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ON THE MESH - INDEPENDEN CE PRINCIPLE
FOR GALERKIN DISCRETIZATIONS

by
Dumitru ADAM

Abstract. The mesh - independence principle is obtained for Galerkin
discretizations, in the norm induced by Gramm matrix. This result follows the line of
Allgower, Bohmer, Potra and Rheinboldt ([3]), using the convergence of the Newton's
method for the initial equation on a Hilbert Space and the approximation properties

on subspaces as in finite element method. This paper is a revised version.
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1. INTRODUCTION

In [3] the authors proves the mesh-independence principle (M.LP.) in the
hypotheses of the Lipschitz uniform, bounded, stable and consistent discretizations.
Their model, characteristic for finite difference discretizations and covering another
type discretizations, is not applicable for Galerkin schemas because the stability is
inot valid. MIP was studied in many papers, see the refferences contained in [2] (there
we reffere only at [2] and [6], that was used in [3]. MIP consist in: the above
hypotheses ensure the existence of the solution for discrete equétion, the
convergence of this at the solution of the initial equation, the existence ahd
convergence of the Newton's sequence for discrete equation and the "parallelism" of
this convergence with the convergence of the Newton's method for the initial
equation.

We use the framework of [1] for Galerkin schemas, sepparing the analysis on

approximation subspaces of the analysis on the real Euclidean Spaces. In this
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framework that is shortly explained.in the following, excepting the consistence, the

hypotheses of [3] are natural on approximation subspaces.

Let on the real separable Hilbert spacenﬁ, the following equation

(1.1) Tu =§

One of the methods for to obtain approximation equations for (1.1) is the projection
method. This consist in to project (1.1) on finite dimension subspace 5, < Hiode 1o

find uhe Sh such that

(1.2) ’ngj‘ ue‘ = ?g)g’

Let P, be the orthogonal projection of H onto S} Then (1.2) is equivalent

with the following equation on Sh

=7 AR
(1.3) Tue =7 ¢ , T=77
We restriet our consxdex ations at the linear operators, Te [H]. Let Sl
n
spanned by the lmear independent family if}a i l,nh} inH anar ! the real

be

“Euclidean space with same dimension, whose inner product is indexed by h. Let
g Prath " e
JE€LR ,Sh) wxch maps the canonical basis {eh, s 1 s tinR " onto the family

{({o ‘;1} J <%>}, i=1, Ny Denoting by Jh the adjoint of J related at the both

n
inner products, the linear operator on R i

(L) = T&:::: ‘j% (3-;. ffﬁ
has as matrix representation in the canonical basis, the Galerkin matrix, associated
at 7 for the family Stcpg]} (Th)ij: <'J)613£],c§>}i]>. This is the natural connextion
between the projection method and Galerkin method.

Identifying the operators on Rnh with their matrix reprezentation in the
canonical basis, let ,‘;h = thJh , Where Lh,L;; aré the Choleski factors of the Gram
matrix of §{¢ :}}, 6= JhJ € [Rn l. The following result (Theorem 1 in [1]) permits

the transfer of the properties on approximation subspaces at the matrix



n n
representations on R % the application Ah : [Sh] — [R

(1.5) A gaia

0]

9

preserves the spectrum, norm and condition number, i.e. with the notation
= :

Th :‘Ah((fh)’ we have

GCTp)

it

T (%)

it

» A <
(1.6) BTy il = 1 Ty
2 A 4

7<-('Tf1) = (((:( frﬁ,)

where the operator norms are the induced norms, and the condition number is defined
2 o =1

by KATp) =1 T, - 1972 so,
(1.7) Tt
is the preconditioned Galerkin matrix by the Choleski factors of the Gramian.

‘1T s a bounded linear operator, | 7 || < M and positive definite,

& Juuy oo ot > WEH

then we have:

REMARK 1. The Galerkin matrices of .) are spectral equxvalent with the

Gram matrices, with the equivalence constants independent of h:

o ) o A
(1.8) N 4 <T%ge" 7% ¢ m | WFHelR i . H#F 9

<93, 3

N

~ s
Proof. For S hER let 5 = Jhg he S} We have,

AR Bl =< 65 Fo

~

Now, <T£)Sf,;s\f,7g1 = <Tﬁ,£~‘g,§ﬁ,7 ‘»‘-‘475,:,55’?

2 2
and WA £ <TT £y 4 45



what proves the affirmation.

2. STABILITY PROPERTY

Let Th the approximation operator of the nonsingular operator J € [H].1 do
not known if the both hypotheses: gl is bounded and there exists J I;l, are
sufficient for stability, i.e. there exists a constant ¢ independent of h such that
g ;]lﬂ < c. But, equivalent conditions with the stability can be given. For this, let u
and up, be solutions of the equation (1.1) respectively for approximation equation

obtained by projection method (1.3), corresponding at fe s

LEMMA 1. If ‘J’;}l there exists, then the following affirmations are

equivalent:

. 1) (Cea's lemma type property) There exist ¢ independent of h, such that for
anyueY,

(2.1) N u— Yell £ C u=T,

ii) (Approximation property of the inverse) There exist c independent of h,

such that,
- { A
(2‘2) n ¥ = (Te‘ ?i’ “ < e

iii) (Stability property) There exists e independent of h, such that,

(2.3) n%f“<c

Proof. i) =7 ii) From (2.1) for any u ¢,
z ~ (*-".‘ >
H(I-?l';‘ RTyup=| Ul Bl = hu- w2 cote- foCil £¢C iiug

PO | =1 et el
Now ([ —-'J'e'?g‘iléli.fufilSZ-’J‘.’Pﬁﬁ"H%c

ii) wyiii). Because

f" - _‘ £
“34ﬂﬁii W~Héh?”n+uﬁ~7f%u
b h 'k



~this implication is immediate.
| iii) =7 i). We have
ffa- Up bl = - ':rﬁ”gf’ e W us "},u fi + u.?‘,‘u- ‘Té"?eﬂ‘u i
€hu-upn (44 WG 0T ) ¢ e pe- A
8

A sufficient condition for stability is that ¥ be a positi\}e definite operator.
In this case, C = 1/m in (2.3).

By Remark 1, the Galerkin matrix corresponding at the approximation
operator Th » is spectral equivalent with Gram matrix. A simplest example shows
that the Galerkin matrices are not stable. Let H be the Sobolev space H(l)(n,),
L= (O,l)d, d = 1,2, equipped with the inner product involving only the first derivatives
and Sh a finite element subspace with linear functions on a uniform grid of mesh h.
Then the Gram matrix coincides with the discretization of the Laplace operator, -
having the first eigenvalue Aminl; end. So, i ’I‘gl i S}‘ﬁ%h_d’ i.e. the stability of
Galerkin discretizations is not valid in this case, in oposition with the stability of

their approximation operators.

3. STANDARD HYPOTHESES

Let on H the féllowing nonlinear equation
(3.1) Fiwy =0
which has an unique solution u*. We suppose that ¥ is Frechet differentiable on %,
with Frechet derivative J f satisfying: 5{is Lipschitz continuous on H
(3.2) 1Fiaw = Fen & tu=vi | o veHl .
T {u*) is a linear positive definite operator on H

=(3.3) (Faufv, vy 2 Ue ) avi® | e



From (3.3), we have
-4 *
(3.4) w4 ¢

i.e. u” is a simple zeros of ¥ . Let W* = 2/3 p*¥ and B* =3 - N <oty
the Rheinboldt ball. In the above hypotheses, holds the local like result of Rheinboldt.

([7]) what ensures the convergence of the Newton's sequence:
g

(3.5) e SRR

for any ue B¥, that is quadratic

2
e e

(3.6) - v ity o

Now, let Shc.“(% a finite dimension space having the following
approximation property: there exists the subspace W ¢4, equipped with the norm

i “w =1l =il , such that, for any ueW,

yo b b

v 2 ]

. “
(3.7) wuf fu-vii ¢ b oy
Ve Se'

For example this holds with "H := H (1>(S?.) the Sobolev space when f) is sufficient of
smooth, Sh the finite element subspace with linear finite element function,

1 2
W= H(RINHYWR), ey =i - ,and & = 1.

H2(sz)

As in § 1, for ‘.‘F/(u)e[H], the approximation operator on S _ is given by

h
/ /
?e‘(u) =Py ?(u)Ph. Then, (3.2) holds for it with same constant ¥ . Notting that

Th = Ph?Ph » we obtain that for % b € Sh ;

3G - Fsy) - 5 05,9m, g
VR LF e, - 7o) - 55, 4,

{
i.e. 3:6, is the Frechet derivative of the approximation operator !}lh‘ Now, because

(3.3) holds for any ve_Sh ’

! -4 ¥
N Fwhy Tie ¢



Let u*e W. Then, [ju* - Phu*u = Luf
£ . Ve Sh

o - ;
S’ﬂ('(’g,uv):yh (u‘”)[.b = (} eu? ) ( (U )"‘ T U“))]

Fu* - vy <e, bW u*i . By

for h such that § L e, li u® il hb( < 1, we obtain

o : ¢ =
N0y e /D et ]

If §€8,nB% fe. 15, -u*) <n, then

1%, (5,)- 5,00 < § 055 G U ey 1 - v ¢ 2/3¢*
So, for h such that ZIiTL(Phu*)—l i /3¢ <1, there exists ff‘h('gh)-l, for any
% hESpnBY. |

i :
Let h, such that ¢* EC_ u* i h; = 1/12; then holds:

REMARK 2. If h< h = min {h o 1=0,1%, ﬁ(gh)—l there exists for any

*
3 e Sh(\B and |
R *
L6 P - >
(3.8) g () il € Te=4f
This is immediate from above considerations, proving the stability property of the

approximations on Sh(\ B*, in the sense of [3], for Frechet derivative.

A classical theorem ([5]) gives for ue WnB*,

(3.9) hFee) - g p Bu)- F w2 ru-u)ll & g iiu—f}’uﬂz

= :6_2-: Le, nuy® 1>
With this, we obtain for u,v ¢ W B*:
(3.10) . % (F ) - 7, Rl & Gl luuﬂf@h +M 7 e it t’n

5 . %
(3.11) R‘“L& wv) - LPqu)? v & GLE i - ivil + ™Mt vin] 6

where M is the constant of boundness for Frechet derivative.

DEFINITION. We name the standard hypotheses (S.H.) the following:



/
Lipschitz continuity of 5"', (3.2);
positivity of the derivative in the solution u*, (3.3);
approximation property of the approximation subspaces, (3.7).

Summarising, we have

THEOREM 1. Suppose that SH hold. If It e W, the Newton's seguence

{uk§ cWnB*, and there exists C, such that

(3.12) e ey,

Then, there exists h, such that for h< h, the approximation schemas for operator

equation (3.1) is:
Lipschitz uniform on Sh: for any § e, hES s

1t o .
(3.13) "Z:e, (30 f'i'c', (“’Ia) ey iy - K'Y

bounded on’H : for anyue,

(3.14) ‘ I 0il & iuy

. stable on Shr\ B*: for any he Shn B¥, there exists ¢ independent of h,
t 5 2

(3.15) i ggG\.‘ila T g

consistent of order « on the Newton's sequence: there exists the constants C2 and C3

independent of h, such that:

; o
(3.16) IR R RS dre G Kyo and

9

; ; : : ;
(3.17) Ty (F o) Wy - Fo (U5 fedse b o

®

Proof. The consistence property is a consequence of (3.10)-(3.12). The
stability was obtained in remark 2; (3.14) is evident because Ph is the orthogonal

projection and (3.13) is immediate. .

We point out that the above properties are the work hypotheses in [ 3] and

here in the SH these are natural. Now, we are in the same position as in [3] for



proving MIP for approximations.

0y

4. MIP FOR APPROXIMATIONS

We follow the line of [5] in the proof of MIP for approximations and
- transfer the estimations at the Galerkin discretizations. For first part, we work in
B*. By projection method, the approximation equation on Sh for (3.1) is Ph‘:} (gh) =0,

or in equivalent form,

(4.1) SRty

o4 e
LEMMA 2. Let u*¢ W. If SH hold, then there exists h such that for h < h the
approximation equation (4.1) has an unique solution gh* in the Kantorowich ball
éh(Phu*, nh), where ‘nhg C4ﬁ< 3 Moreqver, there exists Tw such that, for h <'}\1',

b :eB"_f.,

Proof. For the last {;;, we have { u* —Phu*‘u _gCO it u*u[ ﬁx &y e
Phu*e B*. So, by remark 2, there exists ?;}(Phu*)-l and the estimation (3.8). Let
a,:=2% || ‘}{](Phu*)"ln - il ?f](Phu*)“lyh(Phu*)“ . Then, by (3.10),
2« 2T KU, (% ) 1 = 2040 0 B (2 *)- T

5 & £ . o™
£ 1015“(0[9;1\10*111@% tt] motuk = 65&

» a( ) :
with hz such that C5h2 < 1, redifine h := min {hi,i =0,2%. By a classical theorem of

Kantorowich, for h <F, there exists ‘5:; in the ball Bh(Phu*,‘Rh), where
: ) -4
Nei= (4= 4~ ah )'\l 'f%(?e, u® ) ??j d’gu*) i /3%
y 8
Now, by STCLAE +r] o™ U is o8

¥ , : ol S
g - o™it é’:“f,“”ﬂﬂ*“ P UL+ Gud i h = ¢ b

Lo . . o % :
for h< h:= mm§_hi, L= 0,3} , Where h3 verifies C6h3 < r\.*, we have ‘g;e; B"‘.m

Because S;e Sh(\B* we have

: |
! ﬂf;,‘S‘;,f‘ = p, o ¢

=
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So, we can consider the Rheinboldt ball in Sy 'B;('g ;, nl”]‘ ), where
~* *
= &3y
R [3& s (
what includes the following ball with constant radius &* := 2/360 ,.B;]“( 3;:, ). The

following lemma is in fact the theorem of Rheinboldt applied in our context.

: s ~ ~
LEMMA 3. Let u*e W. If SH hold, then there exists h such that for h < h, the
Newton's sequence defined by
, bl o g = K
(4.2) . s e B el e
converges at the solution of (4.1), ¥ ;, for any Sg that is the projection on Sh of the

ball B;(u*,qr\,*), q < 1/4, and this convergence i§ quadratic:
i K ¥
(4.3 e S Ko« 9./ ke O il < S
) VS -Sp e Eolig -3, 1*/ (- g5t -% 1)

. Proof. Consequently to work in B¥*, we wish to have B;;CB*. For % heﬁfg;']‘,
: L o
IO R PR A R EAS BPRETEY

& Wy 4 p*

o , yog . - e
For h, that verifies cghy _<_§n.*, 3.6 B*. So redefining h := min {hi, i=0,4%, with
h<h, B cB*.
Now, let u®e B:;, g < 1/4. Then,

%) ¢ WPty R g g

Let h5 such that nh5 < (% - q)r*.. Then for h <~h = min U]i, i=0,5% we have
‘S g = Phuoe(é;‘ EBr Applying the theorem of Rheinboldt, the Newton's sequence for
approximation equation with starting point § g, we have the quadratic convergence,
as in the lemma. -

Let u% B(’;. Then "gg = Phuoe‘. B* and the linear equation

T8N -5 )=- Ty
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~ is well defined‘ with an unique solution in B¥, By projection method, we obtain the
approximation equation :
T 5 (- 52) = Fosp)
what by above considerations has an unique solution g}ie B*n Sh Repeating, the
iteratess in Newton's sequence {E % are the solutions of linear approximation
equations obtained by projection method. The "parallelism" of the convergence of this
Newton's sequence with the Newton's sequence on initial equation is the object of the
following theorem, that is the variant of the main result of [3] in our hypotheses.
THEOREM 2 (Mesh-Independence Principle). If SH hold, u*e W,
f_uk, k>0§ eW, with u% Bg, q<3/16 and there exists ¢; such that fii u ;i ey

then MIP holds, i.e. there exists h such that for h < h and for zh = Phu s we have:

' K
(4.4) Ef. ':-'?g,u + O%)
(4.5) Fo(55) =B ¥ wH) + DA
(4.6) Ee," “‘5; = % ) 008

and in the stronger form, for any £>0, there exists h& such that for h < h
& A
(4.7) | mdngies io® w¥ucg - Mu%k,‘h?d‘je‘ﬁ<5§“ g4,
Proof. Following [ 3 ], (4.4)-(4.6) are proved for a approximation schemas

that is Lipschitz uniform, bounded, stable and consistent of order « , what are

ensured here by the theorem 1. We schetch this proof in our context.

If Co Wou ™y h: <(1-q), then for h <"1J1 = min ihi,i =0,61%, Phuke‘ B¥,
k>0

Let Ug” =g =P u "L i . Then, (3)

K4 -
G e nshsiy g
4.8. ! . - K. e
e 0 (gg)(gfx»gu“) = Tgl5 )+ Fp (uFyu 4
; ,

(4.8;) 55 - T, ) % (T F udy )+

\



g 12 -
-4
(4,8.) Ty ) % CF W Fek)) - Tl +
’(4.8iv) W ?k-";w"')—- Tl ?e'u“) il }
. S
Now, (4.8iv) is bounded by ¢oh  because holds (3.16); from (3.17) with
: S
= Kk,k+1, (4.8...) is bounded by 2coh ; (4.8..) is bounded B’(k&n uktl ~ukn £
111 ‘ 3 i1 h -
<2 ¥ é-ﬁ “f u® - u™ <2%qe - SE. Using a standard estimation for (4'8i)’ we
obtain for it the bound -g( 'gﬁ)z. The lasf estimation,
v,
T G804 & 1T (B ue) H/E =¥ iLF LR R R R A AR

& o[(L-av§X)

With e = max{cz,?,c?)?, , we have

ket G-
%3

o
(4.9) &, .4!(0_&; ) XTIy 5 fa,cﬁ}

" Because q < 3/16, the cantity b:=1 - ZG"qu > 0. Let h7 such that h7

<b /12(: 0‘26’ and redifine h = min §h ., 1=0,7%. Then the equation 3 crh‘xz = 2bx +

+4e0'2h =0 has the smallest solution T := C.}h /Ib+ Vb? - 12 52 g

solution that verifies:

(4.10) . G’K"C%'.%-'K.Ez*- a.@qv.\f”a -+2.-cffd} =7

o -
Now, Eg =0 <% and Efll =2c@h <Z. By induction, from (4.9) and (4.10), we obtain
that

£ ¢z ec,p?

€T sCqeh

and (4.4) is proved. By
WFL ) ~ RF & U (50 ~ TR )i+ uE (R )~

-

. Ko oo o¥os o aX
"RTFWHY < %(Gﬁ‘)l"' MJ& t G h «Cgh

(4.5) is proved. For (4.6), we have
o

2 'S & ; ' 1 8
“(E:"g;)"' Pplu—=Ulj ¢ &e the £ Cge\

The last relation (4.7) is the corollaryiin [%], for wich is verified the condition
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lim{{ P =k u“,ue'W
h>o SV : .
In the situation when ) is defined only on the domain 3= rY-i, and B*¢ J,
the above results remain valid. So, + h is defined on ¥ h = Spn - The our restriction

to work in B* for approximations, makes that the balls of Kantorowich and

. e - gt
Rheinboldt Bh respectively B, lies in ?‘h.

9. MIP FOR GALERKIN DISCRETIZATIONS

We are pointed that the iterates of the Newton's sequence (4.2) are the
solutions in B {\ S of the sequence of the linear approximation equatlons obtained by
projection method.

For to pass at the matrix formulation of the MIP, we turn out at the § 1.
o n
We note that the entries of the vector S &R i are the coefficients of the

¥ h s J She Sy 5 in the basis §¢ he i=1 nh§ The following notations are used in

the following for Galerkin matrix representations:

h

N I _,.,I( _h . "G )

R - R
where the last has the Galerkin matrix representation of I Sh) in canonical basis.
By (1.5), ‘
LIS AIYNAT R
L ey L TR R T

A

. i, n
where %h = L;‘ghéR L

With this, we observe that the Newton's sequence (3.5) has the following

"preconditioned" matrix representation

'“4 AR & ._"‘ ® R ™ P
of the Galerkin matrix representation ¢
™o =7 (4]
Sl ~ Mo MK . o~ w0 'J Sa = :S Psu
(5.2) Tf‘ (Eﬁk)( ge‘ "Sﬁ ) =~ Fg‘(‘sﬁ ) S %

We wish to show that the sequences defined by (5.1) and (5.2) are Newton's sequences



et

n : A A ~
onR h, converging at the g;{; = Jhg;; and S;’; = J"h‘g ;'; respectively. Because

-{ ¢ na ~ Sk ~ R el ~
R R S A A T A A P (), 1,
n ? (E,mﬁ)- & xsﬁ) L‘i,g,\”le. Ilg‘
T gty = F C1g) = Fy Godmg
A A
F' respectively F! are the Frechet derivatives for F respectively F. The second

I A
equality, holds because, for any ¥ PR Jh ghc: Sh’ we have

(5.3) NS = 1%q0, = 0%, .

~

1/2 2 : S
where “gh“ G <Gh§h,’§h> / =i L: ghll p 18 the norm induced by ?he Gram

matrix of §¢ h}

THEOREM 3. In the same hypotheses as 1n theorem 2, the MIP for Galerkm
discretizations, holds in the norm induced by Gram matrix, i.e. the Newton's sequence
(5.2) for distretized equation Fh(fh) =0 in R h, converges with the starting point

°-'§ }(: = (PhuO)N y and the iterates verifies;
sl o e
) f N

¥ (R0°) - ( B Flu')™|| G, % el

e ™,
(S Y BT XTI S PR

o

and in the st}'onger formulation: for any & > 0, there exists h£ such that if h < hg
< : ™ "4 ~¥ 2
| mingk; iu= Pyag 3o aingky i % - Sy il Aek | < 4.
f

A
Proof. We remark that {"%;ls is the Newton sequence for equation
A A 3

e ET T 3 e .
Fh( Sh) =0 if and only if 1% h} 18 the Newton's sequence of equation T h(gh) =0

Because

L A A %

. :
we have the quadratic convergence for % ﬁ}, as in Rheinboldt theorem. Moreover

. MIP holds for it with same estimations in the Euclidean norm as the estimations for



S

approximations. This implies same estimations with respect at the Newton sequence
for Galerkin discretizations } *g t because holds the second equality in (5.3) for
(gh -‘g h), an@ MIP holds in thi§ case in the norm induced by Gram matrix. :

We point out that the sequence (5.2) is really the Newton's sequence for the
Galerkin discretization. Using the framework of § 1, with the starting point
’\é }(::: (Phu°)~e: Rnh, we have for k=0 for example, in (5.2) an system of linear
equations, whose lines are

(%‘" LEO 'E-“N.U + T (v, I, o et !

h i’\)( ﬂs’ ){_4’ (.‘T{,a {7 i F.(e ¢ 1_ ¢ ° P <
, ey ) <REAERY) = ), % % =
<?:($°)(§¢-5“’) ORI Rt :

;3 i 47 < [r:d © '(‘4
CFORIUR -5+ F sy, 4 5

So, (5.2) is obtained by projection of the residuum caleulated in 5 EH of k-th linear

; but this is Galerkin

Newton's equation onto the family sz h

b s h’g, what span S

method.

6. COMMENTS

We discuss here on the hypotheses of the theorem 2 ForH := H(l)(.ﬂ,) the
.Sobolev space, the approximation property on finite element subspaces holds with
o =1 for W= H(l)(.ﬁ.)n HZ(J’L), dense subspace of Hi(.:z), equipped with the norm of the
space H2().

Let T be the functional from the first term of the following problem, that

is linear in the second argument: to find u € 3"", such that,

i o e ah
L“\' NE S( -+,.f\130\4;==o (v Ve Hyoa), &t=(41)
<

(6.1) &

P _
where J : D x H(l)(ﬁ.) ~»R,% H(l)(ﬁ.). We suppose that 2" and f are such that (6.1)

has an unique solution u*e¢ % , and the Newton's sequence is well defined, by: given

e,



a6

(6.2) ’J’lcu") Fh e O] Yéﬂ“ .

Here T ! is Frechet derivative obtained from (6.1) by derivation with respect at the
first argument.
The problem (6.1) is the variational formulation of the problem: to find

u¢ De c2(0,1) solution of:

: d : " __.,g-- ) S 'c[(/
6.9 SISk e weswdes | faporud

that is the same type as in example of [3]. By our considerations, u* and { ukK} are
solutions of (6.3) and of the Newton's sequence of linear equations for it, in the sense
of distribution. We suppose that they are classical solutions, i.e. u®, {uk} ;:,CZ(O,]_),

and u” is the unigue solution in D. Defining the norm of C (0 1) by tu 9

e (0, 1)
= max %_supﬁu( )(x o xe 120,12, we have |l u <C, in the ball of
! o
convergence for (6.3). Then,
K [
L e T

that proves the approx; mation property for W = H(l)(ﬁ,)n Hz(v’l) .’\CZ(O,l).

We point oﬁt that the Newton's process and the variational formulation
process aré commutative for problem (6.3), i.e._ both ordering conducts at the same
equations on ¥ x H(I)Cf\,), and this in a simple exercise.

Now, we wish to show that (6.1) has an equivalent operator formulation on

T . Because

Bl £ W (Muv_ “%“(} # iU v

s

way § ) 4 -l j WEE 2y v A

N

Ciw) v ll

IL)

the linear functional q,q for ue T fixed, is bounded on H(l)(ﬂ.). Then, by the Riesz

representation, there exist t,cH (.TL) such that,
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T,oe T =< t,v0  (ove Hoew)

§o, u ‘;.-h-v:;tu , for u &2, defines a nonlinear operator in . We have T(u*,v) =0 for
any v@IJIO(J;_) if and only if ¥ (u*)=0. If the derivative T' of T is a bilinear
funetienal for any V(—,‘H(l)(Jz.), that is bounded and elliptique, then their representation
is a linear operator, bounded and positive definite, that is T ! By our considerations,
igk} is the Newton's sequence for F () = 0 as well as for (6.1) and (6.3).

In the finish of the work, we remark that the positive definite property in
the solution u® is not restrictive. For example in [4] the hypothese for Frechet
derivative is that it is positive definite onto any compact subsets in H. This condition
implies the positivity in the solution u*.

We remark that for a similar problem as in [% ], we need no supplementary

smoothing properties for the solution u* and for Newton's sequence as in C2(0,1)-
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