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JORDAN STRUCTURES WI'TH APPLICATIONS. IIX
JORDAN ALGEBRAS IN DIFTFERENTIAL GROMETRY.
Radu IORDANESCU .

This paper gives the description of almost all important
symmetric spaces (Riemannian, Hermitian, etc.) in terms of Jordsan
algebras, and illustrates the relations of Jordan algebras to

Vagner spaces, Minkowski space, and quasi-symmetric domains.

§ 1. Formally real Jordan algebras and compact

. symmetric Riemannian spaces of rank one.

Let 4 be a formally real Jordan algebra of dimension n.
Theorem 3.4. of BRAUN and KOECHER's book / 24, Chapter X1/
implies that A has a unit element, which we shall denote by e.

In this case, by Proposition 1.6 from JSAI , we have

Idempltﬂ) = {c } ¢ elaemp (A), ¢ primitive } 5

Definition. A system of idempotents ©cy o , O ch

is called a complete orthogonal system of idempotents of
8

1=l

X

Proposition 1.1. A formally real Jordan algebra contains

a complete orthogonal system of primitive idempotents.
TILLIER [/ (96a_/ @gave a geometric characterization of

‘primitive idempotents in a formally real Jordan algebre, namely:
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every primitive idempotent belongs to. an extremal ray of the
domain of positivity of the algebra, and, conversely, such a ray
always contains a primitive idempotent.,

Proposition 1.2, All complete orthogonal systems of

primitive ildempotents of a formally real Jordan algebra have
the same number of elements,.

Definition, The number of elements of a complete orthogonal

system of primitive idempotents of a formally real Jordan-
alg@braiﬁ is called the ggggggmggiﬂ o

We shall now recall some of the results established by
HIRZEBRUCH / 32 b 7.

Suppose that 04 is simple and denots its degree by s. Then

the form
Mu) s = f% Tr L (u), we ,
is an associative (i.e:/x(x(yz)) :/u((xy)z) for any X,y,% é~ﬁ‘) li-

near form on:4~ with /M(c) = 1 for every c¢ & Idempy (A ). 4
Remark. Suppose that a formall§ real Jordan algebra is not
simple. Then it is semisimple (therefore it is a sum of simple
ideals), and the associative linear formv/“ with value 4 on.thé
_primitive idempotents is constructed by means on the_forms //&

on the components.

Notation. ¥or every c¢ < Idem%éj?) define S, by

S, t= gx ,'Xé 1/2(0),/M(x2) = 2¥°

. Theorem l;3¢~-Lét;A»-bawa-simpia"formally*real'Jordan .

algebra and let . ¢ ¢ Idempl(sg)b For every 4 € Idempl(3$) there
exists a real number t, 0 £ t < ¥/2, and an element x in S, such

that 4 = d(t), wherse

d4(t) = {(cos 2t )e + { % sin 2t )x 4+ % (1 - cos Et)xz,

’
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Conversely, for each such t, d{t) is an element of Idemp, CA}»
The primitive idempotents which are orthogonal to ¢ are exactly
thoss of the form xgmo with x & 8. FOT:XQ;SG 3 xg‘: c + 4 if
and only 1f Xé%jafz ‘ﬂi/2(6)°

COTGl!Efy « A& Tormally real Jordan algebra is simple if and

B AN e 0 O LS

only if the set of its primitive idempotents is connected,

- Theorem l.4, Let 34 be a simple formally real Jordan slgebrs

and let ¢ be an element of Idempl (34)0 For x,y Q.SG there exists
& product of Peirce reflections with respect to idempotents of
Idenp, (A—) that fixes ¢ and maps x to y o

The proofs for Theorems 1.3 and 1.4 ére,based on three

other results concerning Iﬁ@mpl (jq) - which are too\involved to

be reported here ~ ostablished by HIRZEBRUCH in /  82.b,pp.342-3437
Theorem 1,5, Let j% be a simple formally real Jordan alge-

bra and let cl,ca,dl,dgeg Idempl (j@) such that /A((clcz):/ﬁ(dldgl‘

Then there exists a product of Peirce reflections with respsct to

idempotents of Ide@pl(~4) which maps ¢y to d, and ¢, to dne
The proof follows from Theorems 1.3 and l.4,

e )

Consider now on.;% the symmetrlc bilinear form /ﬂ 2
1/?

(xy) and the Juclidean metric ?E(X,Y)-:z £/4(x~y) ))
it determines. '
Remarko The automorphisms of - 7? aTe isometries of the me~

tric space (Idempl (ﬁf); YE .

Definition. & metric spece (Mggf)ﬁis,calledWtwo«pointvhgmcw;

geneousg if there exists an isometry L of 11 such that ¢ (Cl}: &l e
and F(cz)zd2 for any ¢4,¢5,dy,d,¢ M with y(cl{cz) = g(dl,dz)g

Corollary of Theorem 1.5. If f} is a .simple formally real

Jordan algebra, then (Idempl(f}),< fi) is a connected, compact

and two~point homogeneous metric space.
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Theorem 1.6, Let:ﬁ‘ ve @ simple formally real Jordan alm

gebra and let T Dbe a one-to-~one map of Idempl(;ﬁ) onto itself
such that A (T(c), T(a)) = (c,a) for all ¢,d & 1aemp, (F )
Then T can be extended to an sutomorphism of g e

Sketch of the proofe IL Cqy eoey Gy is & complete orthogo-

nal system of idempotents from Idempy (f), then T(cl),ouazT(cr)

is also such a system. ¥or every X éf}we»h&va X = ; X 1
=1 A

it

where ¢, are pairwise orthogonel jdempotents., T(x) is defined Dby

!

T(x) = T O(.l‘l?(ci)o

=l

The set Idempl(J}) is a subset of the sphere {x \ X é.ﬂ‘,

1 E because, for every ¢ €& Idempl@fb we have

—
b‘l
il

i

/M.(c) = 1 . ilaking use of Proposition Hek. and Theorem

2.10 from [ ## , Chapter IL7, it follows that Idemp,(f) is a

submanifold of the sphere {x \x éj¥, /ﬁ\(xg) =il g gnd also a
topological subspace of 1%, |

ggggggggg Consider the Riemannian structure induced on
Idempy (J}) by /Lt(xy)u The Riemannian manifold thus.obtained
will be denoted by (ldempy (ﬁ‘), R)o _ |

Remark 1. The automorphisns of J@ are isometries of the
Riemannianvmanifold (Idempl(j}), R).

Rematk 2. (Idémpl(:A), R) is & cémpact”symmetric Bieménnian
space. iy JE . .MV,_W,M,N_M;W_W_”MW“wW e
Notation, The Riemannian distance between two elements ¢

and 4 of (Idempl(ﬂ), R) will be denoted by ?R(c,d)o
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since the relations

< 7? 4 3 e 1
b 4 KR(C:;&) g /\’E’ and ?E(Osuo«) s \? sin (mv;g g}i(ﬁfd))

hold, it follows that Yﬁ(clsga) = Tjﬁ(@lfdg) is equivalent to

Remark. Consequently, (I@@ﬂpl(j4)$ R) is a two-point homo-
geneous symmetric Riemannian space and hence (see HELGASON L3
p.355 7 ) of rank one,

Let ¢ be an element of Idempl(.}}”)e Clearly, ?R(c,d)g
d ¢ I&empl(JG), is maximal only when YE(c,d) is maximal. Becauss

M (e) =/\(d): 1, we have ¢ .(c,d) = 2 \]1 -~ pmled), which is
maximal only when'/*(cd) = 0, i.6., when ¢d = O.

Notation., For every ¢ & ld@mpl(f¥) we define
A s:{d { d € (Ideazn;isl(abr)2 R}, cd = O}e

Remark l. By Theorem 1.3 we have Ac & )xzmc 1 p G = 3GR o :

Y A P 4T

Remark 2. Ay 1s a submanlfold of (Idempl(lﬁ), R) and is

called the antipodal manifold of c.

Notation. Fofény simple formally real Jorden algebra 94
of dimension n > 1 there exists a natural number q(JQ)  such
that, for every pair of orthogonal primitive idempotents 019096343
the relation dim (ﬂ‘lfz(cl) i j}l/z(cz)) = Q (j}) holds.If 8 = s(ﬁ
denotes the degree of A, then ;# 1is sald to be of type (s,q{JQ)L

P

Remark., If ]@i and ﬁ‘a are simple formally real Jordan al-

gobras with s(yf}"‘l'} =8 ('34—2») and —Q('74'i}—~.:: q(f}a»-)-", -then (7‘91 and 7 5
are isomorphiC,. _

comments. It would be interesting to extehd HIRZEBRUCH's
I"ésults £ 320, pp.350-~351 7 on Betti numbers of Idempl(:ﬁ), criti-
gal points of differentiable functions on Idempl(ig), etc., to

other kinds of Jordan algebras.
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.Using the well-known classification of compact symmetric
Riemannian spaces of rank one, HIRZEBRUCH /- 82b7 proved that
sach of these spaces can be described 1in terms of a suitable
formally real Jordan algsbra, namslys

a) Type (1,0} jayx #®, and l‘desmpl(ﬂr) consists of polnt alous

b) Type (2,q)s qzLl. Let V' Dbe a {(q4l )= alm@ﬁnional veetor
space over [R and let ¢ be & positive definite bilinear form on
V', Define on V : = (Re @ V' .a bilinear product by uvs=
¢= G {u,v)e for u,v&V', e being the unit element. It is immediate
that V endowed with this product is a Jordan algebra J(g) (as in
Theorem 1.8 from JSATI). Idempl(v) i{s homeomorphic to the
q-dimensional sphers 59, |

| o) Type (s,1)y s » 3. Let V be the vector space of Symmne
tri¢ (s X s) - matrices over [R. For 4,Be V, let AB~~~*(& L+BQA)
where 4.B denotes the usual matTix product in V. We have //L(A =
= Tr A and Idemp,(V) = { alaev, A=A, Tr A= 1} . It follows
that Idempl(v) is homeomorphic with the resl (a-l)-dimensional
-projective space PSWI(EQ) . For C<gldempl(v) the antipodel mani-
fold 4, is P_o(R).

a) Type (s,2); s3. Let V be the ordinary real vector
space of complex Hermitian (s x§) -matrices.Define the product as
in ¢). Then Idempl(v) is homeomorphic with Ps—l(@)° For
¢ Q-Idcmpl(V), A is P ?(G)

e) Type (s 4), s7 3. Let ¥ be the real vector space of
Hermitien (s ¥ s)—matrices over ﬁ@ Define the prouuot as in ¢
jﬁhen’idempl(v) is homeomc*pnlc to T l\u{). For~ ce;.Idcmpliv)

A, is P o(MH} .

£) Type (3,8). Let V be the real vector space of Hermitian
t 3 X 3)-matrices over G. Define the product &s in c),Then ldempﬁ

is nomecmorphic-with the projective octonioen plane. For

¢ e Idenmp ](V) Ac is ahheightmdimensional sphere.
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Remark. The geodesioﬂ'?bwcugh a point cegldgmpl(ﬂ)s ag
a set of points, are Tarmp Y N ,4(0 X), % & i/E(G)’ Jg(eﬂx) %
being o simple three~dimensional subalgebre ofa? containing ¢ (ses %
HIRZEBRUCH gggzﬁbs'p°348:?}@ For a detailed discussion on geed@ﬁicg‘
in a more general case see NEHIR f“‘42$”;? and § 3 in this paper,

Comments 1, CRAIOVEANU and PUTA / 37/ proved that, under

certain hypotheses, linear continuous operators acting on the space

A? (M) of smooth p~forms of & compact symmetric Riemannian space M

of rank one are functions of the Laplece-Beltrami operator acting
on A?(M). This is @ p-version of some results esteblished by BEN~
ABDALLAH / {3 '/ and LEMOINE / /¢4 7 in the case p=0.In contrest to
the smooth function-space case, the result of Craioveanu and Futa
holds under stronger assumptions. |
Open problem, To reconsider the above mentioned of study Crim

as we// 9 RogoV s vesults L4527
ioveanu and Putavin the Jordan algebra setting.

Comments 2., Taking into sccount, on the one hand, the above

deseription of complex projective space as Idempl(v) (see case
d)) and, on the other, the results of ATITAH-~-PENROSE on the role
of PB(‘) in physical problems (1nvolv1ng Minkowski space) - see,
for 1nstanoe ATIYAH and WARD [ & 7/ and the references threin-
it would be interesting to use the Jordaen structure 0f V for
obtaining new properties for the entities under con"ideration, It
would be &lso us sful to employ the &bove Jordén slgebra descrip-
tion of complex projeétiva spaces (particulafly of PB(QI))in the
_ study of instantons &s given by DRINFELD aend MANIN in /7 4 & [/
who basically regarded the algebraibpapproacha

Comments 3. SAKAMOTO / 460 _/ defined a helical geodesic

‘immersion of order 4 as follows: let Cf s M~»1I' be an isometric
immersion of & eonnected complete Riemannian manifold M'into a
Riemennian manifold u, If, for each geodesic Y° of i, the curve

CREY . in M' has constant curvatures of osculating order & which
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are independent of | , then < is called e helical peodesic

immersion of order d. The above Jordan algebra description of
‘compact symmetric Rlemann spaces of rank one could be ﬁsea in
solving TSUKADA's conjecture [4884/: Ir P is a helical geodesic
minimal immersion of a compact Riemann manifold M into & unit
sphere, then Il is iscme%ric to a compact symmetric space of rank
one &nd q> is equivalent to a standard minimal immersion.

Comments 4, ZILLER / 243/ has classified the homogeneous

Tinstein metrics cn compact symmetric spaces of rank one and has
studied some of their properties.

Open problem. To obtain new properties of the gbove-ment ione

metrics by using the Jordan algebra description of the spaces of

interest.

§ 2, Jordan algebras and symmetric spaces

as .
4 symmetric Riemannisan space, defined/usual,is a Riemannian

manifold such that the‘geodesic symmetry Sx around every point x
is an isometryo Ey writting x.y ¢ = Sx(y), L.oos has obtained a
(nonassooiative) multiplioation on the manifold satisfying certai
algebraic identities, which in turn suffice to characterize
symmetric spaces. In this way, one obtains an elementary “alge-
braic® definition of & symmetric space not involﬁing the
manifold structure of the underlying'topologicai aspace. This defi
nition was Tirst given by L00S /[ foé a’/. .

Definition. & manifold 7%.w1th a dlfi@rentlabla multi

plication MW x WM - 7'%4 " denoted by (;,y) Mf'%”’ xoy an&

having the properties



2, Xo{xoy) w35

3 Xe(?er} - (;v;jo-y) . (Xo‘/ﬁ;),

4, every x hag & neighborhood U such thaet X,y = y implies
v = X for all y in U,

is called a symmetric space .

Note., In Loos'terminology, a manifold is a differentiable
menifold of class C“° which is Hausdorff and paracompact s a
topological space. It may have several connected components,
which may be of different (yet finite) dimensions.

Remerk. Spuces satisfying only (1), (2), and (3) ("relec~
tion spaces") have been studied by LOOS in / 406 b_/ . They turn
out to be fibre bundles over symmetric spaces (see, fpr‘instancé,
NEHER [ 425 7 eand § 3 in this paper).

Definition., Left multiplication by x in VA is denoted by

SY, i.e. Sxy = X,y for all x,y € MA\, and is called symmetry

around X.

Remark. The following properties are immediate:
(i) x is an isolated fixed point of 8, 4

(i1) 8, is an involutive sutomorphism of [/

Eﬁg&ﬂiggzgi. Lie groups. Let L Dbe a Lie group and put
x;y c= xy Yx, where xy denotes the product in L. In particular, a
VGofor*sﬁace becomes & symmetrig spéées with t?e product
Xoy $=2X=Y, -

Y- Sphereé,'L@tv(x,y)~be a'nonsingular‘symmetrie~bilinear””

form an IR" and let M : = {xé‘ BY | (x,x)= o )S where o s 0, be’

the "sphere" with radius ~ Vo< . Define

L

©




3%, Grassmann manifolds, Let K = R, € or (I and let K"

have the usuael Hermitian scalar product (x,y) = g §iyi° Let

: s ke i iy
Me=M{n,K) be the set of all linear subspaces of ‘K - (with the

usual topology), and Eq ¢ = M(q, ng ) the set of subspaces
of dimension qe. We have I ::MO UM”& U e6s VYV Mn. For Ve M let ﬁv
be the reflection in V, i.e., if x = Xy o+ g is the decomposition

L

of & vector with respect to K* =V & V™" , then Sv(x) = X

il
Clearly'sv is an orthogonal transformation of et having V as
fixed point set and is uniquely determined by this property.
Defins

Vo’( 5’5'38 e
7 V(W)

4°, Jordan algebras. The set of invertible elements of g
real or complex Jordan algebra becomes & symmetric space with the

product ¥.y ::P(X)y~lo

50. Homogeneous spaces and spaces of symﬁetric elements,
Let L_ be g connected Lie group with an involutive auto-
morphism ¢ . Let tf be the fixed point set of ¢ and K a sub-
group such that ( ﬁf)o c K c ¥ , Lf~)a being the connected
unit component. Then K is closedo Let M= L/K, and for xéiLa 4

let G (x) be the tramslation Z(x)(yK)= xyK of M. Also put

L_K: = { % G(x)“l) p 4 e-L_} . We call LG; the space of symmetric
eléments of L. M is a symmetric space with the product

. S e ) . ) ; o
XKeyKe: =x0(x) ~0(y)K and L(r is a symmetric spagce with

the product X.ygxxy"lx@~ s o o e e b R

Comments 1, As ATSUYAMA remarked in / 7 7 the two
known models of real projective plane, némely, as the set of all
lines through the origin in 3-dimensional Buclidean space or as

the set of all subalgebras isomorphic to the field of complex
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numbers in the quaternion field, are slightly different.More é
precisely, in the first case the lines appear to have no algebraic%
structure, whereas in’tha latter case, the subalgebras sre |
endowed with a structure that can be used to obtain the symmetric
spaca., Starting from this remark, ATSUYAMA presumed that a model
similar to the latter is suitable for an expliclt construction of
symmetric spaces from various algebras, and in this connection he
raigsed the question of whether symmetric spaces (in the sense ot
the above definition) can be constructed from the set of all sub-
algebras satisfying suitable conditions in s given algebra. in
the paper /  F# _7 referred to above, ATSUYAMA gave an affirma-

tive answer to this question.

Comments 2. KOWALSKI [/ 97« , Chapter II_/ characterized
in the Loos' spirit a wider class of spaces which are
"g.regular affine manifolds®™ in the sense of LEDGER / &6 7 7
(see also LEDGER and OBATA / ~792. 7). Modifying the above
axioms of Loos, Kowalski / ~ 97a _/ defined the so-called
tangentially regular’s-manifolds. Next (sce /= 9726 7)he
gave a new definition of generalized affine-symmetric Spacea. For
some theory that is important for the classification of these
latter spaces see WEGRZYNOWSKI / 2oz /. szﬁ.q_c&m [ A64a ]
extended the Ferus'definition to tﬁe Kowalski's regular S8

nifolds o'

1. Let o ve a gggg Jordan algébra of dimensién n and with
unit elemént Go | _ |
Notation. The set of all invertib e eslements 0f~f% will
be denoted by Inv (#), _
Remark 1, The Vector space A carries a natural topology,

and ths. set Inv | f}) is open in ’9 o



B

Remark e The trace fmrm.}-of~A‘, given by .l(a,b)z =

¢= Tr L{asb) for all a,b @JQ, is an associative form, 1.6, Afa,be)=

P )‘(&b,e) for all a,b,c 6340

Suppose that A is nOP@ﬁﬁ&PB”&t@g Then the (not necessarily
positive definite) line element ds°t= iz, P ﬁwl) )atg2 where
¥ = x{t) 18 & curve in Inv (79)§ ig invariant under the maps
X e WX, W’éfﬂ(JQ), and X —3 x~L., In order to discuss the
induced (pseudo-) Riemannian structure, let C be a component of
Inv (/). Then there exists an f & C such that 2 = e,

Notation. Denote by Invo(JQ) the component of Inv (/) con-
taining e. |

Remark l. C = Invo(.ﬁf) whenever f &C, £° = e.

Remark 2. Since ij is again & Jordan algebra (with uni%
element f"l)9 for the discussion of fﬁe induced (pseudo-) Rie—
mannian structure it suffices to consider Invo(JQ)e

Comments, TILLIER [ 136be7 gave & definition of the con-
nected components of Inv (f}) in the formally real case, and estea-
bliwh&d relations between their groups of transveotlons and the
group generated by the quadratic representatlon of J?

Theorem 2.1 (KOECHER /[ 93¢ /) Let /1 be a real Jordan

algebra such that its trace form is nondegenerate. “hen Inv (J§
is a homogeneous symmetric space.

The proof follows from Theorem 2. 4 in [ 24 , Chapber iz

Theorem 2,2 (KOECHER [ g3 b7). If A is a fomally rea

Jordan algebra, then Ihﬁ&kajmis“é>éymmétric Riemannian space and
a) at the point e the geodesic symmetry is the inversion
X X”l; and the ekponential map is eXpg (x) = eXp X '

b) the .coefficients [ k of the affine connection

coincide with the structure constents of the Jordan algebra 7%
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Comments. Taking into account b) from Theorem 2,2, it-
would be interesting to reconsider in an algebraic setiting soms
of the results obtained by VRANCEBAWU /™ 498 e 7 and FaVA [ 53 J.

Open problem., To define a metric of Finsler type and to

discuss the induced Finsler structure, analogowsly to the
(pseudo~) Riemannian metric defined by Koecher, on a real Jordan
algebra.

Comments, The Finsler metrics for the interior of a simple
connected domain defined and studied by BARBILIAN /= -7-7 b’/ and
BARBILIAN and RADU / /2. / may be of related interest here.

Let as mention in this respect that a strong school on
Finsler spaces has developed in Romania, For detalled information |
on Romanian research in this field the reader is referred to the
Proceedings of the National Seminars on Finsler Spaces, held
. each two years st the University of Bragov with the beginning
in 1980. The first Romanian~Japan Seminar on Finsler spaces held
at the University of Iassy in 1986, A good account of the most
importent Romanian contributions in the fleld is given also by
MATSUMOTO [~ 114 7, |

Open problem, To identify the kind of Finsler spaces that

can be descibed in terms of Jordan algebras, and to reconsider,
in an algebraic setting, some of the geometrical propefties'cf
these Tinsler spaces.,

Remark. As was already noticed by MIﬁON‘L’AM%5;7, the
~-open~problems netioned abovs-ar@finteresting,fbut difficult to
solve because.the notion of symmetric Finsler spéce has not yet
been properly defined.
| We shall give now HELWIG's construction / 20c¢_/, whiech
embraces many other earlier descriptions of symmetric spaces

using Jordan algebras and triple systens (see, for example, BRAUN



and KOECHER [ 24 7, HIRZEBRUCH /™ R2 ape /, KOECHER /™ 93 a /Ll

Notatlon. The mutation of 4 with regpect to qml,
.qQ € Inw {uéﬁ# will be denoted by ;4q@

Remark 1. The product of two elements a,b e ﬂﬁ is given
by aLlb=a (bg™) b (ag"}) = (ap)ql, |

Remark 2. Propositions 1.3 and 1.4 from 54 1, \ow\j
that the mutation ;49\18 a Jordan algebra with unit element q,
and that the quadratic representation Pq of JQQ is given by
?q(a) = Pla) PY%J Fep jﬁa

3. One can also ses that Inv { A%) = Inv () ana

Remark 3.
A= Th.
Remark 4. The set Inv (#) with the multiplicabion
QoD ¢ = 'I-‘J(q)p""l becomes a symmetric space in the sense of the
above definition (see LOOS /106c,pp.64 and 687 ),
NOT“ilOQ, Denote by V the F-module of all vector fields
of class C“® on Invo(jg), where ¥ is the ring of the real in-
Tinitely differentisble functions on Invohﬂ) o »
| The F-module V will be identified in what ‘follows with
the module of all maps of class C*X from Inv_(#) todh,
# 4 —> X,. The module V cen be endowsd, in a natural manner, _
with a Jordan structure viA) , namely: for all X, Y& V one defi-
nes a product Xe Y€V such that for all qunV (A ), (xw}q
is the product of X, by ¥, in the mutation A% or A witn r@%pec+
to q
anﬂrk 3°nlnce (jqp}q'for alL”pQQGjInV6(J¢7;Mit follows .
that V(AP). = v(A). | |
Remark 2, For the trace form )‘q on ng, qeginvo(Jy); we

have :lq(a,b) = ).(a,PT%l)b) for g1l a,b & 7%-



Definition, 4 billnear form g on V Lﬂ) is defined by
%) X |
glE,T)ge= X (X,7 ),
Remark. It is obvious that g is an associative form on

the Jordan algebra V ﬂ'o

Definition. For every W of r; ﬁ- r;(ﬂd denoting the

connected couwponent of the identity in {~( ),-and every £ of V,

one defines Kﬁ &V by (Xw) ¢ = W(X }s
a Wy

Remarﬁeane can eaaiiy see that K XJ is an automoir.
phism of the Jordan algebra V (#), : |
Notations. Denote by D that affine connection of Inv (4 )
for which DXY = 0 for all constant vector f;alds X and Y on
Invo(ﬁd . Another affine connection of Invo(ﬂ~) can be defined
by V4 ¥ : =D, ¥ - X oY, |
| Remark, Since all 6]8W8nkS-W<EIﬁV (ﬁﬁ are affine with
”@Spect to D and X mw;»x“ is an sutomorphism of V it follows that
W is also affine with respect to V ,

Proposition 2,3. a) For every X £V, T7X is an R—deriva-

tion of the Jordan algebra V (# ).
b) / is torsion-free and g is parallel with respect
toVs

¢) for any X, Y €V, we have

[VJ{’ V‘}’] p, B [X3Y1 :EL(X’), L(X.ﬂ
where L 1s the regular representation of v and [. ,_] 1is

4

defined as usualy e SRS SNSRI - . RN A 305 .
a) Ihvo(ﬁ") is totally geodesic. The exponential map
with respect to </ coincides, at every point q of Invo(j}),‘with

the exponential map exp_  of the algebra A9

q

~e) for every X € V and QQInvo(ﬁ?.let f]t)z: equ(t KQL

téR . Then, for every Y of V;
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( viﬂ{)q = 1lim 1‘% (I}L( \f(""“ %’))X‘—T(.ﬁ) o YO)O

T == 0 4

The proof is a strsightforward calculation (see L 20 ¢,

T ]

Ppo.322-323 7 ). .

4 : ‘ . : o
1 . Suppose now that# is endowed with an involution (]

(i.en. Jé.&m‘: (4, Jg = Id),

Notations., Write Inv ;4 J) J‘a J a & Inv f}' ¥, J }

and denote by Inv_ ﬁ" J) the component of Inv (A, J ) containing e
| %, \Tﬁ' t =
For every q of Inv (&, J) define Jq‘ Pla) ]

omark 1. We he - 7p(gt )= TpTd j
Remark 1. We have Jq._al’(q )‘fal‘(q) , and J g 18 em
invelutive map,Since Uq“l) = g, it follows that Jq is an automor-
phism of aArq',
Remark 2. If we write r(.ﬁ, J)s = %W
q
then | ( { 4 Jq) = (4 i
Remark 3, For every g of Inv (ﬁ, J ), we have Inv( Jﬁfq, J Je=

g
= Inv(flr; J ), and Invo( ﬁq, Jq) coincides with the component of

ve*er vf’*a ?~J)z

Inv (3[3' ,‘J) containing q.

Convantibn. The module of vechor fields of cless ¢ “° on

Inv{ ﬁ, 'J) will be denoted by V J ana will be identified with the

module of all C “° - maps X from Invo(ﬁ, J) to A with X eT, ,

q& Inv f} J, where T  is the (-1)-eigenspace of the involution

Jq of ﬁ . For X YEVUS, _Z;o ¥ wjll be dmm@d as s:above _(,S@_ on

page 45) XoY gé‘ VU , since (}m‘f)q is an element of the (+1) -
eigenspace of (] |
‘ J
Notation. For X,¥,Z of V , write L(X,Y)Z:= X ° (Y ©Z) -

d
-~ Y © (XeZ), which is an element of V .
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"For the connection VU induced by <7 on Inv { 4 v J)
we have '

d o, i
Proposition 2.4, a) \/ is torsionfree and the bilinear

. ' d
form gzj induced by g on VE] is parallel with respect to AV 4

b) for all q_elﬂﬂ'(.ﬁ, J), the restriction of oxP, 1o

. Tq coincides with the exponential map corrcaponaing to <7‘7

at qs
| . J d,
¢) the curvature R corresponding to \J ~is given by
(X,%,2) - L(X,Y)Z.

The proof is immediat from Proposition 2.3.

179, Consider now the case when %; is central simple and
U % Ide

Notstion. Let J4+, TeSPe 34- , denote the eigenspace of {7

corresponding to the eigenvalus (+1), resp. (~1). Let the degree
of # be denoted by s, let n denote the dimension of A, ana

let ¢ be given by the relatliocn:

93]

{2.1) n =8+ 3 (s-1)d,

Theorem 2.5, Inv J 'J is a pseudo-Finsteinian space

(i,e. the Ricci tensor has the form 9@;3, v being a scalar).
ore precisely,

a) if ;9* is aslso central simple, then

| s ol m
- \)3'{1“(‘?" """""2""); g
where ms: = dhnﬁ~ and O(QM 1+ (s=2) % $

B) if_f}+ is not central simple, then .

a s
d )

S
V= ooy (-3 -



2, Let A be a central simple Jordan algebra of degres

8 >3 over a field of characteristic zero., Suppose that A is

endowed with an involution d such that ] # Id,

Notatlon and definitions. Denote by n the dimension of Ay
&y
by r the degree of A%, and let d be grveu (2.1). 4n idempotent .

of an algebra is called absolutely primitive if it is primitive

in any ground field extension of that algebra. 4n R-module /G S
being a ring, is called faithful if anmnWe={x | x € R, xm=0 for
all m é"W@} vanishes. Put Der (4,7) := % Dl D & Der(A), DZ]:I]Dt},
where Der(A) denotes the Lie algebra of all derivations of A o

fheorem 2.6, If A is reduced (i.e. contains a complete or-

thogonal system of absolutely primitive idempotents) and if A is
anisotropio with respect to the trace form of A, then A 1is a '
faithful and simple Der (A,J) - module except in the following
cases:

(1) A is central simple, d = 2, and r = s = &4,

i

(2) A 1is not central simple, d = 1, and s = 4,

The proof of Theorem 2.6 given by HELWIG / 30 ¢, pp. 347
34877 1s based on results reported elsewhere /” 30 a7 and

[ 3017,

e Let(ﬁ be a seml%tmple real Jordan algebra endowed w1th an

involution ] , and 1et J # Id. Denote again by A the trace form
N SR St RS o

- - % . % o
Remark. For every W of | (#), W coineides with the adjoint

of W with respect_to)\°
Notation. Write

(Bt Ajla,0) 1= Ala, J(6)).



m 19 ~

Then j‘ﬂ is & symmetric, nondegenerate bilinear form on f%a

Theorem 2.7, 1f f? ls central simple of degree s 3 3, one

(and only one) of the two forms X and )ﬂjlﬁ poSs ve definite,
and nelither condition (1) nor condition (2) of Theorem 2.6 haldsg
then Iﬁv ﬁ' Z] 1s an irreducible symmetric Rlemanmlﬂﬂ space,
The component r‘ ﬁ‘J of fﬁ ﬁ'J 1s a simple Lie group except
whon} ls simple, d = 2, and /\U’>Oﬁ

The proof follows from Theorem 2,6,

Remark ., 1r A is simple, but ‘ﬁ§ 1s not, then J is the
Peirce reflection with respect to an idempotent ¢ # e, whose

length will be denoted by %t

Theorem 2,8, Ifg§ 1s formally real, then, under the hypothe-

sis of Theorem 2.7, the symmetric Riemsnnian space Inv0(3£:]} is =& %
symmetric Hermitian space if and only if the following five condiw g
tions holds: | |
(L] ,A; is not simple
(1I1) }}+ is simple, T = s, 4 = 4 j
(IIT) -, is simple, s = 2r, 4 =14
(
(H

o

i

\b}
o0

i

Iv) _#4_18 not simple, d = 1, t = 2y 8 2»5 §
t

H

H) :4+ is not simpie, d

Sketech of the proof. Theorenm 2.7, together with Theorems
1.1 and 6.1 from [/~ 77 "/ and Theorems 7,8 and 9 from /“36>bwfﬁ

give the proof of the theoren, . o i

Bomark, In the case (H), v, (A, ) 1 a model of the |
upper half-plane. The other cases ére'denotad by (I) - (IV) so as
.to suggest Sieéel’s notgtion for the four main classes of

bounded symmetric domains.

1) The vprimitive degree (the maximal number of idempotents in a
complete ortnogonal system which the algebra can pogsess) of
the l~-Peirce-~component of ¢ is called the lengbh of ¢,
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4, Notation, In the real vector space J¢' we define a new
product Of any two elements a,b és&, denote it by a # b,

as Tollows

a*w

2{a % Db) := absa{ J(b)) +« v( J(a)) - Jflab),
and the real algebra defined by means of * in the vector space A
will be denoted by ¢43 .

Remark. If # is a Jordan algebra, then the algebra af]
1s also a Jordan algebra, ] € aut (JQJ )y (943)3 rzﬁ , and AJ is
the trace form off%Jo

By Theorem 5.2 due to HELWIG / 20 a7/, a real sani-
simple Jordan algebra #4 has an involution J such that ACIiS DO~
sitive definite (i.e. the Jordan algabrae#a is formsglly real).
Suppose that J s& Id and that 7 is not formally real, If o is
simple, then it belongs to one of the following classes (see
again /[ 80 a/)

Ao # is not reduced. Then 34+ is simple and 2r = s,
where r and s are the degrees of J4+ and j%, respectively,

B 74 is reduced and 7¢¢ is simple, Then r = 5 and svery
primitive idempotent of 7?+ is absolutely primitive in 340

Co Z] 1s the Peirce reflection with respesct to an idempom
tent ¢ #£ e, |

Theorem 2,9, The cut locus of a point peglnva(ﬁ,(]) CON

slsts of all points qe}lnvo(ﬁgz])P for which p+q is not invertible.
Note. for the défihitions of cut point and cut locus seae,
.fofrinstsnce, KGBAYESHI‘and“NOHIZﬁ'énfgz,", VOl;II; Pp.96-100_ /¢ .
Remark 1..The (Fiemannian) antipodal set Ap of a point
pélnvo(ﬁ,J),liee? the set 4 of all points of J:nv‘o(ﬂ,(]) at maxi-
mai Riemannian distance from p, is contained in the cut locus of Do

‘Remark 2, Inv0(74,J) has rank one only when Ap coincides

with the cut locus of p.
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Theoren 2.10 Bvery maximal torus of InvOLAQJ} through p
contains exactly ong antipodal point or De

Notation., Denote by K, the biggest connect ad sﬁbgroup of X,
as determined in Cartan's conjugacy theorem for maximel compact
subgroups (see HELGASON /[~ 37 PPe214~218 7},

Theorem 2,10 has two lmportant corollariess

Corollary 1, KO is transitive on A@o

Corollary 2, Distinct points of Invot%,J) have distinct ane

tipodal sets,
Hotation. Denote by Fix J the set of all elements of
Inv_ (4, J) which are invariant with respect to (J ,

Convention, In the following theorem the length of an idem-~

potent ¢ is denoted by /((o), c= 0

fande

LS5 regarded as sn idempotent
of length zero, and ¢ denotes the rank of Invo(ﬁ,:]) (see HELWIG
£ 30 ¢, p.3297) :

Theorem 2,11, K is transitive on sach component of Fix
20 I

and Ac 1s a component of EIK'J ilore specifically,

TF ji is not reduced, then Inv (4 +J) is connected and
A { e } | .

(Bl) If :ﬂ; is reduced, .A l1s simple and s even, then Fix o
consists of the elements of the form 2 C~g, where é is an arbitrary
idemnoteqt Ofy4 with ,{ evens ﬁ@ﬁi { - @ 3, and Inv A‘ J) has
exactly two components, The distinct Pompon@nts.of Inv A J Lo
tRolde. with Tnv, (7,7 ,), £ 1= 20-e, : f%@,_c,}M{L,@?@lﬁrﬁdﬁz 1dempo-
tent of}} with {(c) odd, |

(B5) It ﬁ‘ls reduced, 74 is simple, and s odd then Fix u
consists of the elements of the form 2 c-e, where c iq an arblu

trary idempotent of .74 with 'g(c) odd § Inv’ JQJ ) has two distinet

components, namely, Inv ﬁ;] and mInv ﬁ J and A ¢onsists of
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the elements of the form 2¢-s, where ¢ is an arbitrary primitive

idempotent of J¥+a

(¢) Ir J is the Peirce reflection with respect to an
idempotent ¢ of length g £ [e/2], then Inv &AQJ) has exactly
s+1 componentsy Ay congists of the elements of the form 2 d-s,
ehere 4 is an arbitrary idempotent of ,Ab(c3 wlith 4((6) = g o= 20
The elements of Fix (] are exactly those of the form 2{e' + ¢')~¢
where c¢* and c', are idempotents of :ﬁl(c) and ;Ab(c)Jrespectivelys
with /€(c") =8 ~ 294 Lier),

Definitions., Let p be & point of Inv (%, J), let

Y:t —> Y(t), t€R, be a geodesic of Invo(ﬁ,J) with

i) = p and let i”(o) be of length 1. If there exists an f€>>0
such that Y(t+4) = Y(t) for all te®, then %" is called closed.
If, in sadition, J(t) o Y (s) for all t,s with 0<¢t¢s €€ ,

then XK is called simple clossed, { is called the length of )f'sand

A
B { j/a) ig called the midpoint of Xb. The midpoint locus Af

e ey p

of p is the set of midpoints of all simple closed geodesics with

minimal lengtho,

Theorem 2,12, a) The midpoint locus A; coincides with the
set of all cut points of p with minimal distance from p. For
every maximal torus T of Invo(jtJ) with p e T, the sét A ggp
contains exactly ¢ points. ' |

b) KV J(Ko) is transitive on the set of all simple closed
geodesics'of minimalxlength and starting from pj Ko ig transi-
tive on Ay, T T T
¢) Any two distinet points of Inv_(#,J) nave aistinet mid-
-~ point locus if and only ifg'ﬁé 2 or s # 4, In the case § = 2 and
s = 4, the antipodal (-p) of p is the unique point # p whose mid-

point locus coincides with that of p.

Proposition 2913° g ﬁ'has degree 2 then Invo(lﬁ,v) is a

Fuclidsan sphere.



Proposition 2,14, If the antipodal set A ‘of e 1ls at l&ast

one dimensional, then Inv ﬁ 3 Lﬁ simply connected if ang only

if A@ if;‘i-o'

Theorem 2,15, If Jfis central simple, s » 3, and neither cone

dition in Theorem 2,6 holds, then Invﬁ(ﬂ;j) 1s symmetric Herumitian
if and only if one of the following cases holds
j¥is not simple, d@ = 24
(11) F1s reduced, K, 1o sinple, 4 = 4 |

(IIIJ;Ais central, but not reduced, and 4 = 1,

Wotation, Denote by n the dimension of # and let s™1 4

the set of all g E:# with (g,9) = n, where T
M J

. Nty . . > o
ouppose thet 1s endowed with the Riemennian structure

given by 4 . Then Invo(ﬁ,J) is a Riemannian submanifold of Sn”

. : , _ PR s B )
Ldentify the tangent space Té of S l_at point q with the space of

A

all & € 4 for which 4 (q,8) = 0. Then the nomal space T " of

“

Invc(ﬁ',J ) at g é-InvO(ﬁyJ) consists of all elements of Té which

are Invariant with respect to

~ O

Notation. For all qéiInv ﬁ 3 denocte by \2 the normal of

the mean curvature, sand by N the mean curvaturs normal (for defi-

nlblOnu, see KOBAYAS HI and NOWIZU /[~ 92 vol,II, pp.33m34;7;

Theorem 2,16, a) If‘;ﬁl s simple, theny =

b) If J is the Peirce reflection with respect to an 1idem—

potent ¢ of  with lengbh t, then

T % 1] 8“4 &t 1
"quz [(“2' s g)Q'i.C“'E @] , thre m = (3111'1194 and X .‘.’3»'"'“‘51’3 (‘:.,” =~ B )e

¢ Inv A’J is a tonﬁlLy geodeuic cubspace of qn 'y if and
dnly ir J}has degree 2,
Remark. Theorem 2.16 gives a conplete answer for the cuoa

when Inv (4, J is a minimal submanﬂfold or i1,
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Rg

- 4%, Let f% be gimple, baﬁmnot central, and let )

4 2
rmally

As a complex algebra, ;A‘js the complexification of the fo

real Jordan algebra 7% &J is the Corresponding conjugation,

and
A= h,.

ﬁgpatleng Let A? be the space of all béj4 with A (b) = 0

In what follows, we will write A- instead of iA’

Every element g ofJf has the form dwj(0< Cit oo +¢x“c )3

dﬁ £ R, where Cis cony Cu is a compleﬁa orthogonal system of priu

nitive idempotents of;4 and azéﬁ-

and only if o{ij:

Notation. Let M be given by M 5= exp3¢@
Remark. The totally geodesic
pact and of rank r-l., 4s g totally

with respect to all Jq’ q & M. This dmplies that M depends only

on the set of mutations ;ﬁ5 Jq s Q€ M.

'S

Theorem 2

.17, M is simply conn@ctedq

S Now we give HELWIG's classification (
pPp.343-349 7)),

Convention. R, €, or H will be denoted by @
For r » 2, let M,(r)*

(]

be the real Jordan aléebra of all.

(r : r)-—matrices with elements from P, The Jordan product xy of

X7 € h%(l“) is then given by xy =

PO -

(x.y 4+ ya%), whers X.y is’
the matrix product,

Remark, The alemeénts of m%(zyﬁ act on the left on w* (con-

sidered as right vector space over 7).
Notation. Let ¢ be & nondegenerate (and a non negative

definite) Hermitian form on F*, and let H(F", 0) be the Jordan

algebra of all Hermitian matrices of m 0

& |

subspace M of Inv Lﬁ’J is com-

geodesic subs space, M is invariani

i
%
]
|

i
i
{
|

§
{
H

see HELWIG [ 30 ¢,
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Remark, The set I, of all idempotents of H(®W , ¢") with

lengﬁhf¢oincid@s with the set { c\ ce H OFT,G‘), e ¢ :’t} e

TR TR AT

‘--r ¢ 2, & =i Y $ j:” 1
Notation, For fixed %Qf[g , denote by Gt(ﬁag 0"} the set of

. oL

all t-dimensional subspaces of I~ on which the restriction of ¢

is nondegenerate. For all o eﬂit, let VQ be the t-dimensional

T“gX‘ " Y e 3
subspace of E™ of 8ll v € X with ov = v.

3
,5(11'

pletely determined by Vc’ Conversely, if Ve Gt(ﬁr,ﬁ‘),_then the

Remark. The subspace V, belongs to G

element ¢ of mr(m)* which 1s identity on V and zero on V'L (the
orthogonal complement of V with respect to o), is an element of
L {(for the definition of I, see the above remark ). The identi-
fication of I, and Gy ( WT, 0" ) which follows from the above
considerations is compatible with the symmetric structures given
and G v -

on I rr, a).

t( ,
Two special cases are considered :

t

a) ¢ is the usual form (v,w) —> v'w. In this case

Gt(ﬁr) ¢z Gt(ﬁr,<f) is the well-known Grassmann manifold of all

t-dimensional subspaces of wT and H(Wr) t = H(@r,c") is formélly

reals
b) let e, be the unit element of Mr(mr),
Eh 0
f:z-' $
0 “Cr-t

and let o' (v,w) => @ (v,fw).

" /
Remark. The spaoeﬁ%t(wr) of all elements of Gt(m‘ry o ) on

/

which the restriction of ¢ ' is positive definite 1s the non-

compact space associasted with Gt(@r)o

Note. Throughout the remainder of this section, we shall

use HELGASON's notation /= 37 , Chapter I S,

,0°) and ¢ is com-
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Proposition 2,18, All noncompact spaces of type BDI! are

: i T -
contained in the iormgﬁt(ﬁ ), all of type AUl are contained in
3 = el ST = P : . M -
the form M (€"), &nd all of type Cli ere contained in the form
T o w e , c Y " 1 5 ' . .
\ g%ﬁbi)o In p&ftiCQlﬁf,%ﬁﬂﬁ)) gives the bounded symmebtriec domaing:

of Sisgel type j of all complex t X (ret)-matrices z with

i oy &5 r “ . " .
8, 4~ 2'2> 0, and H,(R"), r » 5, gives the bounded symmetric

domain of Siegel type LV of complex dimension r-2,

Let ﬂ~ be a simple formally real Jordan algebra of degree

2, endowed with an.injelution J « Then, for- J # Id, InvOLﬁJ,J P
is & sphere and any sphere can be obteined in this manner, by wmeans

s

of & Peirce reflection.

PTOpoéition 2.19. ALl Grassmann manifolds, as well as'all‘
compact symmetric spaces of rank one, are contsined in thé form
Invo(gﬁg » J ), mwhere 79 is a simple formally real Jordan algebra
and ] is a Peirce reflection of 34 o The noncompact spaces
associated with the above-mentioned spaces have the form Inva(j% o s

Comments. In / 41 a7, BARBILIAN is mainly concerned with

the real Grassmann manifold Gn(@2n+l)

en i . ] .
D+l S0, after establishing a certain group iso-

of all n-dimensional vector
subspaces of R (
morphism, Barbilian uses this isomorphism to give geometrical
criteria for the direct identification on GnURgn+l) of the subsets
corresponding to the algebras with minimal re@r@sentatian in a
given campiete matrix‘ring, as well ag criterie for fiﬁding thé

order of the characteristic equation, and the renks of the centre

and the radical.

Open problem. To reconsider in the Jordan algebra setting

s s
‘BARBILIAN's results / 44 a_/ concerning G (R n+ly
Comments, As is well known, the simplices form a natu-

ral class of polyhedra in the (real) projective spaces..GEL'-

FAND and MacPHERSON /= £177 generalized them to polyhedra in



real Grassmenn manifolds. Theses new objects, which are called

Grassmannian simplices, are then studied in terms of their combi-

natorial structure, -<——— Next, they establish a relation

between these objects and harmonic differentisl forms on real ;

Grassmann manifolds. This relaetion Is subsequently used to obtain

results sbout some new diffetgnt% i1 forms (one of which is the
1 5

classicel dilogarithm), HQW&VGr3&S was mentloned iﬁ.[j64g¢§OM?9

it is s8till asn open guestion to relate the forms g e il to the

Grassmannian geometry developed in /- 64 7. As the author g

suggested to MacFherson in 1980, it would be fruitful to meske use |
of the Jordan algebra description for Grassmann manifolds in the

study undertaker in [ 671 7.

Open problem. (Suggested to Gel'fand on the occasion of ;

OAGR Conference, Neptun -~ Romania, 1980.) To study the so called
“double fibrations™ of Gel'fand et al.(see, for instance,/ 597 7

uging the above-mentioned Jordan algebraic description of projec-

Comments 1. Solutions of Yang-Mills eguations were inter-

i
tive spaces and Grassmann manifolds. f
f
)

preted by MANIN /7 402 7 in terms of so-called super-Grass-
mannians and flag superspaces. The ground struétures of these new
geometrical objects are souéalled “superspaces®, In the section
dealing with flag superspaces of classical type and the exotic
Minkowski superspace, Manig defines T[ ~ symmetric Grassmannians
and isctropic Grassmannians (see / 408 , § 10 /). For deteils,
the reader is referred to MANIN' s paper [f 4678 ;?, in which @ §
rmupergcem@try is developéd 1t ﬁou]a be lnt@r stlng bé réébnsi&er ‘
Manin's concepts in a Jordan algebra setting in order to give a
further deveioPmént of Yang-ilills theory in quantum mechanics as

well as in mathematics.
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Comments 2, It would &lso be worth while to use the

Jordan slgebra setting for the results of BEREZIN /- /3¢ 7 on
instantons and Grassmenn manifolds,

Remarik, Another open problem of related interest is that
pointed out to Sato in 1983 and reported in § 8 of IS4 IV,

Question., (CRAIOVEANU [ 3€ 7)., It is possible to sime
plify the difficult.calculation.of the cohomology of Grassmann
manifolds by using the Jordan algebré description given by Pro-
position 2.19 ¢

- The Grassmann manifolds appeared in physics in field theore-
tical models (see, for instance, BEREZIN’{T</86KZ7), as well as in
instanton theory (see, for instence, PERELOMOV / /35 a7/, and
recently, they are mainly involved in KP hierarchy and string
theories (see Section & of JSA.V and Section 7 of JSA,VIII). In
other physical situations, more general objects, which generalize
the Grassmann manifolds, are considered. For example, BERCEANU
and GHEORGHE, using group-theoretical methods, constructed in
[~ “Z6a ] perfect Morse functions (see MORSE ZT /2 4 / ,BERCEANU
s 15 7)on compact manifold of coherent states (see PERELOMOV
[~ /35¢ 7 admiting a K&hlerian C-space structure (see WANG
\£'2cu9:7)9 consiﬁering linear Hamiltonians in the generators
of the group of symmetry. ;

In 1989, BERCEANU and GHEORGHE /76 ¢ 7 restricted
themselves to the coﬁpléx Grassmann manifolds and showed that
'flinear Hamiltoﬁians in‘bifermion;operators 1@&&‘%9 energy func-
tions which'sa%isfy the MorsemBott.in@gualities_gs equalities,

In ref. / /6 = */ BERCEANU and GHEORGHE studied the
motion problem on the complex Grassmann manifold. The equations

of motion are a first order system of differential equations, the



right ‘liend side belng a second degree polynomial, Thege'equatiéns ;
can be pubt in the form of matrix Riccati equations. The solution,
in a given chart, is written eXpiiaitély'for the case of energy
funetion associated to the linear Hemiltonian in bifermion OPET Qe
“tors. The glcbaiixatiom problem of the solution (see SCHNEIDER
£ 763a4/ is aiscussed, noting that the matrix Riccabi equation

is a flow on the Grassmann manifold (see HERMANN & MARTTN L 84 77,
SHAYWMAN [ 470 7). » | f

Open problem. Taking into account, on one hand, of the

relationship between the matrix Riccati equation and the

Grassmann manifolds (see HERMANN and MARTIN /= 84 v
SHAYMAN /- 470 '_:75, BERCEAWU & GHEORGHE /7 /6 ;_ _/);and, on the
other hand, of the Jordan description of Grassmann manifolds (see
HELWIG /[~ 89¢ /) and the relationship between the matriz Riccati
equation and Jordan pairs (see BRAUN / 23« 7, WALCHERS A£99a,477),
give @ unified treatment in Jordan structure temms. ;
WET /7 2 0> _/ used the products of particlelike repre-
sentations of the homogenesous Lorentyz group in order to construct
the degrees of spin angular momentum of a composite system of
protons and nentrons. Ground-state energy levels are calculated
for all the even-even nuclei by using a differentisble manifold
that is spin-graded and gaugeminvariént by -construction., It is-
shown that this manifold is a Grassmann manifold; Hence, it
would be useful to reconsider WET's resuits in & Jordan algebfa'
setting. e e e S B
In order to get quéntitative reédlts in the study of the
controllability of the linear system X = AX + Bu , DRAGER, FOOTE
and MARTIN [ 4 7 _/ defined the geometric object Zk (R,

vhich 1s a generalization of the Grassmannian, called the splitting

R v o,




‘space, by

2_ (RR) .. {( e 6 (R BY) x @nmk(m“) SO = tzaan}_

G

. X , , S TNy .
It 1s essy to see that (%) is g homogeneous space

of Gi;(&ﬁﬂ « This space derives its geometry fr@m‘Gi&tﬁn) in the

sane way that Gk(§ﬁl} derives its geometry from C)(E%n} - Lechnin~

ally v , . o Tiees i
cally, ; (E%n) 15 & reductive homogeneous space of Gib“Rﬁ)e The .
s i

. : n :
special group SL(R ) induces s pseudo~Riemannian structure on

Z; (™) in the same way that () (R"™) induces a Riemannian
sinpisee JF

B2 Ja

structure on GK(

Open problem,To describe in the Jordan -algebra terms the

above-mentioned splitting spaces and to rewrite algebraically the

qualitative geometric conditions for the controllability of the

system X = 4X + Bu given by Drager - Foote -~ Martin in 47 7.
Tt 1s well-known that the controllability of the system

X = AX+ Bu is related to the one — paremeter family of opera-

tors eAt

B. Drager-Foot-ilartin used this to give a proof of the'
¢classical controllability conditions in terms of the differ@ntiﬁl
geometry of certain curves in 1Rn. Then they coﬁsidered
X' Im % 85 a curve in an appropriate Grassmanmian snd
proved that, in local coordinates, Y~ is an integral curve of
the flow induced by a matrix Riccati eguation.

*Qggggggg&‘Solving the abpve~mentioned open problem, use .

the connections between Jordan palrs and the matrix Riccati

o

equation (see B_RAUN[ 23 ¢ 7and WALCHER [ 4994 %) to the
matrix Riccati equation appearing in the bragef~Foete~Martin
approach /= 47 7,

Remark. Let us mention that Grassmannlans are mainly

involved in the theory of circuits. As HELTON /~ 29 , p.307/
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emphééizedy “philosophically from an engineering point of view,
Grassmannians actually are more natural than inputmcutpﬁt
Operators. Indeed, there is a senior level circuits book by
KUH and ROHER /7 99 7 which tekes this point of view.Practical
engineers don't use the Grassmannian et all and pay the price of
heving to change coordinates very often.Many senior circuit books
have a full chapter on these changes of coordinates®,

DABROWSKI and TRAUTMAN / 38 7 studied spinor structures
on projective spaces. The natural spinor connections on these
Spaces may be interpreted as simple gauge configurations, but
they postponed their description to another work., In /- 3 8 7
they restrict themselves to the construction of the spindr Struce—
tures, Their approach is differential geometric and Lie-group
theoretic., It vields an explicit construction of all spaces and
maés occuring in the description of spinor structures on pProjec-—
tive spaces. It can be extended to other homogeneous spaces, such

as the Grassmennians, as well as to pseudo-Riemannian manifolds,

Open problem. To reconsider in the Jordan algebra setting
the asbove-mentioned study of D browski and Trautman (including its
possible extension), .
TALLINI /= /%2 / characterized the Grassmann space related
to & projective space as a partial linear spacs which fulfills

s

/

o

some suitable exioms. MISFELD, TALLINI and ZANELL4 /- 777
defined topological érassmann spaces and showed that every sface
of this kind is isomorphic to the Grassmann space related 0 & . .
tOpdlogical projective space, |

NICOLESCU and PRIPOAE [~ 426 7, /7 A443% 7 studied some
algebraic structures defined by certain geometrical properties,

Jordan algebras being involved.



g,

Comments, It would alsoc be interesting to reconsider in

terns af Jorden algebres, the geometrical constructions correspon—

ding to operations of the algebra of m-planes in projective
(2 m + 1)-space, given by ROZENFEL'D, KUZNETS SOVA, HANTURINA

L 55 7, as well as the results on line manifolds in

Grassmann manifolds obtained by VASHKAS and NAVITSKTS Lo AGs

Worthy of re-assessing in terms of Jordan algebras are also the

esults due to TELEMAN /[~ 784« 77, HSIANG and S7CZARBA L85 4,

HANGAW /[~ 74 a,b.7, and ISIIHARA L 95 7, 8s well as the
results on Grassmam}ians or rank one symmetric Rismannian spaces

contained in the paper collected in Bibliogmphy.

Now, let A ve s simple formally real Jordan algebra

endowed wilth an involution J 5 :[ = 14, for which ,,4+ is simpls,

4y . o g \
Remark, Invo(/}(],lj ) a@»l((:ﬂ ) , and, therefore, InvOg‘A?J )=

(Et

= Hl
Notation. For r » 2, let Jr'b@ given by

Denote by s-the degree of /} and assume that 8 2 3
C I (3iegel type 1XL). If A=H(R®), s = 0(2), ri= 5,

and ] x .“"‘”"f“?:jr.}ii 4;15 then Imr,o (ﬁ?J ) is the space of symmetrioc-

elements of Sp(r, R), and Ix?vo(J\'ag.J ) = Q?(r){@(ﬂo
e e 3)e If A= H(€®), s=z0(2), ri= 5, and J:

= s Yhen Inv 79 J is the space of symmebric e“feuontﬁ

—> %
of §p(r, ¢k Thersfore, Invo(fh_a ) = Sg(r,@)/‘g?(r) and I.nvo(ﬁfa,‘:) i

= Splr)

1
i

'
f

s 4

- Remark. Other open probleuns have been formulated on pages?-4,



/‘j"r’ a{r(r = [s/2] ). If /} = H(¢”) and 'J : x —3x', then

D ILL (Siegel type B ). Identifyfs= H (u®) with the al-

28

gebra of all x ¢ H(C"") with x. J_ = ]

oy :
S o Lot o be given by
X w2 X', Then Ilrxxv()iﬁl gU ) coincides with the space of symmetric

o 3F % :
elements of §0 (2s), and hence with 0 (2s )/'&5(5)0 8. bisvg
Invo( ]3 "@@(23)/%}( )

Finally, let jg be of the form 74 A ® 72 , where Bis a

simple formally reel Jordsan algebra . Let Jba the principal in-

volution of./jr Then Inv JQ,U ) can be ildentified with Invo( j.)?}u
We héve Inv (ﬁ) R x Y, where Y : = exp B,and ‘%F consists of
all elements of \/3 on which the trace form of /3 vanishes, ‘

At 1r B=1(R®), then ¥ is the space of symmetric ele-
ments of §L (2, R)

‘38__10 1f B=H(C®), then Y is the space of symmetric ele~
ments of SL(2,C). .

A It. 1 :% H{ ), then ¥ is the space of symmetric é}.@«»«
. ments of g%j (28). |

If A= 1 ((123) then Y is nonconpact of type & IV..
¥ J

) 6, Let us ple%n‘t suceintly some of the results obtained by
MARTINELLI /- 112. 7, WUARCHIAFAVA [~409 ap7, MARCHTAFAVA and
ROMANI /[~ 440 ap], OPROIU [ /34 a-f7/ and LORDANESCU L 34 e,8,h/
conceruihg quhter’nionic structures in order to show 't;heir connec-—

tion with the above-mentioned Jordan algebra resulits,



- 34 =

ul - A .
Let Ly, (resp.,U_ ) be the homogeneous linear (resp.,
4

unitary) quaternionic group acting on the left in the right qua-

st

» n t i ¥ ‘
ternionic vector space [H~ of dimension n. Denote by :E;¢ &

B [ - .
:={(%)  &——— — - the matrit of a vector g

e YT B A S R ST O T TR TR e

n . . o
of H", and by 4 ¢ = (a: ) an (n yx n)-matrix over H (156,a2eﬂﬁ)&

. i - A .
Then a transformation T of LE {respe, Jf ) 12 glven by
L4

. T — —
(a.@B) f g H] s \r-l s
= I —

where A is an invertible (resp.,unitary) metrix,

Definition., &4 real differentisble manifold Vqﬂ is endowed :

with a (rignt) almost (resp., almost Hermitian) guaternionic
Rolnyel 9 4

structure if its structure group 1s ﬁ%

. q
(resp., U; | .

s

Note, Rgcall that a G-structurs on & real differentiable
m~Gimensionsal manifold Vm 1s defined by a subbundle with structure |

group G of the tangent bundle T(V

m ; |
g B ng), where G 1s a certain

. § 4n
subgroup of the homogeneous linear group Lmo The spaces IR gnd
n A . . Cn :
H" are assumed tobe canonically identified as real vector spaces.

MARTINELLI defined [ /42. 7 a pgeneralized (right) almost

(resp.,almost Hermitian) quaternionic structure on a real differen-

3 '3 Ay = NE
tisble manifold V4n as a structure with structure group Lé (respe,

|
dﬁ)e The latter consists of all transformations T given by

(2.4) T Tl == A b 5

. , J— ) bt
where 4 is an invertible matrix. and be-ﬁimnlgﬁ } (resp.,A is a
unitary matrix and Db = 1),

Remark. An important example of menifolds endowed with an

integrable generalized almcstmquaternionic gstructure is given

by quaternionic projectivé space, This example suggested the

above-mentioned generalization to Martinelli,
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!

MARCHIAFAVA proved, /[~ 409 a7, that in case the structure

]
l
f

(2.4) is inte egrable the coordinat transformaetions are of qQUET e T

nionic projective type {i.e, lincar fractionsl maps ), OPROIU

has studied, [/ 134 byc/, the same problem in terms of the
general theory of G-structurss (see glso CHEORGHEIEV ang OPWOTU
{ G2 [), He proved that the integrability is equivalent %o

Quaternionic projective (G~projé ctive) flatness,

Definitions. Two vectors from H™ are callsd gquivalent
if they differ by a factor A s A TH — {O})o An equivaelence class
_— 2 ; . . b i . .
of vectors from H is called a direction in H'. The lmage 1in

mqn of a direction from HY by cenonical identification 1s called

8 quaternionic characteristic facet (QoCafs)o

Proposition 2,20, 4 generalized almost quaternionic struce

ture determines, for every point of the manifold V@n on which it

is defined; a system of 4eCofe in the tangent space of V. at

4n
that point,

Proposition 2.21. 4 gensralized almost-Hermitian quater-

nionic structure debfermines on the manifold Vy, O which it is ;

defined a Hermitian quaternionic netric, ‘ ;
TORDANESCU £ 34 67 considered the qu uaternionie Grassmann.

manifold G}UHp+q} of all p-dimensional right vector subspaces

oflﬁp+q, sndowed with Pontryagin coordinates. (see “ONTWEAGIN-

/” AL 2 7} and proved that its structure gfoup G consists of &1l

-

transformstion T given by ' |

{245) .hnv“Iﬁ~-3»»‘ﬁ:3m~~aa%$ {a & 1o )“'Ti:j (B & 14 )y
(- q Gl P

where 4 and B are invertible quaternionic matrices of ordar Ds

: =il
resp. q, Id and ldp are the unit matrices and b is a

coloun veotor.



Definition, Let Vipq Pe & C “=  paracompact Tesl manifola

of dimension 4pq (p,q - 1, integers). If, with respect to g

sultable open covering, there exist systems of admissible quater-

nioniec coordinates trasnsforming each into another, in common

20

domains, by transformations of the group §, thén Vypq 18 calle

& locally Grassmann quaternionic manifold,

it e

MARCHIARAVA [~ 707 ¥ 7 pr oved that all locally Grassmann
quaternlonic manifolds and only these are quaternionic manifolds
admiting an integrable tensor product structure (ses Ll Aug#-
p.847)

Open problem, To find the kind of differentiable manifolds

that are endowed with structures whose structure groups are simi-
lar to K, but in which the factors (4 ® qu), (B ® Idp) are
replaced by other (more general, eog, unitary, invertible) mu-
trices. Study their (eventual) des seription in terms of Jordan
algebras.

Comments. Before IORDANESCU /= 24% c_/ the group

~H 7y ' ;
L (resp., L/n' ) was considered only as s generalization

tH
of the group L§4 (resp., [Jn J.

~ ~

By considering the group L, (respo, (Jn ) as &

subgroup of MARCHIAFAVA and ROMANI /470 b, pp.1l31~1327/
obtained‘topolovical *théoremc~ related to “geuerallzed quaternionic
‘fibre bundles® and th@lr Stiefel-Wnitney classes, ~ ~ -

Open problem . To undertake a topological research like

that given in [ 170 v_7 by considering, instead of the group

~ W4 o~ H
L.~ - (resp., (Jn

1 ), the group § or groups from the above-mentio-
ned open problem.



o 37

OPROTU /™ A4 4,£7 has proved that Pontryagin classes
quaternionic manifolds are powers of the Pontryagin cla g of ¢

Tundamental vector bundle,

Open problem, To obtein results similar to those of QPRO

éf"4%4 &, ;? for the generalized quaternionic vector bude@S\
sldered by MARCHIAFAVA and ROMANT L A18 &5 0

By using the tensor product structure of the tangent
bundle of a real Grassmann manifold, OPROIU [/~ A5/ a,c_/ has
Obﬁilﬂ”d nonembedding theorems in Euclidean spaces similar to

those for projective spaces.,

Open problem ., To obtain similar results for complex gn

of

he

U

CONew

d

quaternionic Grassmann manifolds (by eventually using a Jordan

algebra setting),

Definitions, Two vectors from.ﬁpq, written as (q x p)-

-matrices, are called equivalent if they differ by a "factor®

)~§ 14 /\'being an invertible quaternionic matrizx of o

P. An equlvalence c¢lass of vectors from P9 ig called a geners

rder

P

31l

direction in HPY, T¢ & £ 0is g veetor representing a gene

lized direction, then the subspace

= g@[\ / /\ an arbitrary quaternioniec (p Xp)«vnatﬁ;c%

-

of ©P. is called the associated subsDEGe of the generslized di

tion under consideration, The image of DC) inRr pq under the

1“1"“

TECem

canonical 1d@nui;Lcation HPY = R*Pa _is called & genersiized

quaternionic characteristic facet (g.q. coao)o

Proposition 2,22, The subspaces D are invariant ung

the group 9', and
| dqu D<>z rp ,

er



24
] 2
s = B

o endin a4 Lo AN D

where r, 1 { r {min(p,q), is the rank of the (@ xp)-mateix@is e,

the maximum number of lineay independent rows on the right J.

Remark. If pyq +then, in general, (=) has the rank 4y and
qi CD pqs therefore in that case the subspace DC) coincides

with the whole tangent space,

Comments. Taking into account the subspaceglj‘.g MAR~
CHIAFAVA and ROMANI defined in g natural manner the "characteris.
%ic subspaces” of a quaternionic structurs [ A10 v, p.134 7,

These subspaces were useful in later topological constructions |
£ A40 b, pp.ls0-1427 , |
The group 5; with invsrtible (resp.,unitary) matrices
A, B has led to0 the following generalization of MARTimPLLI's ; §

results /[ A42. | pp.3s6 357;7 (herein rTecalled as Propo-

sitions 2.20 and 2.21) as follows (see-IORDANESGU L 2% g7 )

Proposition 2,23, Let Vqu be a manifeld endowed with s
tensor product quaternionic structurs, Then, at every point of

qupq

this structure determinss g system of g.q.c.f. in the tangent
space of V .

t that point,
4pq @ P

Proposition 2.24. 4 tensor product quaternionic structure

with unitary matrices 4,B d@termines on the manifold quq on

which it is dcfvneq @ Hermitian ouaternlonlo metric.

Notatlono Dsnots by UP(Hpq the.set of all subspaces‘
of wPY,

Proposition 2.25. Consider B™* % with p £ q . By means of
the map @5 e P4 -%»>P(me) defined by C@ ( ® ):xIJCD, to

every Grassmann manifold Gp(ﬂp$q) from HP*Y corresponds the set of

i ” (o Pay L ‘ pq
Grassmann manifo}du : { Gﬂ? (| ) }rzl,a,,o.,p from HT 4,



Comments, It would be inte sresting to find relations beuween

1

the map é@ and various correspondences between Grassmaenn

 manifolds studied by GEL'FAND et al. (see[59]).

Trom the considerations given in subsection 5 above and

Propesition 2.2%; we obtain.

Proposition 2.26. Leb Hp(gﬁ)ﬂ P > 2, be the Jordan
algebra of sll Hermitian (p ¥ pl-matrices over!H, (see Theorem
1.8 from JSA.I), and let g be & natursl number grater than p.

Then, to every set I, of all idempotents of H_ . (H) with length

p+q
p corresponds, by i) see¢ Proposition 2.25), the set

Irp } r=1,2, p? where Irp is the set of all ldempotents

LA 1

of Hpqﬂﬁ) with length rp.

Comments. Taking into sccount that I {respo,lrp) in Pro-
position 2,26 coincides with the set of all Hermitlen {p+q) X
¥ (ptg)-matrices of trace p (resp.,(pq X pgl-maetrices of trace rp),

it would be interesting teo find slgebralc properties Ofébu

?. Finally,let us mention the use of Jordan algebra ST TU G-
tures in the explicit description of the orbit structure of all
irreducible compact Hermitian symmétric gpaces XC = GC/K under
"the action of the corresponding noﬁcbmpacﬁ form GO of the compact
Lie group G . DRUCKER's monograph A 429' bgf contains a unified
detailed exposition of the results of WOLT [ 2057 for the .
claSsical.spgces X, and DRUCKER [Té?ﬁ’ & 7 for the two exceptional

spaces.
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§ 3, Symmetric space of Lnempotentq in a

?‘i

real Jordan slgebra

In this section we shall deal with some of the results
established by NEHER [ 425 ja

Notstion. Let J be a real Jordan algebra with unit 6le-

ment e, Consider the Peirce reflection acting on Idemp (A) X

Y Idemp (JQ), with values in Idenp Lﬂ), and denote 1% by o,
i.e. Olc,da) = P(2c-e) d=z c.d, where c,d ¢ Taemp (A)e That ¢ is
well defined can be easily proved by making use of Proposition
1.2, 08A.I.

Theorem 3.1, &) Let d be an idempotent.of.4-and let

q = do(c) +‘dl/2§c) + dl(c)

be the decomposition of d given by the Feirce decomposition of 27

with respect to c¢. Then

ol = do(c)wdl/g(c) + dl(C)o

Idemp (A‘ 5 reflection space (in the sense of L0O0S
[“,406\ b;7) with respect to the multiplication given by 07, le€e
for ¢, ¢y € ldemp ﬁ' the following identities hold:
GeC = O ’

olo(clocg) = Co,y
610(02003) = (01002)a€01003 )o

Remark, Theorem 3.1, holds in a more general setting,

namely for Jordan ngebrag vich unit el&mmnt ovar a field Ol

characteristic girferent from Hwo (sce WEHER [ /25, Chapter L,

Theorem 2.1_7)

As @ real vector space, the Jordan algebra ??is g differen

tiable manifold.
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) 1

Theorem 3.2. Suppose that Idemp &4) is endowed with the

induced topology‘from'ﬁ"@ Then Idemp (54) is a symmetric space
(in the sense of the definition from § 2) with respect to the
multiplication given by ¢ . 4s a manifold, Idemp (A is-a

regular suhmanifold of # .

Theorem 3.5/, the set of all idempotents of A with given
reduced trace t (0 < t ¢ degree ofJV), as well as; the set of

all idempotents of given length s (0< s £ primitive degree of A }53

are symmebtric subspaces of Idemp (77)0

Ny msntinsas TS

Notetions, For every c¢ of Idemp (ﬁ') we denote by YC the
connected component of ¢ in Iav (ﬁ&(c}) with respect to the
induced topology fromj%e For & regular submanifold I of Idemp Uﬁ)

we put X{I) ¢ = L} T and
cecl

E,(T) 1= {(O,X) 5(0,12)61 xh, xe Jél),(c) } , V= 0, 1/2,1,

Theorem 3.3, For V = 0, 1/2, 1, the map pry: B 1) = I,

given by prl(c,x) s= ¢, is @ regular subbundle of the trivial Ve Cmi
tor burdle pry: I XA — I, and I X/[}::EO(I) @1@21/2(1) @El(l')e

Theorem 3.4, Lot I be a symmetric subspace of Idemp (ﬁ)

such that® 0(I,I)cI. Put F(I):z= %(c,x)? (c;x)él’ﬁl(l)3 % £ YOB )

Then pry ¢ F{T) —=> I is & fibre bundle and F(I) is an open sub-

menifold of Ei(l).

" Notation. Denote by T T) the map 7(I)e X(I) —> I Gefined
: i.op .
by T(I) (x) s=c, where ¢ is the index the component ¥, containing

X

Theorem 3.5. Let I be a symmetric subspeace of Idemp @A) such

that o{1,1)cT.Then 7(I) : X(I) —>1I.is & fibre bundle and X(I)



D

is a submanifold ij%‘ The map pry s F{I) w>X(I), given by
prgﬁc,x):x_xg is a fibre bundle isomorphism (for the definition
of F(I) see Theorem 3.4},

Remark. ¥or the case when 4 1s Lcrmany T€d1 NEHER has
given éf 425 , Chapter II, § 2/ e detailed descriptions of the
fibres from X {(Idemp () )« Severasl results obtained by HIRZEBRUCH
[~ %2 b,IV,4 7 for simple formally resl Jordan algeﬁras were

rediscovered, by Neher but by using different methods.

Note., From now on we will assume that I is en open sub~
menifold of Idemp (4), so that ¢ (I,I)c I and ¢ en element of I
] t il [
for whima‘%lfg(c)‘w {O} o |

Theorem 3.6, If we denote by Exp the exponential map of the

symmetrlc space I at the point ¢, then, for every v of 5%1/3 6]

(cenonically identified with the tangent bundle TCI) we have

i

o

Exp({v) = (e~2¢ }cos 2v =+ % sin 2v,

pofo

where i o 2‘; (e~2¢c)cos veﬁ 6974 (¢c) and 1; s‘in 2V.€j4../2(0
Remark. Lf.ﬁ-io a simple formally real Jordan algebra and
I = Idempl(ﬂ‘), the resulﬁs given by hIRZ“BQUCH in i_ 22 :?

(see slso § 1) sare obtained.
: "

Theorem 3.7, Let u,v,w be three nonzero elements of

ﬁé/g(c)(:TaI)o Then ’ | i
) W ) ; o v_g 1 ‘
a) Exp(tv]=(c-cv™ + 5 ) + (cos 2t){ev” - 5 ) + 5 (sin 2t)v

v

= V. -In this case the geodesic through-c¢ in -

PO

is equivalent to v

the direction of v has the shape of an ellipse.

2 2
b) Bxpltu) = (cmcua» % ) + (ch 2%) (eu2 - %~) 4 % (sh 2%)u

is ecuivalent to u3 = - U, In this case the geodesic through ¢ in

the direction of u has the uhape of a hyperbola.

¢) Expltw) = ¢ tg(w2-2 cwz) + tw is equivelent to‘w3=0.
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In this case the geodesic through ¢ in the direction of w has the

. . 2 . i
shape of a parabola (in the case w° = 0 it is @ line), i

Definlblongo A geodesic of I is called elliptic, hyperbolic,

-or parabolic if, by & linear trensformation of the parsmeter,its

shape becomes as in a), b}, or ¢j, Tneor@m 3.7, respectively. 4

.

geodesic 1s called elementary 1if it is elliptic, hyperbolic, or

parabolic.

Theorem 3.8 Let T be a geodesic of I, Then Y is elementary

@

1f and only if the dimension of the algebra J?("f(o), y(0)) gener&»j
ted by ¥ (0) and Y(0) is at most four, ! :

3

Definitions, Let o« be an involutive ﬁutomorphism of a Jordan.

algebral{. If the bilinear form (u,v):= R S (aga<(v)), wyve &

. N . . 1
positive definite, then o is culled a Cartan involution of ”)e

If £ is a Cartan involution of a Jordan algebra ({, then we

write 6Z+22 4 X ( xé?CX, X(x) = z p.4 } o» It follows that

Clh(2+6962~0 This 1s called a Carten decomposition of &(

Theorem 3.9, Let Y be an elementary geodesic of I, If we §

® \

write Y(O) =t C, Xio)xs v, and denote by JQ(Cgv} the algebrsa genemi

rated by ¢ and v, then: )

A
a) YV S elllptlc if and only if the reauced trace RS (Q»V)

of}f(o,?)_is-posiﬁive definite (iceo.:ﬂﬁc,v) is formally realls

) J is hyperbolic if and only if P(2c-e) fto,v is & Car-
. ,v)

tan involution of ﬁ'c v)

YV isg parabolic if and only‘if ;ﬁ (c v) has nonzero ra-
dical,

Remark. In case c¢) of Theorem 3.9, unlike the cases &) and

b), the algebra 74(c;v) is not semisimple.

1) Rs? denotes the reduced trece (%reduzierte Spur®) of !4, a ge-
neraiization.of the linear trace form of X (see-BRAUN and

KOECHIER {A“ > 2 - p°82“7’)




I are elliptic or hyperbolic, namely: elliptic (resp. hyperbolic)

-4l .

Theorem 3.10, Let £ be g Cartan involution of J4 which P

=
]

Xes a point ¢ of I. Put

D= (He1n 4 ) @ (A atern ) ) O ern )

where g4% are as in the definitions above, Then the geodesics of |

when the dimension of the symmetric space Iflfa(respo,lfﬁig

the point ¢ is not zero,

Corollary., If 34 is semisimple, then the geodesics of I

are elliptic or hyperbolic,

Proposition 3,11, Ii‘f}is formally real, then every geode~|

gic of Idemplﬁﬁ? is elliptic,

Note, ¥rom now on we asaum@'thaﬁ Nﬁ' is semisimple and thus

f— A> 99,% ) manB\ﬁ;, heregﬁ' k) are simple ideals
of JQ Hence, for every = ou{], we have x:::cl@ eeo @XK,-xié#ie

In addition we will assume that I is connected,

Theorem 3.12. The symmetric space I 1s the direct product
of its subspaces INJ., 1=1,2,0.0,k, 1.6, I = :1:nz9L .@ox(zzﬂﬁ%}

as manifolds, and c.d = (c iedy) oo (e kadh)

Theorem 3.13, If<4-is simple, then

®

a) I is a symmetric Riemannisn space only if at least one

of the following conditions is fulfilleds
u(i)fv;éiis~formallyareal;~ S :
(i1) +the mutation J4 . is formally reals
(144) 34 is not central simplo, dlqR;4 =6, &nd the pri-
mitive degree of J4 is twog

(iv) ;4‘is central simple, but not reduced, dimm.ﬂ =10,

and the rim1t1v> degree of o . is two,
% is %omnact if and only if a4 is forﬂally resal,



Corollary. Suppose that J is semisimple and that I is 4
symmetric Riemannian spacs., Then T is of rank one if and only

if 811 geodesics of I are elomentary.,

- Comments, Consider on the Grassmann manifold @pﬁHp+q}a
point given by its locsl Pontryagin coordinates, Suppose that
this point describes s geodesic passing through it, An in-
teresting problem is to characterize the image of a current
®e= (a % ?}g i=1,2, eeoyD, k=1,2, ..0,q under the map b
(defined in Proposition 2,25) in terms of the rank of @,

In the opinion of GUNWAYDIN /- 72~ 7/, the construc-
tion of symmetric Riemannian spaces over Jordan algebras can
be extended so as to define and realize supersymmetric spaces’
Over Jordan superalgebras. 4s he mentioned in the Introduction
to [ F2. 7, *we are presently working on the realization

of this program and their physical applications®,

§ 4, Central simple reel Jordan algebras and

spaces with constant affine connection,

A simple method for aséociating a space with constant affine

comection to every real finite~dimensionsal algebra by taking
the structure constants as coefficients of the connection REE
given by MOISIL and. VRANCEANU 4n 1958 (for details, see
L7495 a7 and was subsequently ‘developed by VRANCEANU /~

478 e / o2 Thig method has 1 been extensively used by Vranceanu
and his follow&rs, In 1966, Vranceanu suggested{ independently
of KOECHER ZT 93 e/ (see also § 2, Theorem 2.2), to some of
‘his co-workers the study of spaces with éonstant affine conn@ction

associated to finite~dimensional real Jordan algebras. Hence,
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Spaoés with constant affine connection (for definition and :
details, see VRANCEANU /~ 498 b, Chapter VI, § 4, and also’d_/)

188

0’\
O

ated to real Jordan algebras of types 4-D (Seeqlﬁﬁ.l;ﬁ 1)

{—«

OC]

ﬁ:’

have been studied by TURTOL / /]9 a7, POPOVICI and TURTOI
[ 445 7} and IQRDANESCU /T 24 a-d /. (A1l these

dereas,

AR

The first objective of this study was to investigate reduci-

results have been presented more systematically fn iﬁ 744

bility of the system of infinitesimal operators

) i .3 0 : .
p; g o= ? i f xj e corresponding to the spsasces with constant
“ jk e

P " i :
affine connection r“jk associated with Jordan algebras of
»'S

type A»Dl)o

Definition. A space 4 with affine connection is called

irreducible (reducible) at a point P if the system of operators
X.p 8cting on the tengent space of A, at P is irreducible (re-
ducible). If An is irreducible at all its points, it is called

irreducible.

Theorem 4010 The spaces An witlh constant affine conn@cﬁion
associated to real Jérdan algebras of types‘AsB,C cr D are re-
ducible, but admit distributions of rank n~-l which are inveriant
and irreducible- with respect to ng

Remark, The distributions from Theorem 4,1 have a purely
algebraic construction. ‘

Comments, All considerations nade in /“' 144 7
of local i,ype9 and so 8 global treatément need to be performcdﬂ

The second obje ctlve of this study was to find which %pﬂcﬂ
with constant affine connection associated to resal Jordan.
algebras of typeé A~D adnit & (pseudo-) Riemannién metric,.

All considerations made were of a local nature and the

glgebralc tools employed (for types 4-C) were maximal gradings

3 i ’
l) As U.S:llal’ r_.,_n GianiEt e F e i =g v e s



(1.6, with one-dimensional sumands). POPOVICI has re ‘considered
the notion of space with constant affine connection in g global
setting and has generalized /= 749 &7 the results from

L A4H _/ concerning the existence of (pseudo~) Riemannisan
‘metrics. In particular, he proved

b

fheorem 4.2, Let g be a nonnull symmetric tensor of type

(0,2) which is parallel with respect to the constant affine con-
nection associated to a real Jordasn algebra Jof type A-E,

Then J is of type D' and g is a (pseudo~)Riemannisn metric,

Definition, 4 {pseudo-)Riemannian space whose metric has
the fomm I
2 A" Lo,
dS = G - Cij d:x dx 5 (ipuj’k: = 1’25 0009 n)ﬁ
a[;cij being constants, is called s Vagner SDECE,
Recall the following result (see VRANCEANU o178 e/ )¢

Let ol be a nonzero real number and let V be a Vagner space whose

vector (51’ sooy &n) is # 0, Then there exist a real numbcr'/g

i i.J

and a linear transformation y = ajx such that the mebric of

Vn is given by
e T iayl)2 4 5. (a 2,2 P £ (a2 ]
&,w@e dy + E,ldy + oe0 & j‘ sy
Ei :ily 122,3, ovo;.n;
or by

ds“:(}ﬁdy [2dyld.y2 v £5007)% & Lo gn(dyn)gl o

gi = ::' l’ ’ i = 3,14’ e-o'g'. n»

according to whether the vector (als cooy A ) 1is nonisotropic or

n

isotropic with respect to the metric d.¢2 = ¢ 1deidx

Theorem 4,3, The class of all tensors g from Theorem 4,2

l1s in one-to- one correspondence with the class of nonLgOtTOplc
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Vagner spaces. lloreover, g 1s determined, up to a constant factor,
by the corresponding constant connection ]“?k o

Remark, For a local description (motion groups, geodesics,
ete. ) of nonisotropic Vagner spaces sce [ /444 /y and for'ﬂ gLO~

bal deseription see POPOVICI /[~ A4% bv7.

Comments., VRANCEANU /- 492 a7 proved the following
theorems: If a Riemannian space is irreducible then its metric is
determined, up to & constant factor, by the connection f'jkﬂ
TELEMAN / 1844 T proved that, under the same hypothesis, the
metric is determined, up to a constant factor, by the curvature
tensor )‘gkﬁ « The nonisotropic Vagner spaces are reducible and
with metrics{which may or may not be positive definite) determi-
ned, up to a constant factor, by the connection (“JK Thus théy

3

are examples of (pseudo-)Riemannlan spaces satisfying the above-
and TELEMAN,, '

~mentioned theorems of VRANCEANU “but uduCV weaker hypotheses,

Open problem., To reconsider the above-mentioned results in

2, and, to subsequently generalize Vranceanu |

n
3

view of Theorem
and Tsi man's theorems on the uniqueness of the metric,
Remark. As ANASTASIEL /™ 3 _/ has righteously noi:gad;
KULKARWI's results /~ @0 7 could be useful in solving the
second part of the open problem above. | ‘ : |
Comments. Some authors have determined the automorphism
groups of simple and quasi-simple Jordan algebras of types A-B
over particular fields (see,FREUDENTHAL /[ £6 7/, SPRINGER
and VELDKAT® /= 174 7, ROZmNFE IL'D and KARPOVA [~ 154 7,
PQRQLTQ a 1% 6 api?; more general results for simplé Jordan al-

gebras over fields of zero characteristic follow from BRAUN and

KOECHIR's book /7 2 4 , pp.282-2867). As has been pr oved by



ROZENFIL'D and ZAMANOVSEI /- 456 7, the orbits of the

a
@

automorphism groups of sim
& 5

e and quasi-simple Jordan algebras of
types A,B,C, or E give models of non-Buclidean, quasi-non-
Fuclidean, projective, symplectic, &nd.quasimsymplectic SPECES,
ZANANOVEKT has oconsidered /[T 299 7 Jordan slgebras of the
remainder type D, has proved that the orbits of the gutomorphism
groups give models of non~-Euclidean spaces, and that the spiner
representation of the group of motions of the non-Kuclidean spaces
obtained in this way corresponds to the representation of a Jordan
algebra of type D in & Clifford algebralo

Open problem, Connect the above-mentioned results of

Zamanovskl to those of Iordanescu~Popovici~-Turtoil in this section.

 Comments. TURTOL /~ /39 b7has recently considered al-
gebraic bundles having a central simple Jordan algebra of type D as
standard fibre. Then she studied idempotent sections of this kind.
of bundles and, making uss of a decomposition theorem of Féirce
type , identified a differential distribution on the ground
manifolds.,

PREMA and KIRANAGI [T 4¢4;?1 :? constrﬁctad a Lie alg@bfa
bundle for a.given locally trivial Jordan bundle in which each
fibre has a unit élemento Then, they proved the rigidity theorem
for Jordan algebras, which is of independent interest, to esta-
blish the local triv;ality df a semisimple Jordan bundleth@y
also proved the unigue.decompositioﬁ theorem for a semisimple
Jordan bundle using an ideal- bundle of the Lie bundle constructed
and this geherélizes the Albert's theorem on semisimple Jorden

algebras,

1 A more general case of modelling symmetric spaces as orbits
of arbitrary groups of transformations of Jordan algebrss was
considered by SEYaNIsTII [~ 49 7.
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Finally, let us mention that PTCC¢NW1 s ,{&2 a'7 harf-lete
ded the Chern~Well theorem on the repressntation of characteristic

classes to § by means of curvature forms, This extension is

based on algebraic results previously established éﬁ A% B

where a kind of Diendonné determinant 1s defined. Using some

of the information furnisched by IORDANESCU /= 8% 7

PICCINNI /= /3% ¢/ illunminated an interesting connection

between his determinant and the cenﬁral simple (ilnltuwdimensional}

Jordan algebras,
{53

5. Domains of positivity and applications .

to relativity

Now we survey the principal facts about domains of positivity
and their relations to Jordan algebras (see BRAUN /= 2.3 v 7/
and KOECHER /= 93 b,c,e /) and we consider some applications to
Minkowski space (see TILGNER /- 485 /). Some of
CHEREMISIN's results on causal symmetric spaces (see / 52ﬂ'&5§2)
.are also presentedé |

Recall that domains of positivity wera»intro&uced by
KOECHER / 23 a/ in a generalization of the cone of positive
£ o 7 and others.

Another important class of such domains is given by the cone of

b

definite matrices studied by SIEGEL

" e
i

positive ‘definite Hermitisn matrices (see BRAUN /= 23 a7/

We begin with a brief surﬁey of tﬁe priﬁﬁipal facts about
domains of positivity and their relations.to Jofdan algebras,
resorting to some of TILGNER's formulations IS Ee :73

Notation. Denote by X a real vector space of finite dimen-

um—v«'-\—v.

sion ‘m and by“Q' g nondegenerate symmetric bilinear form on it.

- Definition, 4 subset ¥ of X is.said to be convex if x,yg Y

and ole R, 0 £ K < 1, imply that ®x + (1-«)y € Y.
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Definition., 4 subset ¥ of X is called s cone if xe¥Y and

A€W, o3>0, imply that «£x € Y.

e e st rmspsan

T 3 7! ~ yoq L0y ng ¢ y
Notation, For a ¢ X consider the map a —> 4 given by
.{} i
a (x) ¢+ = ¥ (a,x),
8

: v ; . -
Remark. The map a —» a is an isomorphism of X onto its
% ‘
dual space X .
a5

Definition. Let ¥ be an open convex cone in X, Then v

defined by

5 ox = (
Y‘::{f] fex , f(x) >0 for all xeY , x # 0}5

* -
is an open convex cons in X% » called the dusl cone of ¥, (By Y
we denote the closure of Y in the given topology on X. )

% Tl -
Definition. The image of ¥ in X by the inverse isomorphism

aamme~a is Yi: {x x€X, V(x,y) >0 for all ye Y s ¥ o O}u It is
called the Y -dual cone of Y, '

Remark. Obviously, Y is callec self-dual if ¥ = Yvo lowever,
not fér every open convex cone there exists & bilinear form with
respect to which it is self-dual,

_ - ‘
Definition, An onen convex cone Y with ¥ £ £ is called
£

3

& domain of positivity in X with respect to ¥ if it is self-dual.

Hovtation. 4 domain of positivity in X with respect to »

will be denoted by Ros(Xk,V ).

Theorem 5.1, An open nonempty subset Y.0Ff X is g domsin of
positivity with respect to Y if and only if

(a) x,yeY implies that 7 (x,y) > 05

- and 2
(b) Y (x,y) >0 forall ye T, y # 0, implies that.xe Y.
Theoren Bgéallf Y is g domain of pos;tivity then
(a) xe&¥Y if and only if ~w)k(z,}c)>0 for all z€7Y s 2 £ 03
and . :

(b) x&Y if and only if Y (z,x)30 for all z &Y.

\
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£

Notation., Let ¥ be an open convex cone in X with Y £ 8 .
A partial order relation in X is introduced as follows: x £ y if
gnd only if y-x e¥ .

Remark. The relation £ is Archimedesn, and is compatible

with the vector space structure of X; anvy VY on X is monotone.

Definition. Two points x,ye€ Y are called equivalent if

there exist &, € B «A>0, (> 0, with x €y and y< A X,

Remark. The Archimedean property of the relation’implies

1

that ¥ itself i1s a full equivslence class. In general, its
boundary decomposes in’ to several classes.

g transforma—

Definition., For an open convex cone ¥ in |

X,
tion A€GL(X,IR) is called an automorphism of ¥ if A(Y)=Y. The set

of all automorphisms of Y is denoted by Aut Y.
- Remark. Aut ¥ 1s a closed subgroup of GL{X,MR) and Aut Y=

= Aut Yo
- - . Q
Definition, For A€GL(X,JR) the adjoint transformetion A

T A s BT

' v
of 4 with respect tc Y is defined by V (4 (x),y) =7 (x,4(y)).

7 v v
Remark., (Y ) = ¥ implies that Aut (Y.) = (4ut ¥) . Hence,

in e domain of positivity A €aut Pos (X,Y) implies that
Q
A g Aut Pos (X,7¥).

03 ¢

Theorem 5.3, Pos(X,V) is a domain of positivity with res-

pect to the nondegenerate bilinear form T if and only if thaﬁé
exists an A€ Aut Pos(X,¥) with &9 % Aand C(x,y)e=Y(A(x),v).
Remark. There mey be seversl bilinear forms for which Y
is & domain of positivity, |
Given té&x with v (t,t) = 1, the bilinear form T (x,y):=
g E‘Q(t,x)‘Vft,y)—"Q(x,y) is symmetric and nondegenerate.The sub-
set ¥ ::{ yl ye X, Yt,y) >0, Viy,y) > OC% of X is open and not

enpty since it contains t. Choosing a basis in X in which the
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matrix of 9 is diagonal, it is easy to see that sign?V - { 1y 50 ) 18
and only if sign?®=(n,+l1, ny-1l)e Thus @& is positive definite 1if

and only if Y has Lorentz signature; in this case Vri3‘th8 inte-
rior of the forward light cone and ¥ is a domain of positivity
for ¥ end ¢, (The boundary of ¥ is the ferm““a light cone, )

Remark.Aut ¥ is exactly the group which preserves the order
relation £, This is Zeeman's result /~ 445;p9101;7}éf'/?2.,p¢2;7,
which expresses the idea of causality in Minkowski space.

Let;ﬁ‘ba a Tormally real Jordan algebra of finite dimension.
Denote by e its unit element and by A its trace form (see § I

JSA .Ie)

Theorem 5.4, Invo(ﬁ) 1s a homogeneous open convex cone that is

self-dual with respect to:L%)

Theorem 5.5.Pos| ﬁ A g.np X)-ijfﬁx {xz lx € Inv (ﬁ)%:

&

o %y {y%iﬁ, L(y) positive definite with respect to 1?}:

=component of e of'{y}véﬂ P(y) positive definite with respect to}}~@

and Fos (#,0 )z{{x S aﬁ}
:.{y} 3&_% L{y) positive semidefinite with respect to 1}
Theorem 5,6, If is 8 homogeneous domain of positivity in

N

a real vector space X, then there exists a formally real Jordan
algebrea 0 in ¥ such that Y = InvO(UE) o
Congider agailn a real vector spdce X of fjnlte dimension

endowed with & nondegenerate symmetric bilinear form ¥ .

Definition. The vector space X endowedrwith @@¢"produgt> -
xye= ¥ (x,t)y+ Y (y,t)x - 9 (x,vy)t bécomes & Jorden adlgebra Tor
every t & X. Assuming thet - ¥ (t,t) = 1, t is the unit element

of this Jordan algebra which is denote'byJ%(Xs)l, %),

1) If Y # ¢ 1is an open convex cone, then Y is called homogeneous
if Aut Y ascts transitively on ¥.
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Remark 1o A. A, , ¥) is semi-simple and also formally
regl if and only if ¥ has Lorentz signature. In fact A S AW N
which appears in BRAUN & KORCHER . 24 , Chapter VI, § 5, p.193. 7
ia centrgl simple.

Remark 2. If ¥ has Lorentz signature, then (and only

then) the interior of the forward light cone is the component of

+ in this space and hence the (homogeneous ] domain of positivits
I ¥

of the Jordan ﬁlﬁ@b?&c% s N S A N §
Remark 3. KOECHER's construction of a formally real Jor—

dan algebra for every domain of positivity can be applied to

-l -’

w~domains (a generalization of domains of noaitivityl))° The

resulting Jordan algebra is semi~simple. Conve“ﬁely, Invo(&l}s

'3

d a semi-simple Jordan algebrs with unit element e, is such &

{
:
{
i
§
i

W ~domain. An W -domain is a domain of positivity if ﬂnd only L
it ie conveX. Applying this construction to the component of scme
t in X {(endowed with v ) with Y (t,t)=1 in the inferior of the null
conr% v eX, Viv.¥) = O} , we obtain the Jordan algebra J}(ngsé;f
Conversely, Invo(:ﬁ(x,9 ,t)) is an example of an & -domain,
which is convex if and only if 9 has the Lorentz signature.

In 1966, ROTHAUS /453 a7 used VINBERG's results /[ 194 -
on left-symmetric algebras to show that every homogeneous convex
‘cone can be constructed from such cones of lower dimension.ﬂowever;
no description is given for the infinite simal gutomorphism of the
cone with respect to its low dimensional consiituents Lf.4573' a_/
and, on the other hand, this construetéo? is not unique« In 1979;,
DORFMEISTER /- 44 b7 used ROTHAUS e KomoiTR's Tesults [3€],

& those obtained by himself end KOECHER [ 45 a,"bjg
and his own results /- 4% a to show how to build up a homo-

2)

geneous convex cone from lower-dimensional ones 1n a unicue way .-

1) See BRAUN and KOECHER /" 24, Chepter Y1, 88 /.

2) He showed how to construct each homogeneous cone 1ndvotavc1y,
using domains cof positivity as building blocks. This construc-

o PR L e BT (e SIS Spo T
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The infinitesimal automorphisms of such a cone and its associated

left~symmetric algebra can be described in the lower-dimensional

constituents of the cone. Several equivalent conditions for a i
cone to be self-dual have been given. DORFMEISTER's investigstions!

on homogeneous convex cones are summed up in /- ‘?426:?9 in ‘

which also a classificstion of homogeneous convex cones is given, |

"
<

&nd let 4 be o Jordan algebrs on it.

Definition. The Jordan eslgebra A defines a Jordan structure

on a regular cone (i.e. & nonempty open convex cone not containing

an entire straight line) ¢ in V if all left multiplications of

A are infinitesimal sutomorphisms of C, ¢
In /[~ 493 ¢ 7, ROTHAUS showed that A defines a Jordan struc-

ture on C if and only if the quadratic vector field giﬁeﬂ by A

is an infinitesimal sutomorphism of %h@ tube domeln assoclated

with C.

e V3

interior C of the cone generated by squares is & regular cone.

ROTHAUS [/ 44% ¢_7 established a close connection between
regular cones with a Jordan structﬁre and ordered Jordasn algebras
namely.

Theorem 5.7. The cone C of an ordered.Jordan algebra A4 has

the Jordan structure given by A, and, conversely, in essence.all

“
\

regular cones with & Jorden structure arise from ordered Jordan
aleebras. - o s

Another result /[ 453 ¢/ is that esch homogeneous regular
cone igc the cone of an ordered Jordan algebra,

Remark. As was observéd by Rothaus, 1t must be possible
to generslize his resuits to Siegel domains of .the second kind

by using some results of KAUP /= 37 7.
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In a study of the relations between multilattice theory

and space-time geometry, CHEREMISIN /= 22 a_/ related par-

tially ordered Jordan algebras (for & description, see, CHERIEMISIN |
b e P v
[ 32- ¢ /) to space~time geomelrys ) Let us mention that ‘

BENADO proved /[ A4 7 that the Minkowski world is a mulm

|_ o

lattice,

.

Definition. Let X be a topological space in which no one

element subset is open, and suppose that the set X is endowed

with a partial order relation £ , If, for every x of X, the sets

3

S

::::{y) yE X, }:éy} and X, t=qV | V€& Xy ¥ éx} are closed

domains, then X is called a causal space,

Definition. 4 causal space whilch is a partially ordered

real vector space of finite dimension and with the simplicial

topology as its topology is called a causal vector space.

Definition., A causal space X endowed with a multiplicaticn-*é

satisfying the conditions
i

(i) XX = By ‘
(34) Tolxey) = 7, £
(111) Xolyez) = (Xey)o(%o2)
: r '«ro ~0
(1V) :X.oja., = }M,ng 9 Xo ..y‘ Axoy §
N vl - ) (0] v .
for gll x 7z from ¥, where X_:= X U X and X = X - X ig
. e e vy’ Ty DTy e

called a reflection causal Space.

Notati ono'Considef the Jerdah-algebra J§(V;-?3t),-whera
'V is s causal vector space of dimemsion n % 3 and Y has Lorentz
signature, and denote 1t byﬂ%° Define in V a (nonreflexive) order

relation< by:s x<{ y if and only if ye Int (V;), vhere Int (V§ )

1) By space-time geometry, Cheremisin undeﬂ tands the geometry of
the ground space of -general relativity and its generalizations

to arbitrary dimensions..



e T e
danoﬁés the interior of Via As @& topologicael space, Inv(ﬁﬂ has
three connected components, which will be denoted as follows:
fﬂﬁ):; gx{xéﬁ, @{x}s f%%&a:%xlxéﬂ,i&aygmm
9K 2= A - (THH) v OTTCRD

Theorem 5.8, 1+ (M), 1T7 (A), and IO(J%} are reflection

causal spaces, 1 A is of rank 4, then 1+(J%) and I7(7F) are
symmetric Riemsnnian spaces with respect to KOECHER's metric
(/[ g3 e/ and, also, § 2 above, while 1°(F) is a symmetric
pseudo~Riemannian space. |
Remark. Inv (/) is not & reflection causal space.
Recently, CHERMISIN /~ & b/ has given a description
of the partially ordered (with respect to maximal crders) formam
11y real Jordan algebras of finite dimension snd the corresponding
causal svmmetric sPaées@Qr a definition,see belowjaauch algebras
are finite direct éums of formfally real algebras 5%‘ and Jordan
algebras of T - symmetric matrices, J being the standard invém(

lution, H (R )Y, H( )", n(u)*, 1y(e),

Bt
¥
o]
w
ik
Lz}
<
£
0
“
g
iy
6]
%
H
=2
Q

UL SO :
which 1ics

Definition. A csusal space

space (the multiplication of which 1is denoted by.e ) so that

0 0 ) o : I "
%.X = X _ and %.X> = X0 _ for all x,y €-X, vhere X_:= X VX
y Xoy Ty Xo¥ ! ! ol y ¥
0. o _ .
Xy tm L - Xyg is called & causal symmetric_spsace,

Theorem 5,9, The connected causal symmetric spaces given

by the partially ordered formally real Jordan algebras of finite -
dimension are finite cartesian products of connected components

: . : o ‘
of the sets of invertible elements of algebras 7%,}%103) ,ﬁn(ﬁ,fs

HH(M, Ty ( 0)".
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i

Comments. It would be interesting to use results of HELWIG

and NEHER on geodesics (see /7 DO cm? ang. Foo A 2F

4

and §§ 2,3 above) in order t

o

o obbtain ; geometrical properties i
of causal symmetric spaces from Cheremisin's studies éj D @,;,e
Remark, In /22 477, CHEREMISIN has given a complete

deseription of "Jordan kinematics™.

§ 6. 4 Chdrd@t@rl&d7LOH of quagli-symmetric

domains in terms of curvature

ZELOW [ 2 b:?'has characterized the quasi-symmetric
domains (i.e, domazins biholomorphic to guasi-gymmetric Siegel
domains in the sense of SATAKE [ ~#67 /) among the bounded
homogeneous damnagins., For this he used PYATHTSKII-SHAPIRO's
A A%5 7 description of bounded homogeneous domains in terms
of go-called "j-algebras®. In a 2,44 m.7 the j-algebra conditions,
are translated into more geometric conditions (involving the curva-

ture of the Bergman metric).

We first recall /[ 244 a] (see also [ A49 7 and
A 2244¢ 7) some notation and results connected with j-algebras,
and the associated description of bounded homogeneous domalis.

Let D be s bounded homogeneous domain, which is agssumned
to be indecomposable (i.8. not t%ﬁa g product of other bounded home
reneous domains). There exists a simply connected subgroup o g
Aut D, with Lie algegra 0}) acting simply transitively on D by
"holomorphic autouorphlsms. Choose a base point in D -and denote
it by ¢y the Bergman metric on D gives an invariant metric an?,
and, in particular, we have a metric on O} that can be written in

s

the form

LEi = Be n(x. = W [,ju, Y]



e

where h-1s the Bergman metric at o, j is the complex structure
on the tangent space T ,D (identified with 0}), and «w is g
linear form on U] (see /[ A49 7y,

The invariant metric on G (translation of <, > by left

actlons) defines a Riemannian connection <7 on % (identiricd

with 0; ), and by considering elements of OZ as left invariant
T

sctor fields on Cf ; at the point ¢ we have

<
€D

2 {Vgliay ==X [%,2]5-4Y,[x,2] Y+{2, [1,¥] >

Then /. Y n-;,)i [fk,y] (ad X)! ¥y~ (aa Y)'X } is an element of If
(identified with Tc,:}.)z for every X,Y€ 57, where 'denotes the
nspose with respect to  , >
The following decomposition holds (see [/ /f/ig

(6.1) 0] = 4 @EZ foilo L.

: 2} _
llere JB‘__ [0}( . JJ :{ (orthogonal complement with respect to & ,> )

and [:0]9 0;] - E‘_ k, with ‘ :
< ;
Ky 3”{1‘;}:"‘;6 (907, [mx] = o (1) X , for any H or £ }s

where the ;gg‘gol is a linear form on 7,’1 Further, if o(],“o@ 0\/p
are all roots X with jk,ch , then (e 31‘3‘,(4@0“ @ IR op 0

d.im‘?«: p; using a propsr enumeration, all roots are of the form

oy, 5 with 1 £k € p ana 5 (X & ) with 1<k dm {p. We have

L) Bl %) e 5o

I we put

1
I 7/: (D(E-O(m> k
24

then the second decomposition in (6.1) is given by



p P

/(g': }mm qgk @ Z;: /g\“‘iﬁm) s M?": Z*W‘* ME -

K=l 1L kdmip K=l
| p 27 -
We have {‘llﬁ"’o{gﬂ[ﬂl - /r[f)ld\“;ﬁ { = JZC)B if o(e«(}, is no root),
}‘){d .8 ’&(z, for £, ‘Kj Ry, dim 12;’[{ = 1, and there exists

b wan [ /
& unigue non-zero element ‘E{k_é 143 with [}IEK, T‘h] = T« 4lso,

ig 8n abelian subalgebra, /( an abelian 1deal of JJ sjf& SUD -

alge‘bms’h\/\,ujcz [jz M]CM ""nd( "‘“{O}‘;

Making use of the proper‘t‘ies of the j-algebra @7 , one
can prove the following propositions (see zELOW / R 4T A 7,
D'ATRI /] =9 a,c /).

Proposition 6.1, The action of W on ﬂ; satisfies

1) VH = 0 for H € ‘ﬁ
2) V.}f‘f = “__‘[]2 Hy € gt for ‘ii‘é’gx, where H, is defined
by o (H) = I, Hey for any H of A $
3 )V}r He= - X (11)Y € WQL\/for Y & {%w z{ég $
o itk £/1

41V By =

k JE ATk = £

i

The curvature is then given by the usual formula R(X,¥)

[Vy;." Ve | - Vixxl.

Remark. If X,¥ & 07 , then, by the invariance of V

i

Ny % ete. are also elements of OZ .. lence one can uge Propo-

sition 6.1 repeatedly when calculating the curvature,

Proposition 6,2, R{X,H) = o((H) as operators on

0} ; where X é'&d, Héf‘o

H




ibain
Let ¥ = ak)“k be an element of & , and write

K=l
pa-ed i e it & Then Proposit 6,2 4 Myt
M = {JE, | = | B » Then Proposition 6.2 implies that

R(Y¥,JY)

™
i ¢
5

o
=

k)

E‘(ﬁ

i
™

o

.
X
[

=
\a

NI 3 Y o g ~oeitio o . -
where O(K(L) = 8 and, by Proposition ©.1l 4 §7EK Ef = Cyk@
where X;Q is the Xronecker symbol. It follows that

R(Y,iY)iY¥ = »-—> &) iT

and hence the holomorphic se ectional curvature given by ¥ is

j o
‘_\MK dk §
1

(6.2) k(¥) s={®(Y,iT)iY, ¥ »

P
" - .
. { ("
ghere 1 = |¥] % = ; W 8
AN
. &
The stationary points of K(¥) on# under the constraimt'

e

'"|7]| = 1 are obtained from S > . M, o8 )= AN/ ! ZV

ot

shere N7 denotes the gradient with respect to (ul,,eo§ a‘D)s

is a Lagrange multiplier.One gets

3 . '
ZMK G :(AMK I K=l, oco0y Do

Then :k: 2 35 for all a_ %w O and the corresponding

-

are therefore equal at & stationary point. The converse is

true, hence (a L’ vesy 8.) -is-a ﬁtarionary»point-(undervther“

P 4
straint) if and only if all non-zero 1 [’s are equal.

Consider a stationary point (al, o8 ap) with

indices, while the other aK‘s are equal to zero, .and let

= eeo = Iai Jx: g # 0 for some sequence i;Loee L3y
b

a
k

and

of

Lol

I
¢
i
£

GO
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Xﬁ:nﬁﬂ&%lsooag)<bg s then

max I K(Y}l =9t and nin %]((Y?Ex (M oee +j{p)“lw

veh,|T)=1 veh, | ¥]=1
in 47244e 7 a condition for quasi-symmetry 1s
(O) RZ! Z oeo 5"—'7')/( ' (:‘I%)o

Remark. Condition (¢) is satisfied if ond only if

?‘ijxl + oee +7{p. Therefore comdition (¢) is equivalent to the
following condition

(gf ) max }K(Y)I = dim A min ]K(Y)‘u
Yeh, [¥]=1 Yelh, |Y]=1

One can see that

/ﬁ(a’b) ’ :s:\ xe 0], R(X, B )i% = {

/4 it kL = a,b,

0 otherwise :
(6.3) ~X/4 if k=A=a,
U, = Al xe ff , R(X,TENE =
0 cherwise :

and so if (C') is satisfied a method can be found to find the

decomposition [0} 02[ ] Z ’?{x in 0‘} &@ [d’} 6’] ]
(see [ 244e peS lhs
in [ 241e / ZELOW proved that & necessary condition for
. quasimsymmetry is ﬁhat Z i{g a formally real Jordan algebra
Withrthe'produét -
. " " 1 o .
[T i i - r m o - - & §
XY e PLX = Ty, where Ty 1= 3 { ad jY + (ed iY) } 5
'the transpose ' being with respect to % ,> ., It hes also been
established that this is the case 1if &nd enly if (under condi~

tion (C)) the following conditions hold:

s T,




S e

(4) For elements connected as s—t—o o - Wa have (XT)Z=X(YZ]} ,
o S

X

(B) For elements connected as g:::bi?w we have
‘ Y

ey ~« % ~ l
X(¥%) + Y(X2) = (XY)Z, i.e. X(¥Z) + T(XB) = -5

(The diagrams show that X,Y,2 & ‘E - g(ﬁ,m) and that, for in- ?
1<k<m<p ’

i
b
-

n) and Ye%((’ n?)é‘:

stance, X and ¥ are connected 88 e—o—»o if-XéE‘g(K
b 4

{K,m,f, n} being a set of three different letters.)

Definition. 4 subgroup f? of Aut D ( i.e. the group of

biholomorphic automorphisms of D) which is a simply connected
solvable group acting simply transitively on D, and such that
adX has only resl characteristic roots for X in the Lie algebra

of f? y 1s called a triangular subgroup of Aut D,

By translating his results [241e 7 into curvature con-

ditions, ZELOW obtains (see / 2414 | pp.14-15 7)

Theorem 6.3, Let D be an indecomposable bounded homogeneous

domain, and let T ve a triahgular subgroup of Aut D with Lie al-

gebra QZ . Choose a base point & of D and specify on %fa

j~algebra structure (by the identification Q7EE§QyD), a complex

structure on Ty D, and & Bergman nmetric on ngbo Then D is quasgi-

symnetric 1f and only if the conditions (C'), (4'), (B'), (a'),

. s > it Ferp o : . 7

(D), (D) below hold, :

(Gt max l K(Y)} = dhn‘& ~ min [ K(Y)l , where
Yebh , [T[=1 Ye b, ly[=1

K . .
K(Y) is the holomorphic section!/al curvature defined by (6,2)

(&%) BEC BT = 0 fop X,1,2 € E ’g(a b connected as , ;
3 i AR

. b o
R belng ths curvature tensor.



i Bl ' : :

, : B iilag
(B') %x(X,2) = - % | X[zl max [ K(Y)] for X zefz N
’ 8 f,1Y(=1 T e
connected as e—w—e , Where K(X,%) :=R(X,2)Z,X ). ,
X Z i
e ) : ; & |
(47) R{X,u)v = = R (X,ju)jv for uelf Vé'vg s with

m # a. (It suffices to restrict to a £ m < b).

dima

L gl o4y 1s independent of k.
= 1 5 (Xg+ )

D U

(D) dim  1s independent of k.

In 244 F 7, which is a sequel of /[ 244 d,e 7, ZELOW
translates (some of) the conditions set in /[ 24f/e 7 into curva- |

ture conditions: symmetric domains are in particuler quasi-

symmetric, and they are characterized among quasi-symmetric domaing
by the vanishing of \J R, the covariant derivative of curvature,.
Now quasi~symmetric domains are "almost® symmetric, and so ZELQW
focusses on N R. It turns out /~ 244e 7 that some of the
quasi-symmetry conditions are equivalent to the vanishing of

R on certain subspaces (see /244 F ,pp.10-11

y K

L\;

Comments. Let us recall in this respect that SAGLE and
SCHUMI showed /[ /58 7how real nonassociative algebras arise.
from multiplications on certain homogeneous spaces. Subsequently,
these élgebras are used to obtain an invariant connection on. the
homogeneous snace and some appllo tions of nonassocxatlve a]»
gebras to these topics are given. Conver ely, every real flnltem
~dimensional nonassocigtive algebra arises from an invariant
connection and a -local muitiplication on a homogeneous spaéés
ilence, muoh of the basic theory of nonassociative algebras can be

fOTQUl&thd in terms of multiplications and connections, and conver-

sely. Let H be a closed (Lie)subgroup of a connected Lie Sroup C;c



R

M&Kiﬁg use of the coyraspondence between G-invariant connections
on the reductive homogen%us space G/H and certain nonassociative
algebras, SAGLE compubed [~ A5+ 7/ pseudo-Riemannian con-
nections in terms of & Jordan algebra ] of endomorphism. It G
and H are semisimple Lie groups, then, &as was proved by $AGLE;U
is a semisimple Jordan algebra.

SAGLE /= 497« 7/ indicated how a G-invariant mechaniocal
system involving the gquations of motion in covariant form may be
expressed in terms of Jordan algebras and reductive algebras which
generalize Lie-admissible algebras., The connections on the homo-
geneous configuration space are given by the .reductive algebras.
Consequently, the mechanical system, geodesics, conserved quanti-
ties, etc., may be analyzed in terms of differential_equations'
wyritten in these algebras, Thus, the free n-dimensional rigid body
motion is extended to free G-rigid motion by using the Nambu
mechanics expressed in terms of the reductive slgebras. In ref,

[~ 4574 ], SAGLE used the nonassociative algebras to describe
the interrelated nature of an invariant Lagrangian mechanical
system and its diffarential geometry. He also discussed pseudo;
metric connection algebras in Terms of Jordan algebras,-and noted
that the pseudo-Riemannian connection algebra satisTies a parti- .

cular identity.

Open problems, As SAGLE suggested [~ 45F A , pp.485-4867,

a geometrical classification of algebras using geodesics would

be interesting to be given.

e b eSS —— ST
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