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ON THE MESH - INDEPENDEISCE PRXNCIPLE

r.OR GAT,ERKIN DISCRETIZ ATIONS

by

Dumitru ADAM

Abstraet' The mesh - independence prineiple is obtained for Galerkindiseretizations' in the norm indueed by Gramm matrix. This result fol lows the l ine ofAllgower, Bohmer, Potra and Rheinboldt ([3]), using f lre convergenee of the Newton,smethod for the init ial eguation on a Hilbert space and the approximation propert ieson subspaces as in f inite element method. This paper is a revised version.
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l.INTRODUCTION

In [3] the authors proves the mesh*independence prineiple (M.I.p.) in the
hypotheses of the Lipschitz uniform, bounded, stable and eonsistent diseretizations.
Their model '  eharacterist ie for f inite differenee diseretizal ions and eovering another
type diseretizations, is not applicable for Galerkin sehemas beeause ,re stabil i ty is
not val id' MIP was studied in many papers' see the refferences eontained in I2l (there
we reffere only at [2J and [6], that was used in t l l .  MIp eonsist in: the above
hypotheses ensure the existenee of the solution for discrete equation, the
convergence of this at the solution of the init ial equation, the existence and
convergenee of the Newtonts seguence for discrete equation and the 'paralel ism, 

of
this convergenee with tr 'u convergenee of the Newtonrs method for the init ial
equation.

we use the framework of [1] for Galerkin sehemas, sepparing the analysis on
approximation subspaees of the analysis on the real Eucridean spaees. In this



framework that

hypotheses of [3J

- ,
L -

, .

is shortly explained. in the following, exeepting

are natural on approximation subspaces.

the eonsistenee, the

Let on the rear separable Hilbert spaee'ft, the foltowing equation

( 1 . 1 ) T'., = f

One of the methods for to obtain approximation equations for (1.1) is the projection
method' This consist in to projeet (1.1) on a finite dimension subspaee sh. ?1, i.". to
find une Sn sueh that

Q*2) ?*T u, = ?r',$

Let Pn be the orthogonal projectiori of ?l onto Sn. Then (1.2) is equivalent
with the following equation on Sn

(1.3) \ '  f f , , tq =ar|., 
,  J6,=7XT ?6

We restriet our considerations at the linear operators, f a f ?1. let Sn be
spanned by the linear independent family t+i., j = l,ntrl in ? and Rnh ,n" i.;
Euclidean space with same dimension, whose inner produet is indexed by h. Let
' lhe-f,(nnh,sn) *i"h maps the eanonieal basis { "i-', i 

= l,nn } ,ooii-""," ,n" family
{ + il} , "lhui = 

{, i, i = l,nh. Denotin$.,by Jn tne aoSoint of .lh related at the both
inner produets, the l inear operator on R"h

Q.4) T6,=  ShJhT t

has as matrix representation in the canonical basis, the Gaierkin matrix, associated
at t '  for the familv t+irt '  (Tr,) i j  =.t 'oi, ir, f ir .  rni, is the natural connextion
between the projeetion method and Galerkin method.

Identifying the operators on ttnh *ith their matrix reprezentation in the
eanonical basis, tet 3n ,= r,t",lJn , where Lr,,Lf; are the choleski factors of the Gram
matrix of l* irt '  "n 

= JnJh€ tRnhl. The following result (Theorern 1 in tl l) permits
the transfer of the properties on approximation subspaces at the matrix
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representations on Rnh, th" applieation A f, : [Snl --r ,*nn],

(r.s) Antfnl=inf,ntn
preserves the spectrum, norm and eondit ion number, i .e. with the notation
A

Th =A 
h( fh), we have

r( ie) = c ( Yts)
(1.6) ti i. 11* = il fs, ll

' l c ( ? q ) = T ( ( r q )

'  where the operator norms are the indueed norms, and the eondit ion number is defined
uv ld (Tr r )= i l  f r , i l  . i l tn t i l  . ro ,

,\
(1.?) -r ,-r , - nt h =  L h , h L t ,

is the preeonditioned Galerkin matrix by the choreski faetors of the Gramian.'t 
tf f is a bounded linear operator, l i  f I 1 Nt and positive definite,

( f . r , , u )  7 t % t  l l u i l z  
" u € T f

then we have:

REMARK 1' The calerkin matrices of f are speetral equivalent with the
Gram matrices, with the equivarence constants independent of h:

a+t d

(r.e) rm - *$*1 € F4 , \v) t* u s'n - ?q o b^
.  oh  t6  , I q  7a

P n h L r u

Proof. For J h eR t ' ,  let I  n = tnTn.sn. we have,

lt tq ila= lt Jfftq iii = ( Gr,tq , ?r r*
Now, < Tq t, , tu 7r, ,= ( Tr, Ft, Tq ) * < Tfg, Str )

and .nn l i3e, l lz* ( Y IArS, ) s l..t l i  jq i i2
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what proves the affirmation.

2. STABILITY PROPERTY
, ]

_ d
Let J 

6 the approximation operator of the nonsingular operatorfe tHl.I  oo
not known if the both hypothese* T 

-1 
is bounded and there exists f, 

,_,t, ,r"
sufficient for stability, i.e. there exists a eonstant c independent of h cueh that

I f  ;1[ l  < c' But, equivalent condit ions with the stabit i ty ean be given. For this, let u
and un be solutions of the equation (1.1) respectively for approximation equation

obtained by projeetion method (1.8), eorresponding at f€ ?{ . 
.

LEMMA I '  I f  f  ;1 there exists, t lren the foi lowing aff irmations' are
equivalent:

' i) (cea's lemma type property) There exist c independent of h, such that for
any u€Tl ,

( z . l  l t  u - u q l l  € C I u - ? q u 1

ii) (Approximation property of the inverse) There exist c independent of h,
sueh that,

(z.z) ll y-'- tior* il 4 c.

iii) (stability property) There exists e independent of h, such that,

(2.3) i l  yf, lt< c.

proof. i) :) i i) From (2.1) for any u e fl,

l l  ( l - { o o * f , ) . .  
l l  = l i  u * y * - ' n r g l l  * i i  u - r r i i l  4 . e n u - ? , ( t g s c i t u g

Now 1 r  t -  
q , ro  n  e  t r  x - f  i , , t r  x_ r ; , t f  i l  €  c

ii) ETiii). Beeause

It {ri1 = fi t"p[ i l < lr r-'t i + tt r-L rilo ri ;
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this impl ieat ion is immediate.

iii) ? i). We have

l lu-u6 l l  = i lu- T; '+6 i l  *  l t  a-?Bu t i+ r t  ?*u-?i '?rr ,  r t
4 l i  u - ? g r r i l ( d . + r i T | i l . i i y t t )  

L c  i t r r - p s u _ 4  
s

A suffieient eondition for stabil ity is that f be a positive definite operator.
In this ease, C = Llm in (2.8).

By 'Remark 1, the Galerkin matrix corresponding at the approximatiorr
d

operator J 
6 '  is spectral equivalent with Gram matrix. A simplest example shows

that the Galerkin matrices are not stable. Let ? be the sobolev space ultol,
J [= (0 '1)d '  d= 7,2,equipped wi th  the inner  produet  involv ing only  the f i rs t  der ivat ives
and sn a f inite element subspace with l inear functions on a uniform grid of mesh h.
Then the Gram matrix coincides with the discretization of the Laplaee operator,
hav ing the f i rs t  e igenvalue lmin€ehd.  so,  i lT ; l  i i  5Sn-d,  i .e .  the s tabi l i ty  o f
Galerkin diseretizations is not val id in this ease, in oposit ion with the stabil i tv of
their approximation operators.

3. STANDARD HYPOTHESES

Let on' l i  t f , .  fol lowing nonlinear equation

(8 .1)  -Sr  r r1  = 6

which has an unique solution u*. We suppose that ? is Freehet differentiable on:ti ,
with Fnechet derivative S r satisfying: f / is Lipsehitz eontinuous on 

.I l

?  '  ' ( 3 . 2 )  
f i ? r r u i  *  $ t . u r  i l  4 y  t t  u - v  l t  r  u ,  v € t {  . i

, T (u*) is a l inear positive definite operator on 
.H

- ( B . g )  ( T ' t u * ) v r v )  
Z ( t l 6 i i ' )  i t  v r r z  ,  v { y {



From (3.3), we have
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*tr  l l  qt t -u

(3.4)

(3.6)

i l  5 / c t * l -n  l l  e

.^* il *

$.

i . e .  u *  i s  a  s i m p l e  z e r o s  o f  $ .  L e t  r u *  = z l | F * v  a n d  g * = l u 3  i l  u - u * l l  ( . * 3 ,

the Rheinboldt ball .  In the above hypotheses, holds the local l ike result of Rheinboldt

(?l) what ensures the eonvergenee of the Newtonrs sequenee:

(3.5) F ' ( t  * )  (  u * * !  u * )  = -  s  c t  F l

for any uo€ Bo, that is quadratic

K+4
ll u

l - d r I u L

Now, let Sn c "1{ a finite dimension spaee having the following

approximation property: there exists the subspaee w c"[i, equipped with the norm

, t  . l lw := l l l  .11g  ,  sueh tha t ,  fo r  any  u6W,

(3.?) , u {  t t u - v  l l  <  c o ? , { l [ u r u ,  d l o ,  (  <  f , o
v  e  S g

For example this holds with "H ,= H ltn) the sobolev space when .fl is suffieient of

smooth, Sn the finite element subspaee *itf, l inear finite element function,

w= n l ( . n )nH2 (n ) ,  t i .  11 *  : = l l ,  t i " r ( o ) ,  uno  d  =  1 .

As in $ t, for $'(u)e [H], the approximation operator on sn is given by
f  

i t , l t= Ph gtu)Pn. Then, (3.2) hotds for  i t  wi th same constant f , .  not t ing that

Fh t= Pf,en , we obtain that for ! h,? h€ Sh ,

11 9* t5**ola) - 5q (Ia) - Si (Srl \4 ll =

t t?q (  $ ( r*+1^ 
)  -  T(5r)-  F i i  16) lq t l

- o f
i .e. fq is the Frechet derivative of the approximation

(3.3) holds for any v e56 ,

rr r{ i ro)-t  i l  * q+

operator S n. Now, because
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Let u*e w.Then, l iu* -  pr,r* i l  t= 
*t ,  f i  u* -  vr l  seohd rrr ,* i l ,  .  gy

, r; ( ?qu$ t = rl,,;;;i, " u; ;";.c niru*)_ ri.ru,.))l
for  h sueh that $ 

*U"ot l r  u* l i t  h{  (  1,  we obtain

l rs i tPau*)- t  i i  *  F*/Lr- f l r  r i ru* i r r  B{ l

I f  Jne snr lB*,  i .e.  i l  Tn _ u* l l  ! r f  ,  then

lff c5*t -f 'rrP*u*r rt < 6 nEq- t f, rr 1Y tt4- u"u e zl:n'r

So,  for  h  such that  z i l f f " , (Pnu*) - l  l l  /s$*<r ,  there ex is ts  f ! r (gn l - I ,  for  any

5  n€  SnnB* '

Let h, sueh that ( t* xCol l i  u*l l l  ,1,= rtr2; then holds:

REMARK z. r f  h.T,= min lh'  i  = 0,11 ,  Si,(5n)-t  there exists for any

5 r, t  sr,48* and

t t  5 ;  (& , in  6 ,  C I ' ' *40 ' r(3.8)

This is immediate from above eonsiderations, proving the stabil i ty property of the

approximations on shA Bt, in the sense of [B], for Frechet derivative.

A classieal theorem ([SJ) gives for ue W nB*,

(3.e) I t T t e l - F c P o u ) -  S ' r o t ( t q u - u ) f f  e  f ,  i r u - p q u r r 2

( f, t." irru111qatrz

With this, we obtain for u,v€Wn B*:

(3 .10)  l l?g iFct t ) -F* t?Uul i l  t  Gt { r i i ' ruaha.+r . , , r  J  rn*ur  tn4

(3.11) 1t?oc5'tur v) -  f{ t l ru}?*v l t  6 co[tr  trrut i t  r  i tv i t  + H.ru vtr{J g<

where M is the constant of boundness for Freehet derivative.

DEFINffiON. We name the standard hypotheses (S.H.) the following:
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_  p l
Lipschitz eontinuity of F, $.2);

posit ivi ty of the derivative in the solution u*, (B.A)i

.  
approximation property of the approximation subspaces, (3.?).

Summarising, we have

THEOn'EM L' suppose that sFI hold. If uxe. I{, the Newtonfs sequenee
t , -

I ," i c tr{ n B*, and there exists C, sueh that

( 3 , t 2 )  l l f  q K i l t < c 4  
,  K T t o

Then' there exists i, such that for h < fr, the approximation schemas foi operator
equation (S.r) is:

. Lipsehitz uniform on Sn: for any Tn, ? h 6Sh ,

(a.13) irF{ t1) -T;(olar rr 4 r i l\- rr {
bounded on"li : for any u €"|i,

,  
( 3 . 1 4 )  

i l ? n u i l €  r i u q

.  
stable on snf i  B*:  for  any j  

nesn^ Br, , rere exists c independent of  h,

( 3 . 1 5 )  r t  E f  ' -  ' - {  "l l  sfr (16) ' l i  
< q-, = 4 {5n

consistent of order d on the Newton's sequenee: there exists the constants c, and c^
independent of h, such that: 

' '

(3.16) i i  ?frT tu F) - 
\ ,  ?* u *) 

{ l  e c, f ,q , K2,, a , arrd

( 3 ' 1 ? )  
t 1 ? 6 c F t u * ) r r i ) l  f i . , r ? , i  u * ) ? 6 u i  t i  4  c n {  )  v 7 , o . , . J D o

proof. The eonsistence property is a consequence of (1.10)_(8.12). The
stabil i ty was obtained in remark 2t (3.14) is evident beeause pn is the orthogonal
pro jeet ion and (3.13)  is  immediate.

B

we point out that the above propert ies are the work hypotheses in [ 5 ] and
here in the sH these are natural, Now, we are in the same posit ion as in [3J for
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proving MIP for approximations.

4. MIP FOR APPRO)ilMATIONS

we foilow the l ine of [5 ] in the proof of MIP for approximations and

lransfer the estimations at the Galerkin diseretizations. For first part, we work in
B* 'By project ion method, the approximat ion equat ion onsn for (3.1) ispST(!5) = 0,
or in equivalent form,

(4 .1) Tntr.) -- o

LEMTi lA 2.  Let  ux6w. I f  sH hord,  then there exists i  suen

apprOximation equation (4.1) has an unique solution ! n* in the

nn{lnu*, rrn), where \ s cnrl Moreover, there exists T such

: il. Bi..

Proof.  For the last  i ,  we have l l  u* -  phu*i l  S Col l t  u*111 h"(  <C, i .e.
Pnu*e B* '  so,  by remark 2,  there exists Tl t rnu*)-1 and the est imat ion (g.g).  L"t

an:= 2 x t t  Tf, tenu*)-1lr  . i l  5f l (pnr*)-1yn(enu*)t |  .  rhen, by (3.10),

&e, < aszf  l lTq(?fr . . rn)  i l  = r*r  i l  Tr ,  c?hu{)-  gtu.) i t

4 I f  bG [  [  rur . r* i i tatd+m] rr ru{uf  ,  = . r f rn

wi th  i r ,  sueh tha t  
" r4  

a  1 ,  red i f ine i ,=  min  ih . , i  =  0 ,2 \ .By  a  c rass iea l  theorem o f
Kantorowieh, for  h <; ,  there exists 3i l  i "  the bal l  Bn(pnu*, . \ ) ,  where

\r= ( { - \flT; ) ir ri ( ?q u$ i,ro .'?u unr ti / rg,

Now, by { c col r/6 f' tFnJ iuu{ ii l f,= c4f,q

that for tr <i tt,e

Kantorowich ball
N

t h a t ,  f o r  h < h ,

[ "d -  u& i i  €  \+ t lua-  ? ru*  (  eLCq +(odruer t rJ f "d r=  c6$4

for h ( i  ,= min Ihi ,  i  = 0,3 ] ,  where h, veri f ies 
"u4 

a f  ,

Beeause 5 f; . tn r\ B* we have

tt rit3i;' ri,= pi e c-

we have 5 f;e r*. 
u
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So, we ean eonsider the Rheinbotdt ball in S5, Bf;(.S f;, {), where

d * olnpl r
what includes the fo[owin] bau with

following lemma is in faet the theorem

(4.2) ,

eonstant radius 1.* ,= Zfta6

of Rheinboldt applied in our

,S;r f fi, i.I). rn.
context.

LEMITIA 3' Let u*e w. If sH hold, then there existsfrsucn that for h <i. the
Newtonrs sequenee defined bv

Y'0 , : f  t ( r ;uo - r *K)= -F*Gr* )  ,  vTsa

converges at the solution of (4.1), 5 fi, ro. any 3 fr tnat is the projection on sn of the
baU B;(u*,qrf ),  q ( r/4,and this eonvergenee iS quadratie:

(4.3) u=;"- ri ri a { r rr q*- si rff r

.. Proof. Consequenily to work in B*, we wish\

ITq- u{ i i  < r i lq- fa i l  + r r5q*-  r . [

e  t l q n c e h n

For  hn  tha t  ve r i f i es  cu r f ,S* t r ,  f  n€B* .  so  rede f in ing i ,=  m in l t , ,  i =  0 ,41 ,  w i th
e  P - , -

h (  h,  Ufr -g* .

Now, let uoa B{, q < L/4. Then,

{l?nuo- qi 11 * tr?q iuo- u4) ir t h ?i .,.-- { + \rorn

o -  f ; r u { - { , r )

to haveEf i .n*.  Eor j

1 "  z l l c I * f , s f  <

h€ ; ; ,

+
f l  4 1 n -

Let  hS such that  % < (*  -  q) . * .  Then

5 f, ,= nnuo.E; sB*. olo,n*u ,n" ,n"orunr
approximation equation with start ing point

as in  the iemma.
@

for  n <i  ,= min {h '  i  = 0,S} *u have

of Rheinboldt, the Newtonrs sequence for
o

E [, we have the quadratie eonvergenee,

Let tioe n{. ffren I f, t= pnuoe B* and the tinear equation

T'( qrr 
-1',- E; ) =- s( q)
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. is well defined with an unique solution in B*.

approxi mation eguation

By projeetion method, we obtain the

6 " 1  !  -  
-

Yft r3;) ( t '  -si*) =- yrtlf)

what by above considerations has an unique solution ?fre n*n sn. Repeating, the
iterates' in Newtonts seguenee i t f; t are the solutions of linear approximation
equations obtained by projeetion method. The I 'paral lel ism" of the eonvergence of this
Newton's sequenee with the Newtonts sequence on init ial equation is the object of the
fol lowing theorem, that is the variant of the main result of I3l in our hypotheses.

TlIEoRr&I 2 (Mesh-Independence principle). If sH hold, u*€ w,
" V
l ' ' "  k2 0l  .w, wi th uoe B{,  q < 3/16 and there exists c,  sueh that , , r  ,k i l i  < 

"r ,then MIP holds, i.e. there existsi sucrr that for h <;, and for I f, 
= pnuo, we have:

( 4 . 4 )  
{ = ? q u *  + O t 6 d ).\

T s c S [ ) = ? q 5 ( u F )  r  a c { )

\ l - 3 f  =  ? r t u { * u r )  +  c g ( $ 4 1

and in the stronger form, for any t ) 0, there existsi', sueh that for n <fia:

( 4 . r )  |  * n : . 1 r r .  i l u ( - 9 1 * t r < € -  q ^ n n l r . . ; n S f  -  j q l l  { s r l  < f .

Proof'  Following Ls l ,  (4-4)-(4.6) are proved for a approximation schemas
that is Lipsehitz uniform, bounded, stable and eonsistent of order oi ,  what are
ensured here by the theorem r.. we schetch this proof in our context.

I f  co r lr  '* t , ,  {  < (1 - q)rJ, then for r ,  <T ,= min lhi , i  = 0,6 r ,  pnuke B*,

(4 .5)

(4.6)

k > 0 .

ru, { l*t ,= l l}
" f,**o'

k+1"
h

g

(t3 l)

(4.8i)

(4.Sii)

- nnuo*t li . Then,

t i  r '6i:f  l-tn . I
rr r{ t3i) (ii-?B u* ) - S r c : f l + $ r c ? q o F ) [  +

-  l - l

l i tvg (5 i l -  S;(?ru*))  ps (  f ' r , r* t - 'gr  t  ky)  t l  +



(4,8,,,) ' [  Tl th u*) ?B t s lu*)-a Ru F)) - ?q FtuE) t l  +
.  = ' - i i i ,  h .  v r  -  h  -

( 4 . 8 .  )  *  ? .  E  t , . E t  -  F ^  (  ? .  r r k  
L

' - ' - r v '  t t  t h # t u a ) -  S g ( ? q u t s ) l l  f
'  

Now, (4.Si/ is bounded by crhq beeause holds (3.t0); from (3.1?) with
j ;  f t ,k+l ,  (4.8i i i )  is  bounded by 2crhq ;  (4.8i i )  is  bounded f f , f ;  " t t  uk* l  -  rkt f  j

s 2  Y  f  f ; ' h  u o - u * l l  s z ? 5 ' q c - s f .  u s i n g  a  s t a n d a r d  e s t i m a t i o n  f o r  ( 4 . 8 . ) .  w er l " { '

obtain for it the bound{f f [12. The last estimation , .

e l t

i l  T; (t[ l- '  l l  * tr i{ tt* u K )-t u f r ^,-t trri r?* uts1-{n.i l i ;-qurir '

+ c' l(  r  -  ao'-q* )

Wi th  e  =  max  l "Z ,Z " .Z \ ,  we  have

(4.e) gl-t **. t E(rs,-* )'+ L rotr,. E. + xcB"{ }r  , t - t rct j "  .  L- Lr I

"Because q (  8 /16,
9 o

< b' /LZe c " 6 and redif ine
9 a d+ { s c l " h - = Q  h a s  t h e

solution that verif ies:

^.the 
eantity b := l. - 2 c ilqr* ) 0. Let h, such that

2
h?

bxh:=  min  [h i ,  i  =  A ,7  1 .  Then the  equat ion  3c t rxz  -  2bx  +

smatlest solution T := 4e r hc /[b * v WGfrFJ,

(4 .1 0)
^ *  l t o t t t  a a 1 t " n ?  * " " f f ]  =  !

Now, [ ' i  = o . t  and di  = z"or t
t a
r  ( t .  By induet ion,  f rom (4.9)  anO (4.10) ,we obtain

that

4- * T s c? fi"(

and (4.4) is proved. By

ruFn(Tf )  -  ?s f ,cu{ r  l  6  l t rne I f  } * re i .p*  o(J i i t  nqc p6uK)-

?q f , u tsr ii a .X.O*ol"* * E* t ca ({ o..u A*

(4.5) is p.ou"d. For (4.6), we have

[ ( ] ; -  s i)-  ?q( i . rK- u*J i l  s ef  +r 's t  %An

The last relation (4.?) is the corollarylin [ 5], for wich is verified the condition

1 _
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l i m l t  p n u r l  = l l  u l l  , u € a f  . -
h . + O '  

n  r r  r r  - ' r l  '  -  b  ' '  ' t g

In the situation when $ i, o"fined only on the domain )-.H, and Brc T,
the above results remain valid. so, 3 n is defined on b n := s50 ft. The our restriction

to work in B* for approximations, makes that the balls of Kantorowich and
. P

Rheinboidt Bn respectively nfi ties in %.

5. Mrp FOR GALERKTN DTSCRFTIZATTONS

we are pointed that the iterates of the Nevutonrs sequen ce (4.2) are the

solutions in B*r\ sn of the sequenee of the l inear approximation equations obtained bv

projection method.

For to pass at the matrix formulation of the MIp, we turn out at the $ l .

we note that  the entr ies of  the veetor \ -aRnh 
" . "  

the eoef f ie ients  of  thes n

3 r, ,= .lhi 
r.,. s5 , in the basis i+ 

'n, j = l,nh |. The following notations are used in
the following for Galerkin matrix representations:

? - , e l l e h e
F r . : = T O F q r h  

,  + ; , i s 1  , = T r f ' c E * ) T ^  ,  R . n - +  
a ' h

where the last has the Galerkin matrix representation of T( Snl in canonical basis.

By  ( t . s ) ,

?l .  t*):= /\  hr Fl(Br,)\
. A

wr,eru in,= t i l innRnh.

. - ,  - ,  s  : | i
=  h  r q i l q ) k

with this, we observe that the Newton's sequenee

tfprecondit ionedrt mdtrix representation

(5.1)

(3.5) has the fol lowing

' ?* , t * - ) t i l - : t i l= -  f , * t3r* l  ,  u<27o 1! ;= i *o*uo
of the Galerkin matrix representation

. _ N (

(s.2) ti:. ciirr t**i!q*) =- r*rif \ t Fto ' s; = r ?Buo

We wish to show that the sequenees defined by (S.f) and (5.2) are Newton,s sequenees
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onRnh, eonverging at the iil = jnEfi uno jfi =.1-hg 
fi respectively. Beeause

il Li t rn(iq* ia) - r;r?.r - ni ct,;)i, it, =

tt to ( te*{q) - fo.t, )-?; c{ar4q ilr, =

Ft respeetively i, are

equality, holds beeause,

(5.3)

N

wnere 1l I h ll ch
matrix or t{ i, } .

u,. €

I t t i- 1f )- (pe(u(-t*))- ir 4 c f,{

Faand in the stronger formuration: for any € ) 0, there exists h, such that if h <;€ ,

I  * i n  t l . ;  r i u L  r * , { .  €  I  -  r v r i u {  r i  , . ? r  : +,  | i q * - t i i i c q . c ! l *  a . ,

A n 
Proof' l te remark that f i f; f is the Newton sequenee for equation

Fh( :h )=0 i f  and on ly  i f  lT [ ]  t r  the  Newton,s  seguenee o f  equat ion  Fnt5n)=0.
Beeause

r : ; -s f  r  =  u t f  - i * . | rq

we have the quadratie eonvergence ror l i  f;t, u, in Rheinboldt theorem. Moreover
MIP holds for it with same estimations in the Euclidean norm as the estimations for

It S* c:* * \s\ - Fq rrq) - .fd c $n) \q tt

the Freehet derivatives for F respectiverv $.'The second
A h A

ior  anY 5 h r= g"5n Snr we have
A

| |5ql i - -  l l  \qt t*  :s  r r t , t t  ao '

t= <G5i1,\nf, ' '  =i\Lfi ini l  
n, is the norm induced by the Gram

THEOREM 3. In ilre same hypotheses as

discretizations, hotds in the norm induced by Gram

(5.2) for dismetize! equation Fh(T 
h) 

= 0 in R h,

i l,= (enuo) , ""0,,,T:r"rl"r:::r:r, 
_ ̂  {t l : ; - t ? q u * ) -  r l  ̂  €  c g , '

o q

ru l*ci f  )  -  (  ?ey{u*))* l l

in theorem 2, the MIp for Galerkin

matr ix ,  i .e .  the Newton 's  sequenee

eonverges with the start ing point

c U '
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approximations. This implies same estimations with respeet at the Newton

for Galerkin diseretizations I t il ! beeause hotds the second equatity in
- l - -

t I t  - f  
f r) ,  unc MIP holds in this case in the norm indueed by Gram matr ix.,

We point out that the sequence (5.2) is really the Newtonrs sequence for the

Galerkin diseretization. Using the framework of { i  1, with the start ing point
t  .r  a.t* nh

5 il t= (Pnu') € R ", we have for k = 0 for example, in (s.z) an system of linear

equations, whose lines are

sequenee

(5.3) for

\  ,u i  7q=
(nL ,if xii-i; I + q Gi D; = . ,; cis.r rti- i,, r qci;
. r,l , Si rtri - tr") + T* ui) , +i, 7 =
< Y'c sr" t i x*r -:r") + F (5f' l , +t l

So, (5.2) is obtained by projeetion of the residuum

Newtonrs equat ion onto the fami ly {+ l ,  3 = n ' !  r

method.

calcuiated t" ! I*t of k-th l inear

what span Sn; but this is Galerkin

e diseuss here on the hypotheses of the theorem 2. Forlt t= uf{";x) 1,e

Sobolev spaee, the approximation property on finite element subspaees holds with

( = 1 for w = glt.gln H2(lt), dense subspace oruf(;r), equipped with the norm of the

space Ilz(TL).

6. COMMENTS

let T be the functional from the

is l inear in the second argument: to f ind u €

f irst term of the following problem, that

8, sueh that,

{ r  }  M  =  o , t w  v e ' i l : c c u ) r  J } =  c 4 * )(6 .1 ) Tcu,u1 ,=  J(  *  *  .+
gL dy ty

a : ^  1  r
where J  :S x  H:(&)  - tR,  S -  Hf( iz) .  we suppose that  Sand f  are such that  (6 .1)

has an unique solution ,*9$ , and the Newtonts sequence is well  defined, by: given

uo<7,



(6.2) T t ] . u

Here T I is Frechet derivative

first argument.

The probl"r (6.1) is

u€ Dc 
"2(o, t )  

solut ion of :

(6.3)

the l inear functional

representation, there

- 1 6

v ) = -  T ( t 1 v )

obtained from (6.1) by

, (*t ve ? , E),a

derivation with respeet at the

r *{4 "*'
,  u  - l { ;

3
-  " "  + {  = c ;  u t o ) = t r q t ) s o  J

AvL

the variat ional formulation of the problem: to f ind

{ r z . f  c x ,  u , & ' 1
d x '

that is the same type as in example of [3]. By our eonsiderations, u* anO { ukl are

solutions of (6.3) and of the Newtonrs seguence of l inear equations for it, in the sense

of distribution. l\ ie suppose that they are crassieal solutions, i.e. ux, lukl -c2(0,1),

and u* is the unique solut ion in D. Def in ing the norm of c2(o, t )  uy I  u l i . ,  =

= max lrrplu(i)(*)\, xe ..tt; i  = 0,1,2 ], we have lr uk tt o ( c, ," ,n""0!orit)",

eonvergence for (6.3). Then, 
c"(0'1) 

- r

l l  uK li 
H..*) 

4 az ti u K lt cz co,al

that  proves the approximat ion property for  w = Hl to)n H2(. t )  nc2(o, t ) .

We point out that the Newtonrs proeess and the variational formulation

proeess Bre eommutative for problem (6.3), i.e. both ordering conducts at the same

equat ions onB* Hl6n),  and this in a s imple exereise.

Now, we wish to show that (6.1) nas an equivalent operator formuiation on

? . Bucause

I rcu,ul i . \i fi t r" tt H itL. + ii{ rluz iiv r{rr

* rvrna,v E rr /il r, -Ntn^.y tll 'er tt* i \ { itrr} i l v ti qa,*,

4 .  C tu l  l l u l l  
* { ro . ,& )

q
q

exist

for u eb fixeo, is bounded on Hftnl. Then, by the Riesz
1 .

tu €Hi(l-) such that,
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Ytu, v) ": c tu, v ) ,({i ve H'uLw)

Rf

So, u **ru , for u *9, defines a nonlinear operator in b. we have T(u*,v) = 0 for

g.ny v€Hlu{ru) if and only if S(u*) = 0. If the derivative Tt of. T is a bil inear

funetienal for anyV€ulta), that is bounded and ell iptique, then their representation

is a Lineer Qperatorr bounded and positive definite, that is T'. By our eonsiderations,

tonl is the Newton's sequenee for S(u) = g as well as for (6.1) and (6.g).

In the finish of the work, we remark that the positive definite property in

the ss-t-ution u* is not restrictive. For example in tal the hypothese for Frechet

derivgtive is that it is positive definite onto any compact subsets inl{. This condition

inplies the pos.tt ivity in the solution u*.

We remark that for a similar probiem as in [ 6 ], we need no suppiementary

Emooth.ing properties for the solution u* and for Newton,s sequence as in C2(o,t).
\
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