”’h g

5
then {é;n+l, Moreover, if (<fn, there exist hyperplanes hp+1,g.,
3
© Y } -hat o inde inder } h .
2 2 'n_rl'%“l SUCLl tti.‘;d L Cil 5 e 3 Qk B.Ilklgp @) lIlCCi) © ﬁ.:{.{_‘i_:z«, 2 3 @ ’L‘Lz'l"f'l 3
li) If L«} $ e e u g ‘11, .x..f L«E,r) Ii"ljej\g }1::_‘,1 3 ¢ e ,hxl't‘] 3 11’1"‘311 f‘OI’ F\rlj
| ! ’ - ]
POLEEL X e o n.,_ v and hyperplane hla,,..,,8, we have ¥%|h X
k k+1 2 3 J b k ) * 3.

L3



Proposition %.4. The duals of axioms 1 to 5 are valid for

any Barbilian space ) '

VELDKALP [}féﬁ § 2] introduced "flats" in Barbilian spaces

] N oy 1 1.4 x L] $ )
&s the analogs of subspaces in projective ring spaces, and

o

onsidered relations between them as follows.
Definition. Let 8,307 5 e 0038y ‘be independént points in a
Barbilian space P = (Py, P, ], tw) . The flat spanned be B9800

« T o

.ee;8y 1o the set

™

wme I : - T T
..[{ e 7 L‘(ao,al,nee?f)«d) b )&6‘_9_\,(.

»X. % 3
x[h for all hé& P sdth hla 46l 1o
ot g

The points 89875000 ,8y aTE said to form a basis of F, Further,

F(P) = @, the empty flat.

Proposition %.5, For any set of independent points

By18y sy in a Barbilian n-space there exist n-d independent

hyperplanes h;+1,.,g,h (which is m@aﬁi to be the empty set if
: d+1 n

d=n) such that

.4:‘.:71” a ose 38y = 6P [\: R ®
F (8 yceray) §> E%el flrkx +] ?k%l%

&

Convention., The hyperplanes hﬁ+l,aﬁ.,hn are called a dua.

basis of F, and I* is alco denoted by F := (h1+i,a°.,h1)

# \
Remark. Similarly for F(#) with nt+l independent hypernlanes

Convention. Proposition 3.5 and its dual allow to identify
flats and "dual flats™, ‘which one always does.
From Proposition 3.3 it follows that apy two bases for a
™)

flat F have the same number of elements, say d41 with -1 €d <.,

We call 4 the dimension of ¥, and F 'a d-flat.

Convention, Whenever the notation E(a peesr@y ) is used, it
is tacitly undérstood that Bhreeerfy A€ 1nd“wcndeqt and eimi-
» U

¥y \ 5 o X A 3
larly For-T <ﬂﬂ+"""h ). any poznt x will be identified with
Wrd,

n %y % 44
the flat F(x), and eny hyperplane h with the flat F (h),

3 3 -8 UL 1 : 1 2 1 Yy
Proposition 3.6, )_;(do,,..,ak)S;f(go,..ﬁ,gk) if and only




i e

1f 8y eoey 8 €F(Dyy coo, bz)é
1i) Any set of independent points in a flat F can be
exteﬁde& to g basis of F 3
iii) 4 £ B for flats 4 end B if and only if B has a basls

which contains a basis of A,

Definition. Two flats A and B will bé called ﬁrénaverﬁal,
A T B, if there exists a set of independent points such that
cach of A and B is spanned by a subget thereofl,

Remark. The relation. & is symmetric since a permutation
of independent points is also independent.

Proposition 3.7, 1) Transversality is a self-dual

'y

notion, i.e., 4 ¢ B if and only if each of them has a dual
basis taken from one row of independent hyperplaness

i1y It A B, then A A B is a flat, .viz., F(ao,amgﬁak)

g%

if-&%r}?(ao; ¢ &0 ¢ akg ak, ly 0 ¢ g a/{) Bn& B:’F(aog ¢ o0 g aka

+

a wWith a,, ey 8,, lndependent

By, 10 o0 By

1ii) If A7 B, there exists a unique minimel flat 4 +3B

containing both 4 and B, viz., Flag, cco; &

n) in the notation

of ii)s
iv) For 4% B, we have dim (A +B) + dim (A.ﬂ B) =

=dim &4 + dim B 3
v) If AgB, then for every basls b

09 'svzog b{ Of

A which contalns a basis b, weey b of A O'B and for every-

~

s

b&f}'i* bos €008 'b;.{; t);eﬁ"ls © @6 g bm Of B? til"% pOil}tS bog 6604

b

o

¥

o

kal? °°°s b( , bX¢=19 ooy bm:ﬁr@‘indep@ndentq'

Definition. Two flats A and B are called distant,

oo o W T TR

¢

AgkB, iIf ATB and A N B=sh , and dually distant,

.o® ' :
A 7 B, if ATB. and 4 +B = P_. We say that A snd B are



complementary flats if both 4 ¢ B and A = B. The notation
A®B is used for 4 + B provided A % B,

ettt

‘Remark, 4 ¢ B if and only if there exist flats Ays By 4 C
such that 4 =4,C, B=B@C and B, % 4. Then C=4 N B, and
A+B=us@s6C.,

Convention, If x is & point and h & hyperplane, then we

shall use notations lgka X %4, X +4, h i, ete,, instend
of F(x) T 4, Fix) + 4, Fr(n)nN A, respectively, Similarly we
shall write X; 4+ oo + X for Flx;) 4 oo + Flxg) 4f x9404 7
are independent, etcf

In lattice theory and projective geometry is well known
the so-called "Modular Law“. This holds also for Barbilian

spaces, as follows:

Proposition 3.8, If A,B and C are flats satisfying

A%B, (A+B) T C and A €C, then BTC, AT BAC and
(A+B)NC = 4+ BN C, |

Remark, One can easily prove that, if 4 is a d-flat,
d >1, then the points of 4. and the intersections of A4 with
hypperplanes which do not contain all of A form & Bsrbilian
space of dimension 4 with es incidence reletion the inclusion
and the neighbour relation defined by‘ths negation of the
“distant relation between flats .defined as abavaq \

Doflniti@aa The Barbilian space from the above rama?k

is called a -Barbilisn sungnac@ and & (d-l) - flat ccnaalnﬁ& in

A is c&lTed an A -~ hyperplane, If h is g hyperplane and

-

A=Y (h), then we may similarly spcah of the Barbilian subspace

h, and of h-hyp@rplavc%o

Lemma 3,9, Let ho,hl,-egg, hd be hyperplanes, 1< 4 ¢ n,

5 .
setisfying the conditions: hy =% h, for.- 1 £1¢ 4 and



hl mlno, osog hd N ho are independent h, -hyperplanes in the
Barbilian subspsce hoe Then b, hy, «oe, hy are independent,
In order to get the coordinatization of Barbilisn spaces,

VELDKAMP /7~ (Ce/ generalized the notion of general quadrangle

in a Barbilian plans.

Definiticn. A frame in a Barbilian n; spece P is .n
ordered set of n+2 points such that every subsmet of n+l points
is independent. & d~ fremg in P, for 1{d<n, is a frame in
any d- flat in P.

Propos 1taon 3.10. In every Barbilisn space there exist

frumes. In fact, any set of n+l independent points in n-space

can be extended to & frame.

Definition. & collineation between two Barbilian spaces -

e ]

consists of bijective meppings %; - for the points and y} for
the hVPGTpluﬂ@w such thet x]h 4g>l+éx [Ky h and xn y ot

J
#g§x ~ Won,

Note. If there 1s no denger of confusion we shall write
#

just VY for ﬁ/ﬁ. end U

Definition. Let ¢ be o point and h éhypp@fplaneo For -

¢ g¢h, we call a dilststion with centre ¢ and exis h (or {(e,h)-

dilatetion) any collineation leaving ¢ and all points ‘h flh@&a

For c¢ih we call a centrsl tvwnuvecilv “with eantra ¢ and ax1?,h
b3

(or (e,h) ~-transveetion) any collineation leaving sll points|h
» : ! I

- - -

and hyperplans | ¢ fixed,
A !

Theorem 3.11. Let ¢,a,&' be points and hoa hyperplane in
a Barbilien épac@ of dimension,;.B éatisfying the conditions
agaﬁqghg &, a’qﬁ(:and a'{a+c, It c#ﬁh then there éxist$_a .
unique (c,h)-dilatation T with Ta=s'. I, on the other hawnd, c‘ h,

then there exists & unique (c¢,h)-trans vectlon T with Ta=a'
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Theorem 3,12, Let P be & Barbilian spece of dimension

ny3. If e, g, ' are points and h is g hyperplene such that
¢, @, 85t by a ¢bo and a' |ace, then there exists @ unique
affine (Qgh)mudilatatiwn T carrying & to &',

Remark. 4s in the plane case, the product of central
transvections with the same axis h need not have a centre.

Definitien@ A transvecti@n with axis h is a product

of (c. h)»tranbVectiQnu with ¢y h,

Proposition 3.13. The group of transvections with a

given axis h in & Barbilian space ls commutetive, &snd its so-

tion on the points gé, h is sharply transitive.

Proposition 3.14., In a Barbilian n-space, the little
brojective group (i.e., the group generat@d by all trans-
#eetions) is transitive on the set of bases, and also on d-frae
mes for any 4 with 1<4£d44n . Further, the full projective
group.(ioeo, the group generated by all transvections and dila-
tations) is transitive on n-frame.

/3 is

Iheorem 3.15. Any Barbilian space of dimension ﬁ;7
isomorphic to s ﬁrojective space over g rihg R of stable
rank 2. R is unicue up to lsomorphism. Collineations are
induced by bijective semilinear transformations in Rm+l 4
collineation belongs to the full brcgecbxve @zaup or to the
llftle projective group if ang only if it is induced by an
element of GLH l(R) or En_l(R)g respectively;

For scme fundmmental properties of full hamomorphism%
between Barbllimn spaces as well ag for-their algebraic
descrlpulon we refer the reader to VELDKAMP a6l iy . ,

FAULKNER and FERRAR /”Aaf f surveyed the'd@velOpmen%
which leads from ciasuicai Dessrguesisn progectlve plene via

Moufang planes-toyMoufangmweldkamp planes, They first sketched



/

inhomogenecuts snd homogencous coordinates in the real angd
projective plenes and in ring plenes, the Jordan algebra cone

-atruction of Moufang planes, end the representation of all

23

o

these planes as homogeneous spaces for their groups of transge

vections. Then attention is focussed on Mounfang-Veldkamp pl&nesg

l.e. projective Barbilian planes in which all possible transvec-,
tions exist and which satisfy the little quadrangle section cone
dition for quadrangles in general position. As ccordinates for
the affine plane one easily obtains an alternative ring of stable
rank B.Unffortunaﬁaly, the Bruck and Kleinfeld theorem for alter-
native division rings does not carry over to 81ternativé.rings in
general, i.e. such a ring need neither be associative nor be an
Voctonion algebra. Therefore, to coordinatize the whole projacﬁiva‘
plaene one cannot rely on either homogen@ous coordinates (as in
the essociative case) or the Jordan algebra construction (as in
the octonion case); In this case, one has to follow a more
complicated way,'namely:_first to construct a certasin Jordan

pair from the given alternative ring, then to define a group of
transformations of this Jorden pair andg~finally, to represént
the projective plane &s a homogeneous space for that'groupg

FAULKNER'Z?7QCQ7 proved that for a connected Barbilian

transvection plane P (i.e, & plane with incidence snd neighe

bouring generalizing Moufang projective planeg) cne can construct

a connected Barbilian plene T(P) Qallsd tangent bundle plane .
This Eonstructidﬁ ggrees with the usual tangent bund;e when such
exiéﬁso 117 (P) is also a transvection ﬁlane; then the set S of
sections of T(P) is = Lie'ring. The group G generated by all
transvections of P acts on S, Since 8 is isomorphic to the Koecher-
Tits Lie ring constructed from the Jordan pair (Mlgéﬂ),mglﬁﬁ}},
where R is the éssociated alternative ring, one can determine G

and therebay P from R.



In 1987, SPANICCIATI /4§ 7introduced near Barbilis

planes (NBP) and strong near Barbilian plenes (SNBP) as @&

T s Py

varietion of Barbilian planes. Recently, HANSSINS and van
MALDEGHEM / 29 /showed that aNBP 1s an SNBP,and classified all
NBP up to the classification of linear spaces (many axémpl&g
follows as & result of a universal construction), They also
showed that only NBPs that are also BPs are those mentioned in
£f52{:?, namely the projective planes,

In 1984, ALLISON and FAULKNER /2 7 heve given an
algebraic construction of degree 3 Jordan algebfaa (inoludiﬁg
the exceptional one) as trace zero elements in & degree 4 Jordan
algebra. Recently, FAULKNER /79/7 translated this algebraic
construction to give a geoﬁetric construction of Earbilian
bplanes coordinatized by composition algebras (including the
" Moufang plané) as skew polar line psirs and points on the
quadratic surface determined by a polarity of projective

3 -space over a smaller composition algebra,

8 4. Groups with Steinberg relations and

parametrization theorems

In order to give (in § 5) éoordim&tixatien theorems
ksimilar to MOUFANG's £i4?;?),f0r severalvpolygonal geometries,
we present here parametrizetion theorems for various rank-two
groups éith‘ﬁzainberg relations, neamely Any Goy B, and BC,e.

In doing so, we shall use FAULKNER's formulations /7847, where

ﬂOﬂ@SSGQi&tiVQ.diVisiOn algebras_which parametrize the groups

are explicitly constructed, | ’
Notation., Let B" be the Euclidean space of dimension n

with inner product denoted by (x,y) for x,y ¢ Ego Then, for



i B

L€ ‘ﬁ:ng K £ 0, the reflection wy 1in the hyperplsane tlwcmgh

the origin and orthogonal to ¥ is given by wy (¥)=x - =25 ww@{

)

3 : N — e - o s g
Definition. 4 subset- \ . of B is called & root system if

e sasissscwons

) } is finite, spans E° and 0 & > s

ety

) wy ‘Z"““’“‘“' A Z‘““' , Tor o g }”“’”

2 b= E ) e Z"
¢) { = y‘18 an integer for 5”&6

Definition. A subset § of ;Z is called closed if

el

oA, € S and @p = EM nn R e S

Ay

Remark. Be. o “*% Y”Q:Zm i+ 3b 1,3 7’9% s closed.

Definition. A closed subset P 'of i;ﬂ is called a get of

s

positive roots if either X or - « (but not both) is an element.

of P for each o« & E

Recall the following facts about root systems (see

STEINBERG /67, Appendix 7 and SERRE /[ 567 ):

a) The W, ‘s, o<é:> ; generate a finite group W, called

the Weyl groups

b) if P is 8 set of positive roots, then the subset P_

3

of P of all roots % which cannot be written in the form

s ’*f s sV € Py has.‘bhf& property that each (3¢ P can be

written as @;x' nd0< . gher@ n, is a positive integer;
46Pq '

PS is called a sst of ‘Lﬁjb rootst

¢) the w, 's, ole P, generate W 4
d) if «€P_ C P, then v, permutes tho ne P, b 2,

while w e =gy for. F= W A0 B85 5.
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e) W acts transitively on the sets of positive roots;

f) if P is the set of positive roots, then there exists

an ordering " (¥ of :;', such that o<p implies B ~AecP g

et amamson

g) if 8 is a closed subset of :> which does not

contain K and .o Tor sachuo ¢ :> » then 8 C P for some set

P of positive roote,
Notation., For g group G, the following notation will be

used ¢ hSg. & *hg and {g,h)e= g“lh“lgh, € and h being elements

of G, Also, if G has subgroups Ay indexed by ¢ Zi s :2

L

]

e

: 3
subgroup generated by the X& 8; x¢ 8 (here Xﬁ & {l} )

~~~~~

Definition. 4 group G has Steinberg reletions of Type ‘g

if G is generated by nontrivial subgroups XM, X ¢ E s satisfying

1) Xpy € Xu 4

2) if L £ ~ 3, then 1 XB )€X, °, for S, , as in the

ip g
above Remark s

3) for each x €X ., x £ 1, there existe a8 WeX X  with
: e
"

g XWR

i DY
(@) for all (BQAW $

4) tor Some set P of positive roote, Xp NX y=1.

4 root system of type 45 is given in the figure below. The
following par&m@trizatiqn theorem holds in this casg,

\

B T oy ey

being a root system, snd if 5 C Zi " by'XS we shall denote the



i

Theorem 4010 If G has Steinberg relations of type Apgthan
there exists an alternative division ring A and bijections
X A - ~>&Ls K€ Ay, such that

1) xy(a)xy(b) = %, {a+b) for a,be 4

2) {xxl(a)9 X, (b)) =x

4»m2(ab) for fixed simple
o0t s djﬂtxg and a, be A

R

'3 ) it yo(a) 1 = x&{a}xwx(aml)xmie),c<é Aoy thgﬁ g

Note, Recall that the notions of associative, elternative and
power~associative ring can be defined in a uniform fushién 88 f0lw
;ohs: & ring is agoclative, a¢aﬁrnat5ve or pcwermaasociativa ir
and only ir any_cf 1ts subring genesrated by 3 elements, 2 ele-
ments or one element, regpectively, is asscciativga Note thet
alternativity is eoulvaienﬁ to the fact thse, for any elements
Xy the identities (xx)y = X(xy) ahd (yx)x m‘y(ix) hold,
4 root system of the type Gy is given in the figure

below, In this case the following paremetrization theorem holds,




--25(/.“"“?.

~ 3 011..2 oy

Theoren 4:%2@ If G has é&%minbarg relations of type C‘zm

then there oxists a quadratic Jordan division algebra

A(N, =, e) over a £iéld IF and bijections X, :?\Myxx :

d short, Xp @ R X(; » (3 long, o\/,(@é(}‘,)s guch thats

1) xd(al)x“(ag} o 3:{)((&1;%(':32), %

2)' &)

for a; & au, Z’ie g

{ -

LA
" 1

(53)3 XD<2( (C‘)) =

b, N
3L L fc%(a

E (”T(&é} ;b ))

¢) (Xp(l(a),

(b))=x ol
-l ,3@(1%2&2(1“(&,’&3 )

Faol 4 2(&Xb)$

X *
Pz yaatis

Faolip o 00 = E 0 L (mla,0))s



-.;0/ ‘{mp(,.( G)) o K3d14“2d2€ ZCF }&

Bl e Ry =z, (60
2

b2

h) X30<l"§“0< (6'—) “30<l"‘§" ol 2{""_6(‘") &

2 ) 2y . . :
1) i(w (8)") {(resp.i (w,(T)°)) is Id on ¥ iV = d
« 6 e

or T L% Aregp,, Y = iz@ or ¥ LP ) and is - Id otherwise.

{g) denotes the inner automorphism of G given by g € G,

e
[e3)
i~
A
o

l"sMOTty and PY long, are fixed simple roots for
Gy, and a, b & 9»,, 5 1,
4 root system of type By is given in the figure below.

The following parametrization théorem holds.



b ‘
Theorem 4,3, If G

S¢

hag Steinberg relations of type B2 and

if e T e Boy has no 2 ~torsion, then there exists & pair

\
(ﬁ,}g in which either = , s
(a) A is an assoclative division algebra with involuﬁi@m
8 i 8 and }, is the Jordsn algebra of symmetric elements efJQQ
or (b) K is a fiela aad,ﬁ is the Jordan division algebra of
a quadratic form, N l

Remark. There are bijections Xy :tﬁzwmﬁvxx 5 xﬁ,:jé~mﬁw)£ﬁ9
dip € Bag ! short, @lﬂng, such that certain identiti
(see FAULKNER £784 , pp.52-53 7).

A root syst

(23] hcl@o

-
7

em of type B, is given in the figure below,
yp o S ; .

The followinge arametrization theoren holds,
- =4 P

20(4‘%20(3'




Th@or@m.ﬁoﬁo If G has Steinberg relations of type BGm and

17 zgg f4§£§bpg hags no 2-tors ion, then thgre exists a triple
(4 ]éa 1n which either

(a) ﬁ~i$ an assocliative division algebra with involution
8 e 55 H is the Jordan algebra of symmetric el@ment3'0f~4
and V is a vector space over J4 with & nonsingular skey
Hermitian form H,
or

Jﬁ is &8 fialﬁg.ﬁ le the Jordan division algebra of a

quadratic form Q , and V is a unital special JQmmodule wlth san

W, ~bilinear form # with values in 4 satisfying

() H(u,v)= HV, Uy
Hi)qﬁgh%v))ﬂﬂ(au,gﬂ;
(1i1)H(av,v)= 0 fmplies a = 0 op v = 03
(iv)Q(afﬁéugvnxéih%&v%»%(avﬁah
o U was identified with Helh

Remark 1, There are bijsctions Xy 8 J% 3> X xpzyﬁww®»xﬁ’3

Ep t Ve—dZyp, Tor o bY € BC,, with|pl < Ixc |5]  , ‘such thas
certain ldentities as those in Theorem.écB hold. (ses FAUILKNER

éf/§4ﬁ » DP.66-677) .

~

Remark 2, Faulkner's paiam@trizacion_ébove may be compared

with SELIGMAN's treatment / 54 7 of algebraic Lie algebras@

§ 5. Polygonal geometries and coordinatization

theorems

We now give coordinstization theorems similar to MOUFANG's
"‘437;7 for several polygonal (projective, quadrilateral, end
hexagonal, all sdmitting all elations see below) geometries,
These coordinatize s projective Moufang Jblane by an slternative

division algebra. The @ssential'infonatian needed is contained .

¢ 1



ST e

in thé group generated by all elations. These groups are groups
with Steinberg relations for which paremetrization theorems were
presented in the foregoing section. fere sgain we shall use
PAULKNER's /~ 78 ¢ 7 formulations.

Definition. 4 geometry consists of & set WP of points, &

e i e e s i A

get I, of lines (disjoint from P }, and a subset T or F Xﬂ“
convention. ¥or (P,4 )-é-ﬂ_ we write P Me or ,Ql P, and

we say that P and ,ﬂ are incident. We use the terminology common
in geometry; e.g., P lies Qn;f or /€ passes through P11 ?}/6 §
P, Q@ are collinear 1if P Le and }4 for some ,ég.ﬂd ﬂ m € QJ
intersect if there is a P€P with P [{ and Plm.

Definition. 4 chain of length k 301ning two Olemantﬁ

A S AN F D

a and b in ]PUIL 1s a sequence of distincet elements 8y GYPL’&J§

l=g, veos k, a,=a, akzb5 with ai} 84419 120, sony k=l

Definition. A subsset N of E>L’u4 is called an n - gon
if H=Cy  UC, and CnC, = {a, b}y , vhere 0, G, are chains
of length n joining a and b.

e A)VLL
Definitiocn. 4 geometry in which every element of H

is incident to at least three distinct elements of, ﬂ u il and is
such that every pasr of elements of [V MJ is coﬂtained in an
n-gon, but there is not a pair in a k~gon for 2<k< n , is

called an ne- gonal geometry o

ngﬁggwii A geometry is 3 - gonal or triangulsr if end.

only if it is a projective plane.

v

2t ot D R

Remark 2. The above definition for an n-gongl geometry
is ecuivalcnt ‘to that given by TITS £ 64 ¢ a2 ],

Proposition 5.1, 4 geometry in which every element of

PlJna is inecident to at least three other elements is an n- gonsl

geometry if and only if every pair of elements of ﬂ)tlm:can be




RS

joined by @ chain of length k £ n and all chains joining this

* o

pair of elements have the length k.

Definition.If a and b are two elements in an n~gonsl.

geometry, then the unique length of chains jJoining a with b

¢

is called the distance from a Lo b and is denocted by d(a,b).

Definition. 4 bijection O  which is defined on [Fv L R

maps T? bijectively onto .f ena L bijectively onto HJ such
thet a!b if and only if J{(a) {Giiﬁ for & éjp, b€ ﬁ; is

called 8 collinesstion,

) S P
Proposition 5;2§ If d(a,b)=n for some 4&,b 6.U\Wuxin an

n-gonal geometry, and if 0 1is & collinesation fixing a, b and
all x | a, then ¢ fixes all y\&u

Proposition $.3.If ¢ is a collineation of an negonsl

gecmetry fixing all x incident to a or b, where a|b, and also

fixing ell a' with d{a,a')=n, then ©= ld.

COORDINATIZATION OF PROJECTIVE PLANES. Let us begin with

the following

Definitions. 4n elation (also, trensvection) of & projec

tive plene (trisngulsr geometry) is & collineation fixing all

S
, .
2 € U)‘J1L4 incident to some elements ¢ or a, where a is & line,

e

called the axis, end ¢ Ls a point on this line, called the

C(.,UGT@@

sy

Remark. Let b be a point not lying on ay i.e., d(b,a)=3.

“

Preoposition 5.3 shows that an elation (¢ 1s uniquely deter-
mined by ¢, & ,b, and ¢ (b). Note that 0C(b)s#c lies on the
line f joining ¢ and b.

Given cﬁa,b,«( as above and d]ﬂ d = ¢, en elation @ with
6(b) =4 may or may not @Xlate If ¢ does exist for a&ll such

choices, then one says that the projective plene admits sll elg-

tions (or, is a ioufang plane) .




Theorem J.4, The group generated by sll elations of & pro-

Jective plane adnitting all elations has Steinberg relations of

“type deye ‘

Coordinatization Theorem 2.5, A p?OJ@CtiV@ planc aﬁmi“tir{

sll eletions may be coordinatized by &n alternative division

ring 4 as follows: the points are (e<), (m), (a,b), m,a,b € 4,
the lines are [ wj e/, [m,a7, am, de A, end the
incidences are (wo )|/ eo7, (wo)| /a7, (m )[1%57, xn)I/Eaé;?,
(a,b ]/wa/f and (a,b) /[h a7/ if b = am+ d,

COORDINATIZATION OF HEXAGONAL GEOMETRIES, First, we give

the following.

Definition. A collineestion o ¢f & hexagonal geometry lis.

called an gxlal elaetion if ¢ fixes all lines intersecting . par-

ticular lire a,called the sxis. and all points on two lines b

and ¢, alled secondary axes , which intersect a but not each

oth (5 4
Note. If the roles of points and lines are reversed, then

3

the notion of a central elation, with ifs ceniye and gecondsry

centres, 1is obtalned.

Remark. If 0 is an elation (either axial or central) with
a,b,¢c as above, and d4(d,b)=2, d(d,;a) %= 2, then T is-d@taﬁminwé
by a,b,c,d, and T (d),

If for all choices a,b,c,d,d' with d(ajb)= d(a,c) =
=d(d,b)=a(d,b) =4(.4,8"') = 2, d{d,a) # 2, end d(b,e) #2,
there exists én elatvion ¢ with axiﬁ'(or centre) 8, with secondary

3%

exes (or centves) b and ¢, and with 0(d)=a', then one says that

the hexsgonal geometry admits all elations,

Note., That a hexagonal geometry admits all elaticns is

tantemount to saying that the group of elations with axis a and



secondasry axes b and ¢ ascts transitively on the set of all lines
other than b through a point p which lies on b but not on a.

Only hexsgonal geomeirles admlitting asll elations are considsred

s wan

s

here.

Fix a hexagonal H as in the adjoining
figure, so that a is a point end a,b,c,d,e,r,
~8 and 8, «f,~e, ~d, ~c, -4, -8 are

distinet elements. Let Ka be the

group of elations with centve a and
secondary centyregs-c an -~e, gnd let Ky s =F £

etc. be defined similerly, and let XS

be the subgroup generated by the groups

Xu for all wes C-H;

Definition. & collineation g of

& hexagonal geometry is called a strong elation if 5 fixes all ¥

with d(X,y).é 3 for scme y of the given hexagonal geometry.
Remark lo I y in the above definition is a line, then

this 1s equivalent to saying thet 0 is an exial elation with axis

y, and each line intersescting y is a secondary axis.
Remark 2., The strong elations in £, form a subgroup, deno-
. .

tad b}' }:..U o

Theorem 5.6, Let J6 be a hexsgonal geometry which admits.

all. elations,

-

a) If all central elations are strong or if asll axial ela-
tions are strong, then the group generated by all elastions is s

group with Steinberg relations of type Goe

b) If there are central and exial elations which are not
strong, then for any hexagon H of J8 and U, & H, the group gene-

k ~ .
rated by all X , X, with d(u,vO) even and d(v,uo) 0odd, u,ve H, i

a group -with Steinberg relations of type Goo
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Cé@rﬁinatiz&ﬁimn Theorem 9,7, If J is # hexagonal geometry
which admits &ll elations and if sll centrsl elations are
atro %éw then there exists a quadratle Jordan division alzebrs
-9 N, £, ) over a field [F, such that:

a) the points eiﬁvxu be uniguely represented by (2 ) and
kmt&plmg {@19a29€35&@9090) with k< 5, where tie % ﬁal€ j
-3 KPEEPS o

b} the lines Gfggmay be uniguely represented by / oo_J and
k-tuples [ a;, 52,339a§? with k&5, where a € 2 ¢, 1 €
i Yymenyi K3

¢) the incidences are

(L) A @0)150@”7, (T )) éiwoﬁj,(m)lfaj‘ for Te W, a€ .
(i1) (f.ﬂ‘ ,WZB,MS){{%;ZB“% 821{‘1‘(’52&&3 m){fal, Zgﬂe‘g?g
FEe S (G& bggﬁésbyﬁf }ﬁi&lg 53 8 42* 7 provided that

2 ; et A
Zgﬁxxg N(85)¢ WéTcag’zb@)*T(559bﬁﬂw 62(71@T(b29b4)@ Ué?

. P

COORDINATIZATION OF QUADRI LF”LRAL GECMETRIES, We begin

with the following ‘ - )

Definition, A collineation ¢ of a quadrilateral geometry

@ is called an elstion "if C  fixes .all elements incident to any

"one of three elements 815 8o, 33 where 8y 8py &B.fafm a chaln,

If a, is a line (& point), then ¢ is called an axisl (central)

elation with axis (centye) e, and centvés (axes)

al and aja‘

Definition. A central elation is called strong if every

line through the centye is an axis, and'similarly for axial ela-

tions. /



Que says that @ admits all elatieng if for all cheices of

5.8y 8 and o | By m% st 33’ tihere exists an

elation with axis (er centve) 8oy With centye: s (ox d?ﬁﬁ) aq and

If @ is a guadrilateral geometry which admits

all elations and if @ has ne elatien of order two, then the group

o

renerated by all elatiens is a group with Steinberg relatisng sf
i} 1]

typs B, (if all central er all axial elations are gbrong) or type
b

B .G wt there exist central and axisl elationg which are net
2
sbraag)a

Coordinatization Thner@m 5.9, IfQ is a qu&tril'*eral geo~

metry admitiing all elations and baving ne elation of order two,
then all nontrivial strong elaticns are eitber central or axial.
If all nontrivial strong elatioens are central, then

a) if all cauﬁrél elations are strong, then there exists a
pair (ﬂ;ﬂp as in Theorem 4.3, S4,such that the peints of & may be
represented by (o°)s (al), <&}?h1)? (& 9b1,ai)9 he lines by
/ﬁao/ [ by 7 /”bjﬁa Js £ bysagsho 7 wik aiegﬁﬂbiE'Jés and
with incidences ‘

(1) (=)} [27, (ap) ]/”“mjﬁ o
(it <a:}“sb:§_j } {f__mblmfs .(alshl@ag) ] _(:mblsagm?g

=

&is \.fwhwa,? Ty Cmyisd ).{fbl,al?hg“ﬂ_

(137) (ulﬁb ,ap)

xlgblgkgm? provided that

“ - o e mm :
Kl“ apﬁpd?idt%a+é L 32‘ blf kogo=8y 3

b) if net all central elat iﬂﬁﬁ are strong, then there exis 36

o

a triple (ﬁ@?K)v) as in Theoren 4 4,84, such that the points of @

may be raprcs&ntéd by (&w p (dj> (aj,(vlghl))g (alﬁ(vlﬁhl)gaa),
the lines by /&m, [ (vysbey) 7 VACITR I ay./s

.g/:( V]_sbl> s 8o ( Vos b?,)] sk & 6—34;



g & e G 4 ,,'z A 6 o6
h; (,?é, V€ V and incidences

(1) (o) L£eoT, (a )\ﬁ”oﬁj?y ( oo ) lZf(vishl):?s
(541) (aN 19}&1 \é‘f J9(H1ﬁ(vlsh‘l) ﬁg}lf(vyiﬁhﬁg.,?ﬂ

-~

lé,_ 195":&; {7 w“ ‘?9951 )5 15 ) L@( 91'« 7&

{iii) (a* (v Pghp} o) IZ?(J sy byb (mgg 5 ) 7 provided that

=

o

= 8, Wo * Vo

b
gy
i

". =~ IS "R(i" % %;ﬂlr; & g
KL adk?ag ﬂlaa + 8,8y 4 h&

J

1 i
bl = H(Wﬂgd ) + Hiw Tos g}mkgﬁzm&l”

H being defined as in Theorem 4.4, § 4 .If all nontrivial strong
alut ions are axial, then the duals of a) and b) hold,
Comments. For a brief survey on the relations between

variocus exeeptional notions in algsbra and geometry ia@wag YL e

(O]

elan¢ib&1 Lie agyabrds, nonasgsociative alternative algebras, non-
QLTdJ Jordan algebras, non~Desarguesian projective pl&ﬁeﬂ)ﬁ"tﬁa

reader is referred to FAULKNER and FLRR:J11”47QJ79 who  proved

that all these notions are rslan@d§ one way or another, to thé

octonions,
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